Logo Search packages:      
Sourcecode: alsa-driver version File versions

usbmidi.c

/*
 * usbmidi.c - ALSA USB MIDI driver
 *
 * Copyright (c) 2002-2004 Clemens Ladisch
 * All rights reserved.
 *
 * Based on the OSS usb-midi driver by NAGANO Daisuke,
 *          NetBSD's umidi driver by Takuya SHIOZAKI,
 *          the "USB Device Class Definition for MIDI Devices" by Roland
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions, and the following disclaimer,
 *    without modification.
 * 2. The name of the author may not be used to endorse or promote products
 *    derived from this software without specific prior written permission.
 *
 * Alternatively, this software may be distributed and/or modified under the
 * terms of the GNU General Public License as published by the Free Software
 * Foundation; either version 2 of the License, or (at your option) any later
 * version.
 *
 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
 * SUCH DAMAGE.
 */

#include <sound/driver.h>
#include <linux/kernel.h>
#include <linux/types.h>
#include <linux/interrupt.h>
#include <linux/spinlock.h>
#include <linux/string.h>
#include <linux/init.h>
#include <linux/slab.h>
#include <linux/usb.h>
#include <sound/core.h>
#include <sound/minors.h>
#include <sound/rawmidi.h>
#include "usbaudio.h"

MODULE_AUTHOR("Clemens Ladisch <clemens@ladisch.de>");
MODULE_DESCRIPTION("USB Audio/MIDI helper module");
MODULE_LICENSE("Dual BSD/GPL");


struct usb_ms_header_descriptor {
      __u8  bLength;
      __u8  bDescriptorType;
      __u8  bDescriptorSubtype;
      __u8  bcdMSC[2];
      __u16 wTotalLength;
} __attribute__ ((packed));

struct usb_ms_endpoint_descriptor {
      __u8  bLength;
      __u8  bDescriptorType;
      __u8  bDescriptorSubtype;
      __u8  bNumEmbMIDIJack;
      __u8  baAssocJackID[0];
} __attribute__ ((packed));

typedef struct snd_usb_midi snd_usb_midi_t;
typedef struct snd_usb_midi_endpoint snd_usb_midi_endpoint_t;
typedef struct snd_usb_midi_out_endpoint snd_usb_midi_out_endpoint_t;
typedef struct snd_usb_midi_in_endpoint snd_usb_midi_in_endpoint_t;
typedef struct usbmidi_out_port usbmidi_out_port_t;
typedef struct usbmidi_in_port usbmidi_in_port_t;

struct snd_usb_midi {
      snd_usb_audio_t *chip;
      struct usb_interface *iface;
      const snd_usb_audio_quirk_t *quirk;
      snd_rawmidi_t* rmidi;
      struct list_head list;

      struct snd_usb_midi_endpoint {
            snd_usb_midi_out_endpoint_t *out;
            snd_usb_midi_in_endpoint_t *in;
      } endpoints[MIDI_MAX_ENDPOINTS];
};

struct snd_usb_midi_out_endpoint {
      snd_usb_midi_t* umidi;
      struct urb* urb;
      int max_transfer;       /* size of urb buffer */
      struct tasklet_struct tasklet;

      spinlock_t buffer_lock;

      struct usbmidi_out_port {
            snd_usb_midi_out_endpoint_t* ep;
            snd_rawmidi_substream_t* substream;
            int active;
            uint8_t cable;          /* cable number << 4 */
            uint8_t state;
#define STATE_UNKNOWN   0
#define STATE_1PARAM    1
#define STATE_2PARAM_1  2
#define STATE_2PARAM_2  3
#define STATE_SYSEX_0   4
#define STATE_SYSEX_1   5
#define STATE_SYSEX_2   6
            uint8_t data[2];
      } ports[0x10];
};

struct snd_usb_midi_in_endpoint {
      snd_usb_midi_t* umidi;
      struct urb* urb;
      struct usbmidi_in_port {
            snd_rawmidi_substream_t* substream;
      } ports[0x10];
};

static void snd_usbmidi_do_output(snd_usb_midi_out_endpoint_t* ep);

static const uint8_t snd_usbmidi_cin_length[] = {
      0, 0, 2, 3, 3, 1, 2, 3, 3, 3, 3, 3, 2, 2, 3, 1
};

/*
 * Submits the URB, with error handling.
 */
static int snd_usbmidi_submit_urb(struct urb* urb, int flags)
{
      int err = usb_submit_urb(urb, flags);
      if (err < 0 && err != -ENODEV)
            snd_printk(KERN_ERR "usb_submit_urb: %d\n", err);
      return err;
}

/*
 * Error handling for URB completion functions.
 */
static int snd_usbmidi_urb_error(int status)
{
      if (status == -ENOENT)
            return status; /* killed */
      if (status == -EILSEQ ||
          status == -ECONNRESET ||
          status == -ETIMEDOUT)
            return -ENODEV; /* device removed/shutdown */
      snd_printk(KERN_ERR "urb status %d\n", status);
      return 0; /* continue */
}

/*
 * Receives a USB MIDI packet.
 */
static void snd_usbmidi_input_packet(snd_usb_midi_in_endpoint_t* ep,
                             uint8_t packet[4])
{
      int cable = packet[0] >> 4;
      usbmidi_in_port_t* port = &ep->ports[cable];

      if (!port->substream) {
            snd_printd("unexpected port %d!\n", cable);
            return;
      }
      if (!port->substream->runtime ||
          !port->substream->runtime->trigger)
            return;
      snd_rawmidi_receive(port->substream, &packet[1],
                      snd_usbmidi_cin_length[packet[0] & 0x0f]);
}

/*
 * Processes the data read from the device.
 */
static void snd_usbmidi_in_urb_complete(struct urb* urb, struct pt_regs *regs)
{
      snd_usb_midi_in_endpoint_t* ep = urb->context;

      if (urb->status == 0) {
            uint8_t* buffer = (uint8_t*)ep->urb->transfer_buffer;
            int i;

            for (i = 0; i + 4 <= urb->actual_length; i += 4)
                  if (buffer[i] != 0)
                        snd_usbmidi_input_packet(ep, &buffer[i]);
      } else {
            if (snd_usbmidi_urb_error(urb->status) < 0)
                  return;
      }

      if (usb_pipe_needs_resubmit(urb->pipe)) {
            urb->dev = ep->umidi->chip->dev;
            snd_usbmidi_submit_urb(urb, GFP_ATOMIC);
      }
}

