Logo Search packages:      
Sourcecode: alsa-driver version File versions  Download package

soc-core.c

/*
 * soc-core.c  --  ALSA SoC Audio Layer
 *
 * Copyright 2005 Wolfson Microelectronics PLC.
 * Copyright 2005 Openedhand Ltd.
 * Copyright (C) 2010 Slimlogic Ltd.
 * Copyright (C) 2010 Texas Instruments Inc.
 *
 * Author: Liam Girdwood <lrg@slimlogic.co.uk>
 *         with code, comments and ideas from :-
 *         Richard Purdie <richard@openedhand.com>
 *
 *  This program is free software; you can redistribute  it and/or modify it
 *  under  the terms of  the GNU General  Public License as published by the
 *  Free Software Foundation;  either version 2 of the  License, or (at your
 *  option) any later version.
 *
 *  TODO:
 *   o Add hw rules to enforce rates, etc.
 *   o More testing with other codecs/machines.
 *   o Add more codecs and platforms to ensure good API coverage.
 *   o Support TDM on PCM and I2S
 */

#include <linux/module.h>
#include <linux/moduleparam.h>
#include <linux/init.h>
#include <linux/delay.h>
#include <linux/pm.h>
#include <linux/bitops.h>
#include <linux/debugfs.h>
#include <linux/platform_device.h>
#include <linux/slab.h>
#include <sound/ac97_codec.h>
#include <sound/core.h>
#include <sound/jack.h>
#include <sound/pcm.h>
#include <sound/pcm_params.h>
#include <sound/soc.h>
#include <sound/initval.h>

#define CREATE_TRACE_POINTS
#include <trace/events/asoc.h>

#define NAME_SIZE 32

static DEFINE_MUTEX(pcm_mutex);
static DECLARE_WAIT_QUEUE_HEAD(soc_pm_waitq);

#ifdef CONFIG_DEBUG_FS
struct dentry *snd_soc_debugfs_root;
EXPORT_SYMBOL_GPL(snd_soc_debugfs_root);
#endif

static DEFINE_MUTEX(client_mutex);
static LIST_HEAD(card_list);
static LIST_HEAD(dai_list);
static LIST_HEAD(platform_list);
static LIST_HEAD(codec_list);

static int soc_new_pcm(struct snd_soc_pcm_runtime *rtd, int num);

/*
 * This is a timeout to do a DAPM powerdown after a stream is closed().
 * It can be used to eliminate pops between different playback streams, e.g.
 * between two audio tracks.
 */
static int pmdown_time = 5000;
module_param(pmdown_time, int, 0);
MODULE_PARM_DESC(pmdown_time, "DAPM stream powerdown time (msecs)");

/* codec register dump */
static ssize_t soc_codec_reg_show(struct snd_soc_codec *codec, char *buf)
{
      int ret, i, step = 1, count = 0;

      if (!codec->driver->reg_cache_size)
            return 0;

      if (codec->driver->reg_cache_step)
            step = codec->driver->reg_cache_step;

      count += sprintf(buf, "%s registers\n", codec->name);
      for (i = 0; i < codec->driver->reg_cache_size; i += step) {
            if (codec->readable_register && !codec->readable_register(codec, i))
                  continue;

            count += sprintf(buf + count, "%2x: ", i);
            if (count >= PAGE_SIZE - 1)
                  break;

            if (codec->driver->display_register) {
                  count += codec->driver->display_register(codec, buf + count,
                                           PAGE_SIZE - count, i);
            } else {
                  /* If the read fails it's almost certainly due to
                   * the register being volatile and the device being
                   * powered off.
                   */
                  ret = snd_soc_read(codec, i);
                  if (ret >= 0)
                        count += snprintf(buf + count,
                                      PAGE_SIZE - count,
                                      "%4x", ret);
                  else
                        count += snprintf(buf + count,
                                      PAGE_SIZE - count,
                                      "<no data: %d>", ret);
            }

            if (count >= PAGE_SIZE - 1)
                  break;

            count += snprintf(buf + count, PAGE_SIZE - count, "\n");
            if (count >= PAGE_SIZE - 1)
                  break;
      }

      /* Truncate count; min() would cause a warning */
      if (count >= PAGE_SIZE)
            count = PAGE_SIZE - 1;

      return count;
}
static ssize_t codec_reg_show(struct device *dev,
      struct device_attribute *attr, char *buf)
{
      struct snd_soc_pcm_runtime *rtd =
                  container_of(dev, struct snd_soc_pcm_runtime, dev);

      return soc_codec_reg_show(rtd->codec, buf);
}

static DEVICE_ATTR(codec_reg, 0444, codec_reg_show, NULL);

static ssize_t pmdown_time_show(struct device *dev,
                        struct device_attribute *attr, char *buf)
{
      struct snd_soc_pcm_runtime *rtd =
                  container_of(dev, struct snd_soc_pcm_runtime, dev);

      return sprintf(buf, "%ld\n", rtd->pmdown_time);
}

static ssize_t pmdown_time_set(struct device *dev,
                         struct device_attribute *attr,
                         const char *buf, size_t count)
{
      struct snd_soc_pcm_runtime *rtd =
                  container_of(dev, struct snd_soc_pcm_runtime, dev);
      int ret;

      ret = strict_strtol(buf, 10, &rtd->pmdown_time);
      if (ret)
            return ret;

      return count;
}

static DEVICE_ATTR(pmdown_time, 0644, pmdown_time_show, pmdown_time_set);

#ifdef CONFIG_DEBUG_FS
static int codec_reg_open_file(struct inode *inode, struct file *file)
{
      file->private_data = inode->i_private;
      return 0;
}

static ssize_t codec_reg_read_file(struct file *file, char __user *user_buf,
                         size_t count, loff_t *ppos)
{
      ssize_t ret;
      struct snd_soc_codec *codec = file->private_data;
      char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
      if (!buf)
            return -ENOMEM;
      ret = soc_codec_reg_show(codec, buf);
      if (ret >= 0)
            ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
      kfree(buf);
      return ret;
}

static ssize_t codec_reg_write_file(struct file *file,
            const char __user *user_buf, size_t count, loff_t *ppos)
{
      char buf[32];
      int buf_size;
      char *start = buf;
      unsigned long reg, value;
      int step = 1;
      struct snd_soc_codec *codec = file->private_data;

      buf_size = min(count, (sizeof(buf)-1));
      if (copy_from_user(buf, user_buf, buf_size))
            return -EFAULT;
      buf[buf_size] = 0;

      if (codec->driver->reg_cache_step)
            step = codec->driver->reg_cache_step;

      while (*start == ' ')
            start++;
      reg = simple_strtoul(start, &start, 16);
      if ((reg >= codec->driver->reg_cache_size) || (reg % step))
            return -EINVAL;
      while (*start == ' ')
            start++;
      if (strict_strtoul(start, 16, &value))
            return -EINVAL;