/*
 * Converts the data read from a Midiman device to standard USB MIDI packets.
 */
static void snd_usbmidi_in_midiman_complete(struct urb* urb, struct pt_regs *regs)
{
      if (urb->status == 0) {
            uint8_t* buffer = (uint8_t*)urb->transfer_buffer;
            int i;

            for (i = 0; i + 4 <= urb->actual_length; i += 4) {
                  if (buffer[i + 3] != 0) {
                        /*
                         * snd_usbmidi_input_packet() doesn't check the
                         * contents of the message, so we simply use
                         * some random CIN with the desired length.
                         */
                        static const uint8_t cin[4] = {
                              0x0, 0xf, 0x2, 0x3
                        };
                        uint8_t ctl = buffer[i + 3];
                        buffer[i + 3] = buffer[i + 2];
                        buffer[i + 2] = buffer[i + 1];
                        buffer[i + 1] = buffer[i + 0];
                        buffer[i + 0] = (ctl & 0xf0) | cin[ctl & 3];
                  } else {
                        buffer[i + 0] = 0;
                  }
            }
      }
      snd_usbmidi_in_urb_complete(urb, regs);
}

static void snd_usbmidi_out_urb_complete(struct urb* urb, struct pt_regs *regs)
{
      snd_usb_midi_out_endpoint_t* ep = urb->context;

      if (urb->status < 0) {
            if (snd_usbmidi_urb_error(urb->status) < 0)
                  return;
      }
      snd_usbmidi_do_output(ep);
}

/*
 * Converts standard USB MIDI packets to what Midman devices expect.
 */
static void snd_usbmidi_convert_to_midiman(struct urb* urb)
{
      uint8_t* buffer = (uint8_t*)urb->transfer_buffer;
      int i;

      for (i = 0; i + 4 <= urb->transfer_buffer_length; i += 4) {
            uint8_t cin = buffer[i];
            buffer[i + 0] = buffer[i + 1];
            buffer[i + 1] = buffer[i + 2];
            buffer[i + 2] = buffer[i + 3];
            buffer[i + 3] = (cin & 0xf0) | snd_usbmidi_cin_length[cin & 0x0f];
      }
}

/*
 * Adds one USB MIDI packet to the output buffer.
 */
static inline void output_packet(struct urb* urb,
                               uint8_t p0, uint8_t p1, uint8_t p2, uint8_t p3)
{

      uint8_t* buf = (uint8_t*)urb->transfer_buffer + urb->transfer_buffer_length;
      buf[0] = p0;
      buf[1] = p1;
      buf[2] = p2;
      buf[3] = p3;
      urb->transfer_buffer_length += 4;
}

/*
 * Converts MIDI commands to USB MIDI packets.
 */
static void snd_usbmidi_transmit_byte(usbmidi_out_port_t* port,
                              uint8_t b, struct urb* urb)
{
      uint8_t p0 = port->cable;

      if (b >= 0xf8) {
            output_packet(urb, p0 | 0x0f, b, 0, 0);
      } else if (b >= 0xf0) {
            switch (b) {
            case 0xf0:
                  port->data[0] = b;
                  port->state = STATE_SYSEX_1;
                  break;
            case 0xf1:
            case 0xf3:
                  port->data[0] = b;
                  port->state = STATE_1PARAM;
                  break;
            case 0xf2:
                  port->data[0] = b;
                  port->state = STATE_2PARAM_1;
                  break;
            case 0xf4:
            case 0xf5:
                  port->state = STATE_UNKNOWN;
                  break;
            case 0xf6:
                  output_packet(urb, p0 | 0x05, 0xf6, 0, 0);
                  port->state = STATE_UNKNOWN;
                  break;
            case 0xf7:
                  switch (port->state) {
                  case STATE_SYSEX_0:
                        output_packet(urb, p0 | 0x05, 0xf7, 0, 0);
                        break;
                  case STATE_SYSEX_1:
                        output_packet(urb, p0 | 0x06, port->data[0], 0xf7, 0);
                        break;
                  case STATE_SYSEX_2:
                        output_packet(urb, p0 | 0x07, port->data[0], port->data[1], 0xf7);
                        break;
                  }
                  port->state = STATE_UNKNOWN;
                  break;
            }
      } else if (b >= 0x80) {
            port->data[0] = b;
            if (b >= 0xc0 && b <= 0xdf)
                  port->state = STATE_1PARAM;
            else
                  port->state = STATE_2PARAM_1;
      } else { /* b < 0x80 */
            switch (port->state) {
            case STATE_1PARAM:
                  if (port->data[0] < 0xf0) {
                        p0 |= port->data[0] >> 4;
                  } else {
                        p0 |= 0x02;
                        port->state = STATE_UNKNOWN;
                  }
                  output_packet(urb, p0, port->data[0], b, 0);
                  break;
            case STATE_2PARAM_1:
                  port->data[1] = b;
                  port->state = STATE_2PARAM_2;
                  break;
            case STATE_2PARAM_2:
                  if (port->data[0] < 0xf0) {
                        p0 |= port->data[0] >> 4;
                        port->state = STATE_2PARAM_1;
                  } else {
                        p0 |= 0x03;
                        port->state = STATE_UNKNOWN;
                  }
                  output_packet(urb, p0, port->data[0], port->data[1], b);
                  break;
            case STATE_SYSEX_0:
                  port->data[0] = b;
                  port->state = STATE_SYSEX_1;
                  break;
            case STATE_SYSEX_1:
                  port->data[1] = b;
                  port->state = STATE_SYSEX_2;
                  break;
            case STATE_SYSEX_2:
                  output_packet(urb, p0 | 0x04, port->data[0], port->data[1], b);
                  port->state = STATE_SYSEX_0;
                  break;
            }
      }
}