      /* Userspace has been fiddling around behind the kernel's back */
      add_taint(TAINT_USER);

      snd_soc_write(codec, reg, value);
      return buf_size;
}

static const struct file_operations codec_reg_fops = {
      .open = codec_reg_open_file,
      .read = codec_reg_read_file,
      .write = codec_reg_write_file,
      .llseek = default_llseek,
};

static void soc_init_codec_debugfs(struct snd_soc_codec *codec)
{
      struct dentry *debugfs_card_root = codec->card->debugfs_card_root;

      codec->debugfs_codec_root = debugfs_create_dir(codec->name,
                                           debugfs_card_root);
      if (!codec->debugfs_codec_root) {
            printk(KERN_WARNING
                   "ASoC: Failed to create codec debugfs directory\n");
            return;
      }

      codec->debugfs_reg = debugfs_create_file("codec_reg", 0644,
                                     codec->debugfs_codec_root,
                                     codec, &codec_reg_fops);
      if (!codec->debugfs_reg)
            printk(KERN_WARNING
                   "ASoC: Failed to create codec register debugfs file\n");

      codec->dapm.debugfs_dapm = debugfs_create_dir("dapm",
                                     codec->debugfs_codec_root);
      if (!codec->dapm.debugfs_dapm)
            printk(KERN_WARNING
                   "Failed to create DAPM debugfs directory\n");

      snd_soc_dapm_debugfs_init(&codec->dapm);
}

static void soc_cleanup_codec_debugfs(struct snd_soc_codec *codec)
{
      debugfs_remove_recursive(codec->debugfs_codec_root);
}

static ssize_t codec_list_read_file(struct file *file, char __user *user_buf,
                            size_t count, loff_t *ppos)
{
      char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
      ssize_t len, ret = 0;
      struct snd_soc_codec *codec;

      if (!buf)
            return -ENOMEM;

      list_for_each_entry(codec, &codec_list, list) {
            len = snprintf(buf + ret, PAGE_SIZE - ret, "%s\n",
                         codec->name);
            if (len >= 0)
                  ret += len;
            if (ret > PAGE_SIZE) {
                  ret = PAGE_SIZE;
                  break;
            }
      }

      if (ret >= 0)
            ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);

      kfree(buf);

      return ret;
}

static const struct file_operations codec_list_fops = {
      .read = codec_list_read_file,
      .llseek = default_llseek,/* read accesses f_pos */
};

static ssize_t dai_list_read_file(struct file *file, char __user *user_buf,
                          size_t count, loff_t *ppos)
{
      char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
      ssize_t len, ret = 0;
      struct snd_soc_dai *dai;

      if (!buf)
            return -ENOMEM;

      list_for_each_entry(dai, &dai_list, list) {
            len = snprintf(buf + ret, PAGE_SIZE - ret, "%s\n", dai->name);
            if (len >= 0)
                  ret += len;
            if (ret > PAGE_SIZE) {
                  ret = PAGE_SIZE;
                  break;
            }
      }

      ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);

      kfree(buf);

      return ret;
}

static const struct file_operations dai_list_fops = {
      .read = dai_list_read_file,
      .llseek = default_llseek,/* read accesses f_pos */
};

static ssize_t platform_list_read_file(struct file *file,
                               char __user *user_buf,
                               size_t count, loff_t *ppos)
{
      char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
      ssize_t len, ret = 0;
      struct snd_soc_platform *platform;

      if (!buf)
            return -ENOMEM;

      list_for_each_entry(platform, &platform_list, list) {
            len = snprintf(buf + ret, PAGE_SIZE - ret, "%s\n",
                         platform->name);
            if (len >= 0)
                  ret += len;
            if (ret > PAGE_SIZE) {
                  ret = PAGE_SIZE;
                  break;
            }
      }

      ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);

      kfree(buf);

      return ret;
}

static const struct file_operations platform_list_fops = {
      .read = platform_list_read_file,
      .llseek = default_llseek,/* read accesses f_pos */
};

static void soc_init_card_debugfs(struct snd_soc_card *card)
{
      card->debugfs_card_root = debugfs_create_dir(card->name,
                                         snd_soc_debugfs_root);
      if (!card->debugfs_card_root) {
            dev_warn(card->dev,
                   "ASoC: Failed to create codec debugfs directory\n");
            return;
      }

      card->debugfs_pop_time = debugfs_create_u32("dapm_pop_time", 0644,
                                        card->debugfs_card_root,
                                        &card->pop_time);
      if (!card->debugfs_pop_time)
            dev_warn(card->dev,
                   "Failed to create pop time debugfs file\n");
}

static void soc_cleanup_card_debugfs(struct snd_soc_card *card)
{
      debugfs_remove_recursive(card->debugfs_card_root);
}

#else

static inline void soc_init_codec_debugfs(struct snd_soc_codec *codec)
{
}

static inline void soc_cleanup_codec_debugfs(struct snd_soc_codec *codec)
{
}

static inline void soc_init_card_debugfs(struct snd_soc_card *card)
{
}

static inline void soc_cleanup_card_debugfs(struct snd_soc_card *card)
{
}
#endif

#ifdef CONFIG_SND_SOC_AC97_BUS
/* unregister ac97 codec */
static int soc_ac97_dev_unregister(struct snd_soc_codec *codec)
{
      if (codec->ac97->dev.bus)
            device_unregister(&codec->ac97->dev);
      return 0;
}

/* stop no dev release warning */
static void soc_ac97_device_release(struct device *dev){}

/* register ac97 codec to bus */
static int soc_ac97_dev_register(struct snd_soc_codec *codec)
{
      int err;

      codec->ac97->dev.bus = &ac97_bus_type;
      codec->ac97->dev.parent = codec->card->dev;
      codec->ac97->dev.release = soc_ac97_device_release;

      dev_set_name(&codec->ac97->dev, "%d-%d:%s",
                 codec->card->snd_card->number, 0, codec->name);
      err = device_register(&codec->ac97->dev);
      if (err < 0) {
            snd_printk(KERN_ERR "Can't register ac97 bus\n");
            codec->ac97->dev.bus = NULL;
            return err;
      }
      return 0;
}
#endif

static int soc_pcm_apply_symmetry(struct snd_pcm_substream *substream)
{
      struct snd_soc_pcm_runtime *rtd = substream->private_data;
      struct snd_soc_dai *cpu_dai = rtd->cpu_dai;
      struct snd_soc_dai *codec_dai = rtd->codec_dai;
      int ret;

      if (codec_dai->driver->symmetric_rates || cpu_dai->driver->symmetric_rates ||
                  rtd->dai_link->symmetric_rates) {
            dev_dbg(&rtd->dev, "Symmetry forces %dHz rate\n",
                        rtd->rate);

            ret = snd_pcm_hw_constraint_minmax(substream->runtime,
                                       SNDRV_PCM_HW_PARAM_RATE,
                                       rtd->rate,
                                       rtd->rate);
            if (ret < 0) {
                  dev_err(&rtd->dev,
                        "Unable to apply rate symmetry constraint: %d\n", ret);
                  return ret;
            }
      }

      return 0;
}

/*
 * Called by ALSA when a PCM substream is opened, the runtime->hw record is
 * then initialized and any private data can be allocated. This also calls
 * startup for the cpu DAI, platform, machine and codec DAI.
 */
static int soc_pcm_open(struct snd_pcm_substream *substream)
{
      struct snd_soc_pcm_runtime *rtd = substream->private_data;
      struct snd_pcm_runtime *runtime = substream->runtime;
      struct snd_soc_platform *platform = rtd->platform;
      struct snd_soc_dai *cpu_dai = rtd->cpu_dai;
      struct snd_soc_dai *codec_dai = rtd->codec_dai;
      struct snd_soc_dai_driver *cpu_dai_drv = cpu_dai->driver;
      struct snd_soc_dai_driver *codec_dai_drv = codec_dai->driver;
      int ret = 0;

      mutex_lock(&pcm_mutex);

      /* startup the audio subsystem */
      if (cpu_dai->driver->ops->startup) {
            ret = cpu_dai->driver->ops->startup(substream, cpu_dai);
            if (ret < 0) {
                  printk(KERN_ERR "asoc: can't open interface %s\n",
                        cpu_dai->name);
                  goto out;
            }
      }

      if (platform->driver->ops->open) {
            ret = platform->driver->ops->open(substream);
            if (ret < 0) {
                  printk(KERN_ERR "asoc: can't open platform %s\n", platform->name);
                  goto platform_err;
            }
      }

      if (codec_dai->driver->ops->startup) {
            ret = codec_dai->driver->ops->startup(substream, codec_dai);
            if (ret < 0) {
                  printk(KERN_ERR "asoc: can't open codec %s\n",
                        codec_dai->name);
                  goto codec_dai_err;
            }
      }

      if (rtd->dai_link->ops && rtd->dai_link->ops->startup) {
            ret = rtd->dai_link->ops->startup(substream);
            if (ret < 0) {
                  printk(KERN_ERR "asoc: %s startup failed\n", rtd->dai_link->name);
                  goto machine_err;
            }
      }