/*
 * Moves data from one substream buffer to the URB transfer buffer.
 */
static void snd_usbmidi_transmit(snd_usb_midi_out_endpoint_t* ep, int port_idx)
{
      struct urb* urb = ep->urb;
      usbmidi_out_port_t* port = &ep->ports[port_idx];

      while (urb->transfer_buffer_length < ep->max_transfer) {
            uint8_t b;
            if (snd_rawmidi_transmit_peek(port->substream, &b, 1) != 1) {
                  port->active = 0;
                  break;
            }
            snd_usbmidi_transmit_byte(port, b, urb);
            snd_rawmidi_transmit_ack(port->substream, 1);
      }
}

/*
 * This is called when some data should be transferred to the device
 * (from one or more substreams).
 */
static void snd_usbmidi_do_output(snd_usb_midi_out_endpoint_t* ep)
{
      int p;
      struct urb* urb = ep->urb;
      unsigned long flags;

      spin_lock_irqsave(&ep->buffer_lock, flags);
      if (urb->status == -EINPROGRESS || ep->umidi->chip->shutdown) {
            spin_unlock_irqrestore(&ep->buffer_lock, flags);
            return;
      }

      urb->transfer_buffer_length = 0;
      for (p= 0; p < 0x10; ++p)
            if (ep->ports[p].active)
                  snd_usbmidi_transmit(ep, p);

      if (urb->transfer_buffer_length > 0) {
            if (ep->umidi->quirk && ep->umidi->quirk->type == QUIRK_MIDI_MIDIMAN)
                  snd_usbmidi_convert_to_midiman(urb);

            urb->dev = ep->umidi->chip->dev;
            snd_usbmidi_submit_urb(urb, GFP_ATOMIC);
      }
      spin_unlock_irqrestore(&ep->buffer_lock, flags);
}

static void snd_usbmidi_out_tasklet(unsigned long data)
{
      snd_usb_midi_out_endpoint_t* ep = (snd_usb_midi_out_endpoint_t *) data;

      snd_usbmidi_do_output(ep);
}

static int snd_usbmidi_output_open(snd_rawmidi_substream_t* substream)
{
      snd_usb_midi_t* umidi = substream->rmidi->private_data;
      usbmidi_out_port_t* port = NULL;
      int i, j;

      for (i = 0; i < MIDI_MAX_ENDPOINTS; ++i)
            if (umidi->endpoints[i].out)
                  for (j = 0; j < 0x10; ++j)
                        if (umidi->endpoints[i].out->ports[j].substream == substream) {
                              port = &umidi->endpoints[i].out->ports[j];
                              break;
                        }
      if (!port) {
            snd_BUG();
            return -ENXIO;
      }
      substream->runtime->private_data = port;
      port->state = STATE_UNKNOWN;
      return 0;
}

static int snd_usbmidi_output_close(snd_rawmidi_substream_t* substream)
{
      return 0;
}

static void snd_usbmidi_output_trigger(snd_rawmidi_substream_t* substream, int up)
{
      usbmidi_out_port_t* port = (usbmidi_out_port_t*)substream->runtime->private_data;

      port->active = up;
      if (up) {
            if (port->ep->umidi->chip->shutdown) {
                  /* gobble up remaining bytes to prevent wait in
                   * snd_rawmidi_drain_output */
                  while (!snd_rawmidi_transmit_empty(substream))
                        snd_rawmidi_transmit_ack(substream, 1);
                  return;
            }
            tasklet_hi_schedule(&port->ep->tasklet);
      }
}

static int snd_usbmidi_input_open(snd_rawmidi_substream_t* substream)
{
      return 0;
}

static int snd_usbmidi_input_close(snd_rawmidi_substream_t* substream)
{
      return 0;
}

static void snd_usbmidi_input_trigger(snd_rawmidi_substream_t* substream, int up)
{
}

static snd_rawmidi_ops_t snd_usbmidi_output_ops = {
      .open = snd_usbmidi_output_open,
      .close = snd_usbmidi_output_close,
      .trigger = snd_usbmidi_output_trigger,
};

static snd_rawmidi_ops_t snd_usbmidi_input_ops = {
      .open = snd_usbmidi_input_open,
      .close = snd_usbmidi_input_close,
      .trigger = snd_usbmidi_input_trigger
};

/*
 * Frees an input endpoint.
 * May be called when ep hasn't been initialized completely.
 */
static void snd_usbmidi_in_endpoint_delete(snd_usb_midi_in_endpoint_t* ep)
{
      if (ep->urb) {
            kfree(ep->urb->transfer_buffer);
            usb_free_urb(ep->urb);
      }
      kfree(ep);
}

/*
 * For Roland devices, use the alternate setting which uses interrupt
 * transfers for input.
 */
static struct usb_endpoint_descriptor* snd_usbmidi_get_int_epd(snd_usb_midi_t* umidi)
{
      struct usb_interface* intf;
      struct usb_host_interface *hostif;
      struct usb_interface_descriptor* intfd;

      if (umidi->chip->dev->descriptor.idVendor != 0x0582)
            return NULL;
      intf = umidi->iface;
      if (!intf || intf->num_altsetting != 2)
            return NULL;

      hostif = &intf->altsetting[0];
      intfd = get_iface_desc(hostif);
      if (intfd->bNumEndpoints != 2 ||
          (get_endpoint(hostif, 0)->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) != USB_ENDPOINT_XFER_BULK ||
          (get_endpoint(hostif, 1)->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) != USB_ENDPOINT_XFER_BULK)
            return NULL;

      hostif = &intf->altsetting[1];
      intfd = get_iface_desc(hostif);
      if (intfd->bNumEndpoints != 2 ||
          (get_endpoint(hostif, 0)->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) != USB_ENDPOINT_XFER_BULK ||
          (get_endpoint(hostif, 1)->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) != USB_ENDPOINT_XFER_INT)
            return NULL;

      snd_printdd(KERN_INFO "switching to altsetting %d with int ep\n",
                intfd->bAlternateSetting);
      usb_set_interface(umidi->chip->dev, intfd->bInterfaceNumber,
                    intfd->bAlternateSetting);
      return get_endpoint(hostif, 1);
}

static struct usb_endpoint_descriptor* snd_usbmidi_get_midiman_int_epd(snd_usb_midi_t* umidi)
{
      struct usb_interface* intf = umidi->iface;
      struct usb_host_interface *hostif;
      struct usb_interface_descriptor *intfd;
      if (!intf)
            return NULL;
      hostif = &intf->altsetting[0];
      intfd = get_iface_desc(hostif);
      if (intfd->bNumEndpoints < 1)
            return NULL;
      return get_endpoint(hostif, 0);
}