      /* Check that the codec and cpu DAIs are compatible */
      if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
            runtime->hw.rate_min =
                  max(codec_dai_drv->playback.rate_min,
                      cpu_dai_drv->playback.rate_min);
            runtime->hw.rate_max =
                  min(codec_dai_drv->playback.rate_max,
                      cpu_dai_drv->playback.rate_max);
            runtime->hw.channels_min =
                  max(codec_dai_drv->playback.channels_min,
                        cpu_dai_drv->playback.channels_min);
            runtime->hw.channels_max =
                  min(codec_dai_drv->playback.channels_max,
                        cpu_dai_drv->playback.channels_max);
            runtime->hw.formats =
                  codec_dai_drv->playback.formats & cpu_dai_drv->playback.formats;
            runtime->hw.rates =
                  codec_dai_drv->playback.rates & cpu_dai_drv->playback.rates;
            if (codec_dai_drv->playback.rates
                     & (SNDRV_PCM_RATE_KNOT | SNDRV_PCM_RATE_CONTINUOUS))
                  runtime->hw.rates |= cpu_dai_drv->playback.rates;
            if (cpu_dai_drv->playback.rates
                     & (SNDRV_PCM_RATE_KNOT | SNDRV_PCM_RATE_CONTINUOUS))
                  runtime->hw.rates |= codec_dai_drv->playback.rates;
      } else {
            runtime->hw.rate_min =
                  max(codec_dai_drv->capture.rate_min,
                      cpu_dai_drv->capture.rate_min);
            runtime->hw.rate_max =
                  min(codec_dai_drv->capture.rate_max,
                      cpu_dai_drv->capture.rate_max);
            runtime->hw.channels_min =
                  max(codec_dai_drv->capture.channels_min,
                        cpu_dai_drv->capture.channels_min);
            runtime->hw.channels_max =
                  min(codec_dai_drv->capture.channels_max,
                        cpu_dai_drv->capture.channels_max);
            runtime->hw.formats =
                  codec_dai_drv->capture.formats & cpu_dai_drv->capture.formats;
            runtime->hw.rates =
                  codec_dai_drv->capture.rates & cpu_dai_drv->capture.rates;
            if (codec_dai_drv->capture.rates
                     & (SNDRV_PCM_RATE_KNOT | SNDRV_PCM_RATE_CONTINUOUS))
                  runtime->hw.rates |= cpu_dai_drv->capture.rates;
            if (cpu_dai_drv->capture.rates
                     & (SNDRV_PCM_RATE_KNOT | SNDRV_PCM_RATE_CONTINUOUS))
                  runtime->hw.rates |= codec_dai_drv->capture.rates;
      }

      snd_pcm_limit_hw_rates(runtime);
      if (!runtime->hw.rates) {
            printk(KERN_ERR "asoc: %s <-> %s No matching rates\n",
                  codec_dai->name, cpu_dai->name);
            goto config_err;
      }
      if (!runtime->hw.formats) {
            printk(KERN_ERR "asoc: %s <-> %s No matching formats\n",
                  codec_dai->name, cpu_dai->name);
            goto config_err;
      }
      if (!runtime->hw.channels_min || !runtime->hw.channels_max) {
            printk(KERN_ERR "asoc: %s <-> %s No matching channels\n",
                        codec_dai->name, cpu_dai->name);
            goto config_err;
      }

      /* Symmetry only applies if we've already got an active stream. */
      if (cpu_dai->active || codec_dai->active) {
            ret = soc_pcm_apply_symmetry(substream);
            if (ret != 0)
                  goto config_err;
      }

      pr_debug("asoc: %s <-> %s info:\n",
                  codec_dai->name, cpu_dai->name);
      pr_debug("asoc: rate mask 0x%x\n", runtime->hw.rates);
      pr_debug("asoc: min ch %d max ch %d\n", runtime->hw.channels_min,
             runtime->hw.channels_max);
      pr_debug("asoc: min rate %d max rate %d\n", runtime->hw.rate_min,
             runtime->hw.rate_max);

      if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
            cpu_dai->playback_active++;
            codec_dai->playback_active++;
      } else {
            cpu_dai->capture_active++;
            codec_dai->capture_active++;
      }
      cpu_dai->active++;
      codec_dai->active++;
      rtd->codec->active++;
      mutex_unlock(&pcm_mutex);
      return 0;

config_err:
      if (rtd->dai_link->ops && rtd->dai_link->ops->shutdown)
            rtd->dai_link->ops->shutdown(substream);

machine_err:
      if (codec_dai->driver->ops->shutdown)
            codec_dai->driver->ops->shutdown(substream, codec_dai);

codec_dai_err:
      if (platform->driver->ops->close)
            platform->driver->ops->close(substream);

platform_err:
      if (cpu_dai->driver->ops->shutdown)
            cpu_dai->driver->ops->shutdown(substream, cpu_dai);
out:
      mutex_unlock(&pcm_mutex);
      return ret;
}

/*
 * Power down the audio subsystem pmdown_time msecs after close is called.
 * This is to ensure there are no pops or clicks in between any music tracks
 * due to DAPM power cycling.
 */
static void close_delayed_work(struct work_struct *work)
{
      struct snd_soc_pcm_runtime *rtd =
                  container_of(work, struct snd_soc_pcm_runtime, delayed_work.work);
      struct snd_soc_dai *codec_dai = rtd->codec_dai;

      mutex_lock(&pcm_mutex);

      pr_debug("pop wq checking: %s status: %s waiting: %s\n",
             codec_dai->driver->playback.stream_name,
             codec_dai->playback_active ? "active" : "inactive",
             codec_dai->pop_wait ? "yes" : "no");

      /* are we waiting on this codec DAI stream */
      if (codec_dai->pop_wait == 1) {
            codec_dai->pop_wait = 0;
            snd_soc_dapm_stream_event(rtd,
                  codec_dai->driver->playback.stream_name,
                  SND_SOC_DAPM_STREAM_STOP);
      }

      mutex_unlock(&pcm_mutex);
}

/*
 * Called by ALSA when a PCM substream is closed. Private data can be
 * freed here. The cpu DAI, codec DAI, machine and platform are also
 * shutdown.
 */
static int soc_codec_close(struct snd_pcm_substream *substream)
{
      struct snd_soc_pcm_runtime *rtd = substream->private_data;
      struct snd_soc_platform *platform = rtd->platform;
      struct snd_soc_dai *cpu_dai = rtd->cpu_dai;
      struct snd_soc_dai *codec_dai = rtd->codec_dai;
      struct snd_soc_codec *codec = rtd->codec;

      mutex_lock(&pcm_mutex);

      if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
            cpu_dai->playback_active--;
            codec_dai->playback_active--;
      } else {
            cpu_dai->capture_active--;
            codec_dai->capture_active--;
      }

      cpu_dai->active--;
      codec_dai->active--;
      codec->active--;

      /* Muting the DAC suppresses artifacts caused during digital
       * shutdown, for example from stopping clocks.
       */
      if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
            snd_soc_dai_digital_mute(codec_dai, 1);

      if (cpu_dai->driver->ops->shutdown)
            cpu_dai->driver->ops->shutdown(substream, cpu_dai);

      if (codec_dai->driver->ops->shutdown)
            codec_dai->driver->ops->shutdown(substream, codec_dai);

      if (rtd->dai_link->ops && rtd->dai_link->ops->shutdown)
            rtd->dai_link->ops->shutdown(substream);

      if (platform->driver->ops->close)
            platform->driver->ops->close(substream);
      cpu_dai->runtime = NULL;

      if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
            /* start delayed pop wq here for playback streams */
            codec_dai->pop_wait = 1;
            schedule_delayed_work(&rtd->delayed_work,
                  msecs_to_jiffies(rtd->pmdown_time));
      } else {
            /* capture streams can be powered down now */
            snd_soc_dapm_stream_event(rtd,
                  codec_dai->driver->capture.stream_name,
                  SND_SOC_DAPM_STREAM_STOP);
      }

      mutex_unlock(&pcm_mutex);
      return 0;
}

/*
 * Called by ALSA when the PCM substream is prepared, can set format, sample
 * rate, etc.  This function is non atomic and can be called multiple times,
 * it can refer to the runtime info.
 */
static int soc_pcm_prepare(struct snd_pcm_substream *substream)
{
      struct snd_soc_pcm_runtime *rtd = substream->private_data;
      struct snd_soc_platform *platform = rtd->platform;
      struct snd_soc_dai *cpu_dai = rtd->cpu_dai;
      struct snd_soc_dai *codec_dai = rtd->codec_dai;
      int ret = 0;

      mutex_lock(&pcm_mutex);

      if (rtd->dai_link->ops && rtd->dai_link->ops->prepare) {
            ret = rtd->dai_link->ops->prepare(substream);
            if (ret < 0) {
                  printk(KERN_ERR "asoc: machine prepare error\n");
                  goto out;
            }
      }

      if (platform->driver->ops->prepare) {
            ret = platform->driver->ops->prepare(substream);
            if (ret < 0) {
                  printk(KERN_ERR "asoc: platform prepare error\n");
                  goto out;
            }
      }

      if (codec_dai->driver->ops->prepare) {
            ret = codec_dai->driver->ops->prepare(substream, codec_dai);
            if (ret < 0) {
                  printk(KERN_ERR "asoc: codec DAI prepare error\n");
                  goto out;
            }
      }

      if (cpu_dai->driver->ops->prepare) {
            ret = cpu_dai->driver->ops->prepare(substream, cpu_dai);
            if (ret < 0) {
                  printk(KERN_ERR "asoc: cpu DAI prepare error\n");
                  goto out;
            }
      }

      /* cancel any delayed stream shutdown that is pending */
      if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK &&
          codec_dai->pop_wait) {
            codec_dai->pop_wait = 0;
            cancel_delayed_work(&rtd->delayed_work);
      }

      if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
            snd_soc_dapm_stream_event(rtd,
                                codec_dai->driver->playback.stream_name,
                                SND_SOC_DAPM_STREAM_START);
      else
            snd_soc_dapm_stream_event(rtd,
                                codec_dai->driver->capture.stream_name,
                                SND_SOC_DAPM_STREAM_START);

      snd_soc_dai_digital_mute(codec_dai, 0);

out:
      mutex_unlock(&pcm_mutex);
      return ret;
}

/*
 * Called by ALSA when the hardware params are set by application. This
 * function can also be called multiple times and can allocate buffers
 * (using snd_pcm_lib_* ). It's non-atomic.
 */
static int soc_pcm_hw_params(struct snd_pcm_substream *substream,
                        struct snd_pcm_hw_params *params)
{
      struct snd_soc_pcm_runtime *rtd = substream->private_data;
      struct snd_soc_platform *platform = rtd->platform;
      struct snd_soc_dai *cpu_dai = rtd->cpu_dai;
      struct snd_soc_dai *codec_dai = rtd->codec_dai;
      int ret = 0;

      mutex_lock(&pcm_mutex);

      if (rtd->dai_link->ops && rtd->dai_link->ops->hw_params) {
            ret = rtd->dai_link->ops->hw_params(substream, params);
            if (ret < 0) {
                  printk(KERN_ERR "asoc: machine hw_params failed\n");
                  goto out;
            }
      }

      if (codec_dai->driver->ops->hw_params) {
            ret = codec_dai->driver->ops->hw_params(substream, params, codec_dai);
            if (ret < 0) {
                  printk(KERN_ERR "asoc: can't set codec %s hw params\n",
                        codec_dai->name);
                  goto codec_err;
            }
      }

      if (cpu_dai->driver->ops->hw_params) {
            ret = cpu_dai->driver->ops->hw_params(substream, params, cpu_dai);
            if (ret < 0) {
                  printk(KERN_ERR "asoc: interface %s hw params failed\n",
                        cpu_dai->name);
                  goto interface_err;
            }
      }

      if (platform->driver->ops->hw_params) {
            ret = platform->driver->ops->hw_params(substream, params);
            if (ret < 0) {
                  printk(KERN_ERR "asoc: platform %s hw params failed\n",
                        platform->name);
                  goto platform_err;
            }
      }

      rtd->rate = params_rate(params);

out:
      mutex_unlock(&pcm_mutex);
      return ret;

platform_err:
      if (cpu_dai->driver->ops->hw_free)
            cpu_dai->driver->ops->hw_free(substream, cpu_dai);

interface_err:
      if (codec_dai->driver->ops->hw_free)
            codec_dai->driver->ops->hw_free(substream, codec_dai);

codec_err:
      if (rtd->dai_link->ops && rtd->dai_link->ops->hw_free)
            rtd->dai_link->ops->hw_free(substream);

      mutex_unlock(&pcm_mutex);
      return ret;
}

/*
 * Frees resources allocated by hw_params, can be called multiple times
 */
static int soc_pcm_hw_free(struct snd_pcm_substream *substream)
{
      struct snd_soc_pcm_runtime *rtd = substream->private_data;
      struct snd_soc_platform *platform = rtd->platform;
      struct snd_soc_dai *cpu_dai = rtd->cpu_dai;
      struct snd_soc_dai *codec_dai = rtd->codec_dai;
      struct snd_soc_codec *codec = rtd->codec;

      mutex_lock(&pcm_mutex);

      /* apply codec digital mute */
      if (!codec->active)
            snd_soc_dai_digital_mute(codec_dai, 1);

      /* free any machine hw params */
      if (rtd->dai_link->ops && rtd->dai_link->ops->hw_free)
            rtd->dai_link->ops->hw_free(substream);

      /* free any DMA resources */
      if (platform->driver->ops->hw_free)
            platform->driver->ops->hw_free(substream);

      /* now free hw params for the DAIs  */
      if (codec_dai->driver->ops->hw_free)
            codec_dai->driver->ops->hw_free(substream, codec_dai);

      if (cpu_dai->driver->ops->hw_free)
            cpu_dai->driver->ops->hw_free(substream, cpu_dai);

      mutex_unlock(&pcm_mutex);
      return 0;
}

static int soc_pcm_trigger(struct snd_pcm_substream *substream, int cmd)
{
      struct snd_soc_pcm_runtime *rtd = substream->private_data;
      struct snd_soc_platform *platform = rtd->platform;
      struct snd_soc_dai *cpu_dai = rtd->cpu_dai;
      struct snd_soc_dai *codec_dai = rtd->codec_dai;
      int ret;

      if (codec_dai->driver->ops->trigger) {
            ret = codec_dai->driver->ops->trigger(substream, cmd, codec_dai);
            if (ret < 0)
                  return ret;
      }

      if (platform->driver->ops->trigger) {
            ret = platform->driver->ops->trigger(substream, cmd);
            if (ret < 0)
                  return ret;
      }

      if (cpu_dai->driver->ops->trigger) {
            ret = cpu_dai->driver->ops->trigger(substream, cmd, cpu_dai);
            if (ret < 0)
                  return ret;
      }
      return 0;
}