/*
 * Creates an input endpoint.
 */
static int snd_usbmidi_in_endpoint_create(snd_usb_midi_t* umidi,
                                snd_usb_midi_endpoint_info_t* ep_info,
                                snd_usb_midi_endpoint_t* rep)
{
      snd_usb_midi_in_endpoint_t* ep;
      struct usb_endpoint_descriptor* int_epd;
      void* buffer;
      unsigned int pipe;
      int length;

      rep->in = NULL;
      ep = kcalloc(1, sizeof(*ep), GFP_KERNEL);
      if (!ep)
            return -ENOMEM;
      ep->umidi = umidi;

      if (umidi->quirk && umidi->quirk->type == QUIRK_MIDI_MIDIMAN)
            int_epd = snd_usbmidi_get_midiman_int_epd(umidi);
      else
            int_epd = snd_usbmidi_get_int_epd(umidi);

      ep->urb = usb_alloc_urb(0, GFP_KERNEL);
      if (!ep->urb) {
            snd_usbmidi_in_endpoint_delete(ep);
            return -ENOMEM;
      }
      if (int_epd)
            pipe = usb_rcvintpipe(umidi->chip->dev, ep_info->in_ep);
      else
            pipe = usb_rcvbulkpipe(umidi->chip->dev, ep_info->in_ep);
      length = usb_maxpacket(umidi->chip->dev, pipe, 0);
      buffer = kmalloc(length, GFP_KERNEL);
      if (!buffer) {
            snd_usbmidi_in_endpoint_delete(ep);
            return -ENOMEM;
      }
      if (int_epd)
            usb_fill_int_urb(ep->urb, umidi->chip->dev, pipe, buffer, length,
                         snd_usb_complete_callback(snd_usbmidi_in_urb_complete),
                         ep, int_epd->bInterval);
      else
            usb_fill_bulk_urb(ep->urb, umidi->chip->dev, pipe, buffer, length,
                          snd_usb_complete_callback(snd_usbmidi_in_urb_complete),
                          ep);

      rep->in = ep;
      return 0;
}

static int snd_usbmidi_count_bits(uint16_t x)
{
      int i, bits = 0;

      for (i = 0; i < 16; ++i)
            bits += (x & (1 << i)) != 0;
      return bits;
}

/*
 * Frees an output endpoint.
 * May be called when ep hasn't been initialized completely.
 */
static void snd_usbmidi_out_endpoint_delete(snd_usb_midi_out_endpoint_t* ep)
{
      if (ep->tasklet.func)
            tasklet_kill(&ep->tasklet);
      if (ep->urb) {
            kfree(ep->urb->transfer_buffer);
            usb_free_urb(ep->urb);
      }
      kfree(ep);
}

/*
 * Creates an output endpoint, and initializes output ports.
 */
static int snd_usbmidi_out_endpoint_create(snd_usb_midi_t* umidi,
                                 snd_usb_midi_endpoint_info_t* ep_info,
                                 snd_usb_midi_endpoint_t* rep)
{
      snd_usb_midi_out_endpoint_t* ep;
      int i;
      unsigned int pipe;
      void* buffer;

      rep->out = NULL;
      ep = kcalloc(1, sizeof(*ep), GFP_KERNEL);
      if (!ep)
            return -ENOMEM;
      ep->umidi = umidi;

      ep->urb = usb_alloc_urb(0, GFP_KERNEL);
      if (!ep->urb) {
            snd_usbmidi_out_endpoint_delete(ep);
            return -ENOMEM;
      }
      pipe = usb_sndbulkpipe(umidi->chip->dev, ep_info->out_ep);
      ep->max_transfer = usb_maxpacket(umidi->chip->dev, pipe, 1) & ~3;
      buffer = kmalloc(ep->max_transfer, GFP_KERNEL);
      if (!buffer) {
            snd_usbmidi_out_endpoint_delete(ep);
            return -ENOMEM;
      }
      usb_fill_bulk_urb(ep->urb, umidi->chip->dev, pipe, buffer,
                    ep->max_transfer,
                    snd_usb_complete_callback(snd_usbmidi_out_urb_complete), ep);

      spin_lock_init(&ep->buffer_lock);
      tasklet_init(&ep->tasklet, snd_usbmidi_out_tasklet, (unsigned long)ep);

      for (i = 0; i < 0x10; ++i)
            if (ep_info->out_cables & (1 << i)) {
                  ep->ports[i].ep = ep;
                  ep->ports[i].cable = i << 4;
            }

      rep->out = ep;
      return 0;
}

/*
 * Frees everything.
 */
static void snd_usbmidi_free(snd_usb_midi_t* umidi)
{
      int i;

      for (i = 0; i < MIDI_MAX_ENDPOINTS; ++i) {
            snd_usb_midi_endpoint_t* ep = &umidi->endpoints[i];
            if (ep->out)
                  snd_usbmidi_out_endpoint_delete(ep->out);
            if (ep->in)
                  snd_usbmidi_in_endpoint_delete(ep->in);
      }
      kfree(umidi);
}