/*
 * soc level wrapper for pointer callback
 * If cpu_dai, codec_dai, platform driver has the delay callback, than
 * the runtime->delay will be updated accordingly.
 */
static snd_pcm_uframes_t soc_pcm_pointer(struct snd_pcm_substream *substream)
{
      struct snd_soc_pcm_runtime *rtd = substream->private_data;
      struct snd_soc_platform *platform = rtd->platform;
      struct snd_soc_dai *cpu_dai = rtd->cpu_dai;
      struct snd_soc_dai *codec_dai = rtd->codec_dai;
      struct snd_pcm_runtime *runtime = substream->runtime;
      snd_pcm_uframes_t offset = 0;
      snd_pcm_sframes_t delay = 0;

      if (platform->driver->ops->pointer)
            offset = platform->driver->ops->pointer(substream);

      if (cpu_dai->driver->ops->delay)
            delay += cpu_dai->driver->ops->delay(substream, cpu_dai);

      if (codec_dai->driver->ops->delay)
            delay += codec_dai->driver->ops->delay(substream, codec_dai);

      if (platform->driver->delay)
            delay += platform->driver->delay(substream, codec_dai);

      runtime->delay = delay;

      return offset;
}

/* ASoC PCM operations */
static struct snd_pcm_ops soc_pcm_ops = {
      .open       = soc_pcm_open,
      .close            = soc_codec_close,
      .hw_params  = soc_pcm_hw_params,
      .hw_free    = soc_pcm_hw_free,
      .prepare    = soc_pcm_prepare,
      .trigger    = soc_pcm_trigger,
      .pointer    = soc_pcm_pointer,
};

#ifdef CONFIG_PM
/* powers down audio subsystem for suspend */
static int soc_suspend(struct device *dev)
{
      struct platform_device *pdev = to_platform_device(dev);
      struct snd_soc_card *card = platform_get_drvdata(pdev);
      struct snd_soc_codec *codec;
      int i;

      /* If the initialization of this soc device failed, there is no codec
       * associated with it. Just bail out in this case.
       */
      if (list_empty(&card->codec_dev_list))
            return 0;

      /* Due to the resume being scheduled into a workqueue we could
      * suspend before that's finished - wait for it to complete.
       */
      snd_power_lock(card->snd_card);
      snd_power_wait(card->snd_card, SNDRV_CTL_POWER_D0);
      snd_power_unlock(card->snd_card);

      /* we're going to block userspace touching us until resume completes */
      snd_power_change_state(card->snd_card, SNDRV_CTL_POWER_D3hot);

      /* mute any active DACs */
      for (i = 0; i < card->num_rtd; i++) {
            struct snd_soc_dai *dai = card->rtd[i].codec_dai;
            struct snd_soc_dai_driver *drv = dai->driver;

            if (card->rtd[i].dai_link->ignore_suspend)
                  continue;

            if (drv->ops->digital_mute && dai->playback_active)
                  drv->ops->digital_mute(dai, 1);
      }

      /* suspend all pcms */
      for (i = 0; i < card->num_rtd; i++) {
            if (card->rtd[i].dai_link->ignore_suspend)
                  continue;

            snd_pcm_suspend_all(card->rtd[i].pcm);
      }

      if (card->suspend_pre)
            card->suspend_pre(pdev, PMSG_SUSPEND);

      for (i = 0; i < card->num_rtd; i++) {
            struct snd_soc_dai *cpu_dai = card->rtd[i].cpu_dai;
            struct snd_soc_platform *platform = card->rtd[i].platform;

            if (card->rtd[i].dai_link->ignore_suspend)
                  continue;

            if (cpu_dai->driver->suspend && !cpu_dai->driver->ac97_control)
                  cpu_dai->driver->suspend(cpu_dai);
            if (platform->driver->suspend && !platform->suspended) {
                  platform->driver->suspend(cpu_dai);
                  platform->suspended = 1;
            }
      }

      /* close any waiting streams and save state */
      for (i = 0; i < card->num_rtd; i++) {
            flush_delayed_work_sync(&card->rtd[i].delayed_work);
            card->rtd[i].codec->dapm.suspend_bias_level = card->rtd[i].codec->dapm.bias_level;
      }

      for (i = 0; i < card->num_rtd; i++) {
            struct snd_soc_dai_driver *driver = card->rtd[i].codec_dai->driver;

            if (card->rtd[i].dai_link->ignore_suspend)
                  continue;

            if (driver->playback.stream_name != NULL)
                  snd_soc_dapm_stream_event(&card->rtd[i], driver->playback.stream_name,
                        SND_SOC_DAPM_STREAM_SUSPEND);

            if (driver->capture.stream_name != NULL)
                  snd_soc_dapm_stream_event(&card->rtd[i], driver->capture.stream_name,
                        SND_SOC_DAPM_STREAM_SUSPEND);
      }

      /* suspend all CODECs */
      list_for_each_entry(codec, &card->codec_dev_list, card_list) {
            /* If there are paths active then the CODEC will be held with
             * bias _ON and should not be suspended. */
            if (!codec->suspended && codec->driver->suspend) {
                  switch (codec->dapm.bias_level) {
                  case SND_SOC_BIAS_STANDBY:
                  case SND_SOC_BIAS_OFF:
                        codec->driver->suspend(codec, PMSG_SUSPEND);
                        codec->suspended = 1;
                        break;
                  default:
                        dev_dbg(codec->dev, "CODEC is on over suspend\n");
                        break;
                  }
            }
      }

      for (i = 0; i < card->num_rtd; i++) {
            struct snd_soc_dai *cpu_dai = card->rtd[i].cpu_dai;

            if (card->rtd[i].dai_link->ignore_suspend)
                  continue;

            if (cpu_dai->driver->suspend && cpu_dai->driver->ac97_control)
                  cpu_dai->driver->suspend(cpu_dai);
      }

      if (card->suspend_post)
            card->suspend_post(pdev, PMSG_SUSPEND);

      return 0;
}

/* deferred resume work, so resume can complete before we finished
 * setting our codec back up, which can be very slow on I2C
 */
static void soc_resume_deferred(struct work_struct *work)
{
      struct snd_soc_card *card =
                  container_of(work, struct snd_soc_card, deferred_resume_work);
      struct platform_device *pdev = to_platform_device(card->dev);
      struct snd_soc_codec *codec;
      int i;

      /* our power state is still SNDRV_CTL_POWER_D3hot from suspend time,
       * so userspace apps are blocked from touching us
       */

      dev_dbg(card->dev, "starting resume work\n");

      /* Bring us up into D2 so that DAPM starts enabling things */
      snd_power_change_state(card->snd_card, SNDRV_CTL_POWER_D2);

      if (card->resume_pre)
            card->resume_pre(pdev);

      /* resume AC97 DAIs */
      for (i = 0; i < card->num_rtd; i++) {
            struct snd_soc_dai *cpu_dai = card->rtd[i].cpu_dai;

            if (card->rtd[i].dai_link->ignore_suspend)
                  continue;

            if (cpu_dai->driver->resume && cpu_dai->driver->ac97_control)
                  cpu_dai->driver->resume(cpu_dai);
      }

      list_for_each_entry(codec, &card->codec_dev_list, card_list) {
            /* If the CODEC was idle over suspend then it will have been
             * left with bias OFF or STANDBY and suspended so we must now
             * resume.  Otherwise the suspend was suppressed.
             */
            if (codec->driver->resume && codec->suspended) {
                  switch (codec->dapm.bias_level) {
                  case SND_SOC_BIAS_STANDBY:
                  case SND_SOC_BIAS_OFF:
                        codec->driver->resume(codec);
                        codec->suspended = 0;
                        break;
                  default:
                        dev_dbg(codec->dev, "CODEC was on over suspend\n");
                        break;
                  }
            }
      }

      for (i = 0; i < card->num_rtd; i++) {
            struct snd_soc_dai_driver *driver = card->rtd[i].codec_dai->driver;

            if (card->rtd[i].dai_link->ignore_suspend)
                  continue;

            if (driver->playback.stream_name != NULL)
                  snd_soc_dapm_stream_event(&card->rtd[i], driver->playback.stream_name,
                        SND_SOC_DAPM_STREAM_RESUME);

            if (driver->capture.stream_name != NULL)
                  snd_soc_dapm_stream_event(&card->rtd[i], driver->capture.stream_name,
                        SND_SOC_DAPM_STREAM_RESUME);
      }