/*
 * Unlinks all URBs (must be done before the usb_device is deleted).
 */
void snd_usbmidi_disconnect(struct list_head* p, struct usb_driver *driver)
{
      snd_usb_midi_t* umidi;
      int i;

      umidi = list_entry(p, snd_usb_midi_t, list);
      for (i = 0; i < MIDI_MAX_ENDPOINTS; ++i) {
            snd_usb_midi_endpoint_t* ep = &umidi->endpoints[i];
            if (ep->out && ep->out->urb)
                  usb_kill_urb(ep->out->urb);
            if (ep->in && ep->in->urb)
                  usb_kill_urb(ep->in->urb);
      }
}

static void snd_usbmidi_rawmidi_free(snd_rawmidi_t* rmidi)
{
      snd_usb_midi_t* umidi = rmidi->private_data;
      snd_usbmidi_free(umidi);
}

static snd_rawmidi_substream_t* snd_usbmidi_find_substream(snd_usb_midi_t* umidi,
                                             int stream, int number)
{
      struct list_head* list;

      list_for_each(list, &umidi->rmidi->streams[stream].substreams) {
            snd_rawmidi_substream_t* substream = list_entry(list, snd_rawmidi_substream_t, list);
            if (substream->number == number)
                  return substream;
      }
      return NULL;
}

/*
 * This list specifies names for ports that do not fit into the standard
 * "(product) MIDI (n)" schema because they aren't external MIDI ports,
 * such as internal control or synthesizer ports.
 */
static struct {
      __u16 vendor;
      __u16 product;
      int port;
      const char *name_format;
} snd_usbmidi_port_names[] = {
      /* Roland UA-100 */
      {0x0582, 0x0000, 2, "%s Control"},
      /* Roland SC-8850 */
      {0x0582, 0x0003, 0, "%s Part A"},
      {0x0582, 0x0003, 1, "%s Part B"},
      {0x0582, 0x0003, 2, "%s Part C"},
      {0x0582, 0x0003, 3, "%s Part D"},
      {0x0582, 0x0003, 4, "%s MIDI 1"},
      {0x0582, 0x0003, 5, "%s MIDI 2"},
      /* Roland U-8 */
      {0x0582, 0x0004, 0, "%s MIDI"},
      {0x0582, 0x0004, 1, "%s Control"},
      /* Roland SC-8820 */
      {0x0582, 0x0007, 0, "%s Part A"},
      {0x0582, 0x0007, 1, "%s Part B"},
      {0x0582, 0x0007, 2, "%s MIDI"},
      /* Roland SK-500 */
      {0x0582, 0x000b, 0, "%s Part A"},
      {0x0582, 0x000b, 1, "%s Part B"},
      {0x0582, 0x000b, 2, "%s MIDI"},
      /* Roland SC-D70 */
      {0x0582, 0x000c, 0, "%s Part A"},
      {0x0582, 0x000c, 1, "%s Part B"},
      {0x0582, 0x000c, 2, "%s MIDI"},
      /* Edirol UM-880 */
      {0x0582, 0x0014, 8, "%s Control"},
      /* Edirol SD-90 */
      {0x0582, 0x0016, 0, "%s Part A"},
      {0x0582, 0x0016, 1, "%s Part B"},
      {0x0582, 0x0016, 2, "%s MIDI 1"},
      {0x0582, 0x0016, 3, "%s MIDI 2"},
      /* Edirol UM-550 */
      {0x0582, 0x0023, 5, "%s Control"},
      /* Edirol SD-20 */
      {0x0582, 0x0027, 0, "%s Part A"},
      {0x0582, 0x0027, 1, "%s Part B"},
      {0x0582, 0x0027, 2, "%s MIDI"},
      /* Edirol SD-80 */
      {0x0582, 0x0029, 0, "%s Part A"},
      {0x0582, 0x0029, 1, "%s Part B"},
      {0x0582, 0x0029, 2, "%s MIDI 1"},
      {0x0582, 0x0029, 3, "%s MIDI 2"},
      /* Edirol UA-700 */
      {0x0582, 0x002b, 0, "%s MIDI"},
      {0x0582, 0x002b, 1, "%s Control"},
      /* Roland VariOS */
      {0x0582, 0x002f, 0, "%s MIDI"},
      {0x0582, 0x002f, 1, "%s External MIDI"},
      {0x0582, 0x002f, 2, "%s Sync"},
      /* Edirol PCR */
      {0x0582, 0x0033, 0, "%s MIDI"},
      {0x0582, 0x0033, 1, "%s 1"},
      {0x0582, 0x0033, 2, "%s 2"},
      /* BOSS GS-10 */
      {0x0582, 0x003b, 0, "%s MIDI"},
      {0x0582, 0x003b, 1, "%s Control"},
      /* Edirol UA-1000 */
      {0x0582, 0x0044, 0, "%s MIDI"},
      {0x0582, 0x0044, 1, "%s Control"},
      /* Edirol UR-80 */
      {0x0582, 0x0048, 0, "%s MIDI"},
      {0x0582, 0x0048, 1, "%s 1"},
      {0x0582, 0x0048, 2, "%s 2"},
      /* Edirol PCR-A */
      {0x0582, 0x004d, 0, "%s MIDI"},
      {0x0582, 0x004d, 1, "%s 1"},
      {0x0582, 0x004d, 2, "%s 2"},
      /* M-Audio MidiSport 8x8 */
      {0x0763, 0x1031, 8, "%s Control"},
      {0x0763, 0x1033, 8, "%s Control"},
};

static void snd_usbmidi_init_substream(snd_usb_midi_t* umidi,
                               int stream, int number,
                               snd_rawmidi_substream_t** rsubstream)
{
      int i;
      __u16 vendor, product;
      const char *name_format;

      snd_rawmidi_substream_t* substream = snd_usbmidi_find_substream(umidi, stream, number);
      if (!substream) {
            snd_printd(KERN_ERR "substream %d:%d not found\n", stream, number);
            return;
      }

      /* TODO: read port name from jack descriptor */
      name_format = "%s MIDI %d";
      vendor = umidi->chip->dev->descriptor.idVendor;
      product = umidi->chip->dev->descriptor.idProduct;
      for (i = 0; i < ARRAY_SIZE(snd_usbmidi_port_names); ++i) {
            if (snd_usbmidi_port_names[i].vendor == vendor &&
                snd_usbmidi_port_names[i].product == product &&
                snd_usbmidi_port_names[i].port == number) {
                  name_format = snd_usbmidi_port_names[i].name_format;
                  break;
            }
      }
      snprintf(substream->name, sizeof(substream->name),
             name_format, umidi->chip->card->shortname, number + 1);

      *rsubstream = substream;
}

/*
 * Creates the endpoints and their ports.
 */
static int snd_usbmidi_create_endpoints(snd_usb_midi_t* umidi,
                              snd_usb_midi_endpoint_info_t* endpoints)
{
      int i, j, err;
      int out_ports = 0, in_ports = 0;

      for (i = 0; i < MIDI_MAX_ENDPOINTS; ++i) {
            if (endpoints[i].out_cables) {
                  err = snd_usbmidi_out_endpoint_create(umidi, &endpoints[i],
                                                &umidi->endpoints[i]);
                  if (err < 0)
                        return err;
            }
            if (endpoints[i].in_cables) {
                  err = snd_usbmidi_in_endpoint_create(umidi, &endpoints[i],
                                               &umidi->endpoints[i]);
                  if (err < 0)
                        return err;
            }

            for (j = 0; j < 0x10; ++j) {
                  if (endpoints[i].out_cables & (1 << j)) {
                        snd_usbmidi_init_substream(umidi, SNDRV_RAWMIDI_STREAM_OUTPUT, out_ports,
                                             &umidi->endpoints[i].out->ports[j].substream);
                        ++out_ports;
                  }
                  if (endpoints[i].in_cables & (1 << j)) {
                        snd_usbmidi_init_substream(umidi, SNDRV_RAWMIDI_STREAM_INPUT, in_ports,
                                             &umidi->endpoints[i].in->ports[j].substream);
                        ++in_ports;
                  }
            }
      }
      snd_printdd(KERN_INFO "created %d output and %d input ports\n",
                out_ports, in_ports);
      return 0;
}

/*
 * Returns MIDIStreaming device capabilities.
 */
static int snd_usbmidi_get_ms_info(snd_usb_midi_t* umidi,
                           snd_usb_midi_endpoint_info_t* endpoints)
{
      struct usb_interface* intf;
      struct usb_host_interface *hostif;
      struct usb_interface_descriptor* intfd;
      struct usb_ms_header_descriptor* ms_header;
      struct usb_host_endpoint *hostep;
      struct usb_endpoint_descriptor* ep;
      struct usb_ms_endpoint_descriptor* ms_ep;
      int i, epidx;

      intf = umidi->iface;
      if (!intf)
            return -ENXIO;
      hostif = &intf->altsetting[0];
      intfd = get_iface_desc(hostif);
      ms_header = (struct usb_ms_header_descriptor*)hostif->extra;
      if (hostif->extralen >= 7 &&
          ms_header->bLength >= 7 &&
          ms_header->bDescriptorType == USB_DT_CS_INTERFACE &&
          ms_header->bDescriptorSubtype == HEADER)
            snd_printdd(KERN_INFO "MIDIStreaming version %02x.%02x\n",
                      ms_header->bcdMSC[1], ms_header->bcdMSC[0]);
      else
            snd_printk(KERN_WARNING "MIDIStreaming interface descriptor not found\n");

      epidx = 0;
      for (i = 0; i < intfd->bNumEndpoints; ++i) {
            hostep = &hostif->endpoint[i];
            ep = get_ep_desc(hostep);
            if ((ep->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) != USB_ENDPOINT_XFER_BULK)
                  continue;
            ms_ep = (struct usb_ms_endpoint_descriptor*)hostep->extra;
            if (hostep->extralen < 4 ||
                ms_ep->bLength < 4 ||
                ms_ep->bDescriptorType != USB_DT_CS_ENDPOINT ||
                ms_ep->bDescriptorSubtype != MS_GENERAL)
                  continue;
            if ((ep->bEndpointAddress & USB_ENDPOINT_DIR_MASK) == USB_DIR_OUT) {
                  if (endpoints[epidx].out_ep) {
                        if (++epidx >= MIDI_MAX_ENDPOINTS) {
                              snd_printk(KERN_WARNING "too many endpoints\n");
                              break;
                        }
                  }
                  endpoints[epidx].out_ep = ep->bEndpointAddress & USB_ENDPOINT_NUMBER_MASK;
                  endpoints[epidx].out_cables = (1 << ms_ep->bNumEmbMIDIJack) - 1;
                  snd_printdd(KERN_INFO "EP %02X: %d jack(s)\n",
                            ep->bEndpointAddress, ms_ep->bNumEmbMIDIJack);
            } else {
                  if (endpoints[epidx].in_ep) {
                        if (++epidx >= MIDI_MAX_ENDPOINTS) {
                              snd_printk(KERN_WARNING "too many endpoints\n");
                              break;
                        }
                  }
                  endpoints[epidx].in_ep = ep->bEndpointAddress & USB_ENDPOINT_NUMBER_MASK;
                  endpoints[epidx].in_cables = (1 << ms_ep->bNumEmbMIDIJack) - 1;
                  snd_printdd(KERN_INFO "EP %02X: %d jack(s)\n",
                            ep->bEndpointAddress, ms_ep->bNumEmbMIDIJack);
            }
      }
      return 0;
}

/*
 * If the endpoints aren't specified, use the first bulk endpoints in the
 * first alternate setting of the interface.
 */
static int snd_usbmidi_detect_endpoint(snd_usb_midi_t* umidi,
                               snd_usb_midi_endpoint_info_t* endpoint)
{
      struct usb_interface* intf;
      struct usb_host_interface *hostif;
      struct usb_interface_descriptor* intfd;
      struct usb_endpoint_descriptor* epd;
      int i;

      intf = umidi->iface;
      if (!intf || intf->num_altsetting < 1)
            return -ENOENT;
      hostif = intf->altsetting;
      intfd = get_iface_desc(hostif);
      if (intfd->bNumEndpoints < 1)
            return -ENOENT;

      for (i = 0; i < intfd->bNumEndpoints; ++i) {
            epd = get_endpoint(hostif, i);
            if ((epd->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) != USB_ENDPOINT_XFER_BULK)
                  continue;
            if (!endpoint->out_ep && endpoint->out_cables &&
                (epd->bEndpointAddress & USB_ENDPOINT_DIR_MASK) == USB_DIR_OUT)
                  endpoint->out_ep = epd->bEndpointAddress & USB_ENDPOINT_NUMBER_MASK;
            if (!endpoint->in_ep && endpoint->in_cables &&
                (epd->bEndpointAddress & USB_ENDPOINT_DIR_MASK) == USB_DIR_IN)
                  endpoint->in_ep = epd->bEndpointAddress & USB_ENDPOINT_NUMBER_MASK;
      }
      return 0;
}