      /* unmute any active DACs */
      for (i = 0; i < card->num_rtd; i++) {
            struct snd_soc_dai *dai = card->rtd[i].codec_dai;
            struct snd_soc_dai_driver *drv = dai->driver;

            if (card->rtd[i].dai_link->ignore_suspend)
                  continue;

            if (drv->ops->digital_mute && dai->playback_active)
                  drv->ops->digital_mute(dai, 0);
      }

      for (i = 0; i < card->num_rtd; i++) {
            struct snd_soc_dai *cpu_dai = card->rtd[i].cpu_dai;
            struct snd_soc_platform *platform = card->rtd[i].platform;

            if (card->rtd[i].dai_link->ignore_suspend)
                  continue;

            if (cpu_dai->driver->resume && !cpu_dai->driver->ac97_control)
                  cpu_dai->driver->resume(cpu_dai);
            if (platform->driver->resume && platform->suspended) {
                  platform->driver->resume(cpu_dai);
                  platform->suspended = 0;
            }
      }

      if (card->resume_post)
            card->resume_post(pdev);

      dev_dbg(card->dev, "resume work completed\n");

      /* userspace can access us now we are back as we were before */
      snd_power_change_state(card->snd_card, SNDRV_CTL_POWER_D0);
}

/* powers up audio subsystem after a suspend */
static int soc_resume(struct device *dev)
{
      struct platform_device *pdev = to_platform_device(dev);
      struct snd_soc_card *card = platform_get_drvdata(pdev);
      int i;

      /* AC97 devices might have other drivers hanging off them so
       * need to resume immediately.  Other drivers don't have that
       * problem and may take a substantial amount of time to resume
       * due to I/O costs and anti-pop so handle them out of line.
       */
      for (i = 0; i < card->num_rtd; i++) {
            struct snd_soc_dai *cpu_dai = card->rtd[i].cpu_dai;
            if (cpu_dai->driver->ac97_control) {
                  dev_dbg(dev, "Resuming AC97 immediately\n");
                  soc_resume_deferred(&card->deferred_resume_work);
            } else {
                  dev_dbg(dev, "Scheduling resume work\n");
                  if (!schedule_work(&card->deferred_resume_work))
                        dev_err(dev, "resume work item may be lost\n");
            }
      }

      return 0;
}
#else
#define soc_suspend     NULL
#define soc_resume      NULL
#endif

static struct snd_soc_dai_ops null_dai_ops = {
};

static int soc_bind_dai_link(struct snd_soc_card *card, int num)
{
      struct snd_soc_dai_link *dai_link = &card->dai_link[num];
      struct snd_soc_pcm_runtime *rtd = &card->rtd[num];
      struct snd_soc_codec *codec;
      struct snd_soc_platform *platform;
      struct snd_soc_dai *codec_dai, *cpu_dai;

      if (rtd->complete)
            return 1;
      dev_dbg(card->dev, "binding %s at idx %d\n", dai_link->name, num);

      /* do we already have the CPU DAI for this link ? */
      if (rtd->cpu_dai) {
            goto find_codec;
      }
      /* no, then find CPU DAI from registered DAIs*/
      list_for_each_entry(cpu_dai, &dai_list, list) {
            if (!strcmp(cpu_dai->name, dai_link->cpu_dai_name)) {

                  if (!try_module_get(cpu_dai->dev->driver->owner))
                        return -ENODEV;

                  rtd->cpu_dai = cpu_dai;
                  goto find_codec;
            }
      }
      dev_dbg(card->dev, "CPU DAI %s not registered\n",
                  dai_link->cpu_dai_name);

find_codec:
      /* do we already have the CODEC for this link ? */
      if (rtd->codec) {
            goto find_platform;
      }

      /* no, then find CODEC from registered CODECs*/
      list_for_each_entry(codec, &codec_list, list) {
            if (!strcmp(codec->name, dai_link->codec_name)) {
                  rtd->codec = codec;

                  /* CODEC found, so find CODEC DAI from registered DAIs from this CODEC*/
                  list_for_each_entry(codec_dai, &dai_list, list) {
                        if (codec->dev == codec_dai->dev &&
                                    !strcmp(codec_dai->name, dai_link->codec_dai_name)) {
                              rtd->codec_dai = codec_dai;
                              goto find_platform;
                        }
                  }
                  dev_dbg(card->dev, "CODEC DAI %s not registered\n",
                              dai_link->codec_dai_name);

                  goto find_platform;
            }
      }
      dev_dbg(card->dev, "CODEC %s not registered\n",
                  dai_link->codec_name);

find_platform:
      /* do we already have the CODEC DAI for this link ? */
      if (rtd->platform) {
            goto out;
      }
      /* no, then find CPU DAI from registered DAIs*/
      list_for_each_entry(platform, &platform_list, list) {
            if (!strcmp(platform->name, dai_link->platform_name)) {
                  rtd->platform = platform;
                  goto out;
            }
      }

      dev_dbg(card->dev, "platform %s not registered\n",
                  dai_link->platform_name);
      return 0;

out:
      /* mark rtd as complete if we found all 4 of our client devices */
      if (rtd->codec && rtd->codec_dai && rtd->platform && rtd->cpu_dai) {
            rtd->complete = 1;
            card->num_rtd++;
      }
      return 1;
}

static void soc_remove_codec(struct snd_soc_codec *codec)
{
      int err;

      if (codec->driver->remove) {
            err = codec->driver->remove(codec);
            if (err < 0)
                  dev_err(codec->dev,
                        "asoc: failed to remove %s: %d\n",
                        codec->name, err);
      }

      /* Make sure all DAPM widgets are freed */
      snd_soc_dapm_free(&codec->dapm);

      soc_cleanup_codec_debugfs(codec);
      codec->probed = 0;
      list_del(&codec->card_list);
      module_put(codec->dev->driver->owner);
}

static void soc_remove_dai_link(struct snd_soc_card *card, int num)
{
      struct snd_soc_pcm_runtime *rtd = &card->rtd[num];
      struct snd_soc_codec *codec = rtd->codec;
      struct snd_soc_platform *platform = rtd->platform;
      struct snd_soc_dai *codec_dai = rtd->codec_dai, *cpu_dai = rtd->cpu_dai;
      int err;

      /* unregister the rtd device */
      if (rtd->dev_registered) {
            device_remove_file(&rtd->dev, &dev_attr_pmdown_time);
            device_remove_file(&rtd->dev, &dev_attr_codec_reg);
            device_unregister(&rtd->dev);
            rtd->dev_registered = 0;
      }

      /* remove the CODEC DAI */
      if (codec_dai && codec_dai->probed) {
            if (codec_dai->driver->remove) {
                  err = codec_dai->driver->remove(codec_dai);
                  if (err < 0)
                        printk(KERN_ERR "asoc: failed to remove %s\n", codec_dai->name);
            }
            codec_dai->probed = 0;
            list_del(&codec_dai->card_list);
      }

      /* remove the platform */
      if (platform && platform->probed) {
            if (platform->driver->remove) {
                  err = platform->driver->remove(platform);
                  if (err < 0)
                        printk(KERN_ERR "asoc: failed to remove %s\n", platform->name);
            }
            platform->probed = 0;
            list_del(&platform->card_list);
            module_put(platform->dev->driver->owner);
      }

      /* remove the CODEC */
      if (codec && codec->probed)
            soc_remove_codec(codec);

      /* remove the cpu_dai */
      if (cpu_dai && cpu_dai->probed) {
            if (cpu_dai->driver->remove) {
                  err = cpu_dai->driver->remove(cpu_dai);
                  if (err < 0)
                        printk(KERN_ERR "asoc: failed to remove %s\n", cpu_dai->name);
            }
            cpu_dai->probed = 0;
            list_del(&cpu_dai->card_list);
            module_put(cpu_dai->dev->driver->owner);
      }
}

static void soc_set_name_prefix(struct snd_soc_card *card,
                        struct snd_soc_codec *codec)
{
      int i;

      if (card->codec_conf == NULL)
            return;

      for (i = 0; i < card->num_configs; i++) {
            struct snd_soc_codec_conf *map = &card->codec_conf[i];
            if (map->dev_name && !strcmp(codec->name, map->dev_name)) {
                  codec->name_prefix = map->name_prefix;
                  break;
            }
      }
}

static int soc_probe_codec(struct snd_soc_card *card,
                     struct snd_soc_codec *codec)
{
      int ret = 0;

      codec->card = card;
      codec->dapm.card = card;
      soc_set_name_prefix(card, codec);

      if (codec->driver->probe) {
            ret = codec->driver->probe(codec);
            if (ret < 0) {
                  dev_err(codec->dev,
                        "asoc: failed to probe CODEC %s: %d\n",
                        codec->name, ret);
                  return ret;
            }
      }

      soc_init_codec_debugfs(codec);