/*
 * Detects the endpoints and ports of Yamaha devices.
 */
static int snd_usbmidi_detect_yamaha(snd_usb_midi_t* umidi,
                             snd_usb_midi_endpoint_info_t* endpoint)
{
      struct usb_interface* intf;
      struct usb_host_interface *hostif;
      struct usb_interface_descriptor* intfd;
      uint8_t* cs_desc;

      intf = umidi->iface;
      if (!intf)
            return -ENOENT;
      hostif = intf->altsetting;
      intfd = get_iface_desc(hostif);
      if (intfd->bNumEndpoints < 1)
            return -ENOENT;

      /*
       * For each port there is one MIDI_IN/OUT_JACK descriptor, not
       * necessarily with any useful contents.  So simply count 'em.
       */
      for (cs_desc = hostif->extra;
           cs_desc < hostif->extra + hostif->extralen && cs_desc[0] >= 2;
           cs_desc += cs_desc[0]) {
            if (cs_desc[1] == CS_AUDIO_INTERFACE) {
                  if (cs_desc[2] == MIDI_IN_JACK)
                        endpoint->in_cables = (endpoint->in_cables << 1) | 1;
                  else if (cs_desc[2] == MIDI_OUT_JACK)
                        endpoint->out_cables = (endpoint->out_cables << 1) | 1;
            }
      }
      if (!endpoint->in_cables && !endpoint->out_cables)
            return -ENOENT;

      return snd_usbmidi_detect_endpoint(umidi, endpoint);
}

/*
 * Creates the endpoints and their ports for Midiman devices.
 */
static int snd_usbmidi_create_endpoints_midiman(snd_usb_midi_t* umidi,
                                    snd_usb_midi_endpoint_info_t* endpoint)
{
      snd_usb_midi_endpoint_info_t ep_info;
      struct usb_interface* intf;
      struct usb_host_interface *hostif;
      struct usb_interface_descriptor* intfd;
      struct usb_endpoint_descriptor* epd;
      int cable, err;

      intf = umidi->iface;
      if (!intf)
            return -ENOENT;
      hostif = intf->altsetting;
      intfd = get_iface_desc(hostif);
      /*
       * The various MidiSport devices have more or less random endpoint
       * numbers, so we have to identify the endpoints by their index in
       * the descriptor array, like the driver for that other OS does.
       *
       * There is one interrupt input endpoint for all input ports, one
       * bulk output endpoint for even-numbered ports, and one for odd-
       * numbered ports.  Both bulk output endpoints have corresponding
       * input bulk endpoints (at indices 1 and 3) which aren't used.
       */
      if (intfd->bNumEndpoints < (endpoint->out_cables > 0x0001 ? 5 : 3)) {
            snd_printdd(KERN_ERR "not enough endpoints\n");
            return -ENOENT;
      }

      epd = get_endpoint(hostif, 0);
      if ((epd->bEndpointAddress & USB_ENDPOINT_DIR_MASK) != USB_DIR_IN ||
          (epd->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) != USB_ENDPOINT_XFER_INT) {
            snd_printdd(KERN_ERR "endpoint[0] isn't interrupt\n");
            return -ENXIO;
      }
      epd = get_endpoint(hostif, 2);
      if ((epd->bEndpointAddress & USB_ENDPOINT_DIR_MASK) != USB_DIR_OUT ||
          (epd->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) != USB_ENDPOINT_XFER_BULK) {
            snd_printdd(KERN_ERR "endpoint[2] isn't bulk output\n");
            return -ENXIO;
      }
      if (endpoint->out_cables > 0x0001) {
            epd = get_endpoint(hostif, 4);
            if ((epd->bEndpointAddress & USB_ENDPOINT_DIR_MASK) != USB_DIR_OUT ||
                (epd->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) != USB_ENDPOINT_XFER_BULK) {
                  snd_printdd(KERN_ERR "endpoint[4] isn't bulk output\n");
                  return -ENXIO;
            }
      }

      ep_info.out_ep = get_endpoint(hostif, 2)->bEndpointAddress & USB_ENDPOINT_NUMBER_MASK;
      ep_info.out_cables = endpoint->out_cables & 0x5555;
      err = snd_usbmidi_out_endpoint_create(umidi, &ep_info, &umidi->endpoints[0]);
      if (err < 0)
            return err;

      ep_info.in_ep = get_endpoint(hostif, 0)->bEndpointAddress & USB_ENDPOINT_NUMBER_MASK;
      ep_info.in_cables = endpoint->in_cables;
      err = snd_usbmidi_in_endpoint_create(umidi, &ep_info, &umidi->endpoints[0]);
      if (err < 0)
            return err;
      umidi->endpoints[0].in->urb->complete = snd_usb_complete_callback(snd_usbmidi_in_midiman_complete);

      if (endpoint->out_cables > 0x0001) {
            ep_info.out_ep = get_endpoint(hostif, 4)->bEndpointAddress & USB_ENDPOINT_NUMBER_MASK;
            ep_info.out_cables = endpoint->out_cables & 0xaaaa;
            err = snd_usbmidi_out_endpoint_create(umidi, &ep_info, &umidi->endpoints[1]);
            if (err < 0)
                  return err;
      }