      /* mark codec as probed and add to card codec list */
      if (!try_module_get(codec->dev->driver->owner))
            return -ENODEV;

      codec->probed = 1;
      list_add(&codec->card_list, &card->codec_dev_list);
      list_add(&codec->dapm.list, &card->dapm_list);

      return ret;
}

static void rtd_release(struct device *dev) {}

static int soc_post_component_init(struct snd_soc_card *card,
                           struct snd_soc_codec *codec,
                           int num, int dailess)
{
      struct snd_soc_dai_link *dai_link = NULL;
      struct snd_soc_aux_dev *aux_dev = NULL;
      struct snd_soc_pcm_runtime *rtd;
      const char *temp, *name;
      int ret = 0;

      if (!dailess) {
            dai_link = &card->dai_link[num];
            rtd = &card->rtd[num];
            name = dai_link->name;
      } else {
            aux_dev = &card->aux_dev[num];
            rtd = &card->rtd_aux[num];
            name = aux_dev->name;
      }

      /* machine controls, routes and widgets are not prefixed */
      temp = codec->name_prefix;
      codec->name_prefix = NULL;

      /* do machine specific initialization */
      if (!dailess && dai_link->init)
            ret = dai_link->init(rtd);
      else if (dailess && aux_dev->init)
            ret = aux_dev->init(&codec->dapm);
      if (ret < 0) {
            dev_err(card->dev, "asoc: failed to init %s: %d\n", name, ret);
            return ret;
      }
      codec->name_prefix = temp;

      /* Make sure all DAPM widgets are instantiated */
      snd_soc_dapm_new_widgets(&codec->dapm);

      /* register the rtd device */
      rtd->codec = codec;
      rtd->card = card;
      rtd->dev.parent = card->dev;
      rtd->dev.release = rtd_release;
      rtd->dev.init_name = name;
      ret = device_register(&rtd->dev);
      if (ret < 0) {
            dev_err(card->dev,
                  "asoc: failed to register runtime device: %d\n", ret);
            return ret;
      }
      rtd->dev_registered = 1;

      /* add DAPM sysfs entries for this codec */
      ret = snd_soc_dapm_sys_add(&rtd->dev);
      if (ret < 0)
            dev_err(codec->dev,
                  "asoc: failed to add codec dapm sysfs entries: %d\n",
                  ret);

      /* add codec sysfs entries */
      ret = device_create_file(&rtd->dev, &dev_attr_codec_reg);
      if (ret < 0)
            dev_err(codec->dev,
                  "asoc: failed to add codec sysfs files: %d\n", ret);

      return 0;
}

static int soc_probe_dai_link(struct snd_soc_card *card, int num)
{
      struct snd_soc_dai_link *dai_link = &card->dai_link[num];
      struct snd_soc_pcm_runtime *rtd = &card->rtd[num];
      struct snd_soc_codec *codec = rtd->codec;
      struct snd_soc_platform *platform = rtd->platform;
      struct snd_soc_dai *codec_dai = rtd->codec_dai, *cpu_dai = rtd->cpu_dai;
      int ret;

      dev_dbg(card->dev, "probe %s dai link %d\n", card->name, num);

      /* config components */
      codec_dai->codec = codec;
      cpu_dai->platform = platform;
      codec_dai->card = card;
      cpu_dai->card = card;

      /* set default power off timeout */
      rtd->pmdown_time = pmdown_time;

      /* probe the cpu_dai */
      if (!cpu_dai->probed) {
            if (cpu_dai->driver->probe) {
                  ret = cpu_dai->driver->probe(cpu_dai);
                  if (ret < 0) {
                        printk(KERN_ERR "asoc: failed to probe CPU DAI %s\n",
                                    cpu_dai->name);
                        return ret;
                  }
            }
            cpu_dai->probed = 1;
            /* mark cpu_dai as probed and add to card cpu_dai list */
            list_add(&cpu_dai->card_list, &card->dai_dev_list);
      }

      /* probe the CODEC */
      if (!codec->probed) {
            ret = soc_probe_codec(card, codec);
            if (ret < 0)
                  return ret;
      }

      /* probe the platform */
      if (!platform->probed) {
            if (platform->driver->probe) {
                  ret = platform->driver->probe(platform);
                  if (ret < 0) {
                        printk(KERN_ERR "asoc: failed to probe platform %s\n",
                                    platform->name);
                        return ret;
                  }
            }
            /* mark platform as probed and add to card platform list */

            if (!try_module_get(platform->dev->driver->owner))
                  return -ENODEV;

            platform->probed = 1;
            list_add(&platform->card_list, &card->platform_dev_list);
      }

      /* probe the CODEC DAI */
      if (!codec_dai->probed) {
            if (codec_dai->driver->probe) {
                  ret = codec_dai->driver->probe(codec_dai);
                  if (ret < 0) {
                        printk(KERN_ERR "asoc: failed to probe CODEC DAI %s\n",
                                    codec_dai->name);
                        return ret;
                  }
            }

            /* mark cpu_dai as probed and add to card cpu_dai list */
            codec_dai->probed = 1;
            list_add(&codec_dai->card_list, &card->dai_dev_list);
      }

      /* DAPM dai link stream work */
      INIT_DELAYED_WORK(&rtd->delayed_work, close_delayed_work);

      ret = soc_post_component_init(card, codec, num, 0);
      if (ret)
            return ret;

      ret = device_create_file(&rtd->dev, &dev_attr_pmdown_time);
      if (ret < 0)
            printk(KERN_WARNING "asoc: failed to add pmdown_time sysfs\n");

      /* create the pcm */
      ret = soc_new_pcm(rtd, num);
      if (ret < 0) {
            printk(KERN_ERR "asoc: can't create pcm %s\n", dai_link->stream_name);
            return ret;
      }

      /* add platform data for AC97 devices */
      if (rtd->codec_dai->driver->ac97_control)
            snd_ac97_dev_add_pdata(codec->ac97, rtd->cpu_dai->ac97_pdata);

      return 0;
}

#ifdef CONFIG_SND_SOC_AC97_BUS
static int soc_register_ac97_dai_link(struct snd_soc_pcm_runtime *rtd)
{
      int ret;

      /* Only instantiate AC97 if not already done by the adaptor
       * for the generic AC97 subsystem.
       */
      if (rtd->codec_dai->driver->ac97_control && !rtd->codec->ac97_registered) {
            /*
             * It is possible that the AC97 device is already registered to
             * the device subsystem. This happens when the device is created
             * via snd_ac97_mixer(). Currently only SoC codec that does so
             * is the generic AC97 glue but others migh emerge.
             *
             * In those cases we don't try to register the device again.
             */
            if (!rtd->codec->ac97_created)
                  return 0;

            ret = soc_ac97_dev_register(rtd->codec);
            if (ret < 0) {
                  printk(KERN_ERR "asoc: AC97 device register failed\n");
                  return ret;
            }

            rtd->codec->ac97_registered = 1;
      }
      return 0;
}

static void soc_unregister_ac97_dai_link(struct snd_soc_codec *codec)
{
      if (codec->ac97_registered) {
            soc_ac97_dev_unregister(codec);
            codec->ac97_registered = 0;
      }
}
#endif

static int soc_probe_aux_dev(struct snd_soc_card *card, int num)
{
      struct snd_soc_aux_dev *aux_dev = &card->aux_dev[num];
      struct snd_soc_codec *codec;
      int ret = -ENODEV;