      for (cable = 0; cable < 0x10; ++cable) {
            if (endpoint->out_cables & (1 << cable))
                  snd_usbmidi_init_substream(umidi, SNDRV_RAWMIDI_STREAM_OUTPUT, cable,
                                       &umidi->endpoints[cable & 1].out->ports[cable].substream);
            if (endpoint->in_cables & (1 << cable))
                  snd_usbmidi_init_substream(umidi, SNDRV_RAWMIDI_STREAM_INPUT, cable,
                                       &umidi->endpoints[0].in->ports[cable].substream);
      }
      return 0;
}

static int snd_usbmidi_create_rawmidi(snd_usb_midi_t* umidi,
                              int out_ports, int in_ports)
{
      snd_rawmidi_t* rmidi;
      int err;

      err = snd_rawmidi_new(umidi->chip->card, "USB MIDI",
                        umidi->chip->next_midi_device++,
                        out_ports, in_ports, &rmidi);
      if (err < 0)
            return err;
      strcpy(rmidi->name, umidi->chip->card->shortname);
      rmidi->info_flags = SNDRV_RAWMIDI_INFO_OUTPUT |
                      SNDRV_RAWMIDI_INFO_INPUT |
                      SNDRV_RAWMIDI_INFO_DUPLEX;
      rmidi->private_data = umidi;
      rmidi->private_free = snd_usbmidi_rawmidi_free;
      snd_rawmidi_set_ops(rmidi, SNDRV_RAWMIDI_STREAM_OUTPUT, &snd_usbmidi_output_ops);
      snd_rawmidi_set_ops(rmidi, SNDRV_RAWMIDI_STREAM_INPUT, &snd_usbmidi_input_ops);

      umidi->rmidi = rmidi;
      return 0;
}

/*
 * Temporarily stop input.
 */
void snd_usbmidi_input_stop(struct list_head* p)
{
      snd_usb_midi_t* umidi;
      int i;

      umidi = list_entry(p, snd_usb_midi_t, list);
      for (i = 0; i < MIDI_MAX_ENDPOINTS; ++i) {
            snd_usb_midi_endpoint_t* ep = &umidi->endpoints[i];
            if (ep->in)
                  usb_kill_urb(ep->in->urb);
      }
}

static void snd_usbmidi_input_start_ep(snd_usb_midi_in_endpoint_t* ep)
{
      if (ep) {
            struct urb* urb = ep->urb;
            urb->dev = ep->umidi->chip->dev;
            snd_usbmidi_submit_urb(urb, GFP_KERNEL);
      }
}

/*
 * Resume input after a call to snd_usbmidi_input_stop().
 */
void snd_usbmidi_input_start(struct list_head* p)
{
      snd_usb_midi_t* umidi;
      int i;

      umidi = list_entry(p, snd_usb_midi_t, list);
      for (i = 0; i < MIDI_MAX_ENDPOINTS; ++i)
            snd_usbmidi_input_start_ep(umidi->endpoints[i].in);
}

/*
 * Creates and registers everything needed for a MIDI streaming interface.
 */
int snd_usb_create_midi_interface(snd_usb_audio_t* chip,
                          struct usb_interface* iface,
                          const snd_usb_audio_quirk_t* quirk)
{
      snd_usb_midi_t* umidi;
      snd_usb_midi_endpoint_info_t endpoints[MIDI_MAX_ENDPOINTS];
      int out_ports, in_ports;
      int i, err;

      umidi = kcalloc(1, sizeof(*umidi), GFP_KERNEL);
      if (!umidi)
            return -ENOMEM;
      umidi->chip = chip;
      umidi->iface = iface;
      umidi->quirk = quirk;

      /* detect the endpoint(s) to use */
      memset(endpoints, 0, sizeof(endpoints));
      if (!quirk) {
            err = snd_usbmidi_get_ms_info(umidi, endpoints);
      } else {
            switch (quirk->type) {
            case QUIRK_MIDI_FIXED_ENDPOINT:
                  memcpy(&endpoints[0], quirk->data,
                         sizeof(snd_usb_midi_endpoint_info_t));
                  err = snd_usbmidi_detect_endpoint(umidi, &endpoints[0]);
                  break;
            case QUIRK_MIDI_YAMAHA:
                  err = snd_usbmidi_detect_yamaha(umidi, &endpoints[0]);
                  break;
            case QUIRK_MIDI_MIDIMAN:
                  memcpy(&endpoints[0], quirk->data,
                         sizeof(snd_usb_midi_endpoint_info_t));
                  err = 0;
                  break;
            default:
                  snd_printd(KERN_ERR "invalid quirk type %d\n", quirk->type);
                  err = -ENXIO;
                  break;
            }
      }
      if (err < 0) {
            kfree(umidi);
            return err;
      }

      /* create rawmidi device */
      out_ports = 0;
      in_ports = 0;
      for (i = 0; i < MIDI_MAX_ENDPOINTS; ++i) {
            out_ports += snd_usbmidi_count_bits(endpoints[i].out_cables);
            in_ports += snd_usbmidi_count_bits(endpoints[i].in_cables);
      }
      err = snd_usbmidi_create_rawmidi(umidi, out_ports, in_ports);
      if (err < 0) {
            kfree(umidi);
            return err;
      }

      /* create endpoint/port structures */
      if (quirk && quirk->type == QUIRK_MIDI_MIDIMAN)
            err = snd_usbmidi_create_endpoints_midiman(umidi, &endpoints[0]);
      else
            err = snd_usbmidi_create_endpoints(umidi, endpoints);
      if (err < 0) {
            snd_usbmidi_free(umidi);
            return err;
      }

      list_add(&umidi->list, &umidi->chip->midi_list);

      for (i = 0; i < MIDI_MAX_ENDPOINTS; ++i)
            snd_usbmidi_input_start_ep(umidi->endpoints[i].in);
      return 0;
}

EXPORT_SYMBOL(snd_usb_create_midi_interface);
EXPORT_SYMBOL(snd_usbmidi_input_stop);
EXPORT_SYMBOL(snd_usbmidi_input_start);
EXPORT_SYMBOL(snd_usbmidi_disconnect);

Generated by  Doxygen 1.6.0   Back to index