      /* find CODEC from registered CODECs*/
      list_for_each_entry(codec, &codec_list, list) {
            if (!strcmp(codec->name, aux_dev->codec_name)) {
                  if (codec->probed) {
                        dev_err(codec->dev,
                              "asoc: codec already probed");
                        ret = -EBUSY;
                        goto out;
                  }
                  goto found;
            }
      }
      /* codec not found */
      dev_err(card->dev, "asoc: codec %s not found", aux_dev->codec_name);
      goto out;

found:
      if (!try_module_get(codec->dev->driver->owner))
            return -ENODEV;

      ret = soc_probe_codec(card, codec);
      if (ret < 0)
            return ret;

      ret = soc_post_component_init(card, codec, num, 1);

out:
      return ret;
}

static void soc_remove_aux_dev(struct snd_soc_card *card, int num)
{
      struct snd_soc_pcm_runtime *rtd = &card->rtd_aux[num];
      struct snd_soc_codec *codec = rtd->codec;

      /* unregister the rtd device */
      if (rtd->dev_registered) {
            device_remove_file(&rtd->dev, &dev_attr_codec_reg);
            device_unregister(&rtd->dev);
            rtd->dev_registered = 0;
      }

      if (codec && codec->probed)
            soc_remove_codec(codec);
}

static int snd_soc_init_codec_cache(struct snd_soc_codec *codec,
                            enum snd_soc_compress_type compress_type)
{
      int ret;

      if (codec->cache_init)
            return 0;

      /* override the compress_type if necessary */
      if (compress_type && codec->compress_type != compress_type)
            codec->compress_type = compress_type;
      ret = snd_soc_cache_init(codec);
      if (ret < 0) {
            dev_err(codec->dev, "Failed to set cache compression type: %d\n",
                  ret);
            return ret;
      }
      codec->cache_init = 1;
      return 0;
}

static void snd_soc_instantiate_card(struct snd_soc_card *card)
{
      struct platform_device *pdev = to_platform_device(card->dev);
      struct snd_soc_codec *codec;
      struct snd_soc_codec_conf *codec_conf;
      enum snd_soc_compress_type compress_type;
      int ret, i;

      mutex_lock(&card->mutex);

      if (card->instantiated) {
            mutex_unlock(&card->mutex);
            return;
      }

      /* bind DAIs */
      for (i = 0; i < card->num_links; i++)
            soc_bind_dai_link(card, i);

      /* bind completed ? */
      if (card->num_rtd != card->num_links) {
            mutex_unlock(&card->mutex);
            return;
      }

      /* initialize the register cache for each available codec */
      list_for_each_entry(codec, &codec_list, list) {
            if (codec->cache_init)
                  continue;
            /* by default we don't override the compress_type */
            compress_type = 0;
            /* check to see if we need to override the compress_type */
            for (i = 0; i < card->num_configs; ++i) {
                  codec_conf = &card->codec_conf[i];
                  if (!strcmp(codec->name, codec_conf->dev_name)) {
                        compress_type = codec_conf->compress_type;
                        if (compress_type && compress_type
                            != codec->compress_type)
                              break;
                  }
            }
            ret = snd_soc_init_codec_cache(codec, compress_type);
            if (ret < 0) {
                  mutex_unlock(&card->mutex);
                  return;
            }
      }

      /* card bind complete so register a sound card */
      ret = snd_card_create(SNDRV_DEFAULT_IDX1, SNDRV_DEFAULT_STR1,
                  card->owner, 0, &card->snd_card);
      if (ret < 0) {
            printk(KERN_ERR "asoc: can't create sound card for card %s\n",
                  card->name);
            mutex_unlock(&card->mutex);
            return;
      }
      card->snd_card->dev = card->dev;

#ifdef CONFIG_PM
      /* deferred resume work */
      INIT_WORK(&card->deferred_resume_work, soc_resume_deferred);
#endif

      /* initialise the sound card only once */
      if (card->probe) {
            ret = card->probe(pdev);
            if (ret < 0)
                  goto card_probe_error;
      }

      for (i = 0; i < card->num_links; i++) {
            ret = soc_probe_dai_link(card, i);
            if (ret < 0) {
                  pr_err("asoc: failed to instantiate card %s: %d\n",
                         card->name, ret);
                  goto probe_dai_err;
            }
      }

      for (i = 0; i < card->num_aux_devs; i++) {
            ret = soc_probe_aux_dev(card, i);
            if (ret < 0) {
                  pr_err("asoc: failed to add auxiliary devices %s: %d\n",
                         card->name, ret);
                  goto probe_aux_dev_err;
            }
      }

      snprintf(card->snd_card->shortname, sizeof(card->snd_card->shortname),
             "%s",  card->name);
      snprintf(card->snd_card->longname, sizeof(card->snd_card->longname),
             "%s", card->name);

      ret = snd_card_register(card->snd_card);
      if (ret < 0) {
            printk(KERN_ERR "asoc: failed to register soundcard for %s\n", card->name);
            goto probe_aux_dev_err;
      }

#ifdef CONFIG_SND_SOC_AC97_BUS
      /* register any AC97 codecs */
      for (i = 0; i < card->num_rtd; i++) {
            ret = soc_register_ac97_dai_link(&card->rtd[i]);
            if (ret < 0) {
                  printk(KERN_ERR "asoc: failed to register AC97 %s\n", card->name);
                  while (--i >= 0)
                        soc_unregister_ac97_dai_link(card->rtd[i].codec);
                  goto probe_aux_dev_err;
            }
      }
#endif

      card->instantiated = 1;
      mutex_unlock(&card->mutex);
      return;

probe_aux_dev_err:
      for (i = 0; i < card->num_aux_devs; i++)
            soc_remove_aux_dev(card, i);

probe_dai_err:
      for (i = 0; i < card->num_links; i++)
            soc_remove_dai_link(card, i);

card_probe_error:
      if (card->remove)
            card->remove(pdev);

      snd_card_free(card->snd_card);

      mutex_unlock(&card->mutex);
}

/*
 * Attempt to initialise any uninitialised cards.  Must be called with
 * client_mutex.
 */
static void snd_soc_instantiate_cards(void)
{
      struct snd_soc_card *card;
      list_for_each_entry(card, &card_list, list)
            snd_soc_instantiate_card(card);
}

/* probes a new socdev */
static int soc_probe(struct platform_device *pdev)
{
      struct snd_soc_card *card = platform_get_drvdata(pdev);
      int ret = 0;

      /*
       * no card, so machine driver should be registering card
       * we should not be here in that case so ret error
       */
      if (!card)
            return -EINVAL;

      /* Bodge while we unpick instantiation */
      card->dev = &pdev->dev;
      snd_soc_initialize_card_lists(card);

      ret = snd_soc_register_card(card);
      if (ret != 0) {
            dev_err(&pdev->dev, "Failed to register card\n");
            return ret;
      }

      return 0;
}

static int soc_cleanup_card_resources(struct snd_soc_card *card)
{
      struct platform_device *pdev = to_platform_device(card->dev);
      int i;

      /* make sure any delayed work runs */
      for (i = 0; i < card->num_rtd; i++) {
            struct snd_soc_pcm_runtime *rtd = &card->rtd[i];
            flush_delayed_work_sync(&rtd->delayed_work);
      }

      /* remove auxiliary devices */
      for (i = 0; i < card->num_aux_devs; i++)
            soc_remove_aux_dev(card, i);

      /* remove and free each DAI */
      for (i = 0; i < card->num_rtd; i++)
            soc_remove_dai_link(card, i);

      soc_cleanup_card_debugfs(card);

      /* remove the card */
      if (card->remove)
            card->remove(pdev);

      kfree(card->rtd);
      snd_card_free(card->snd_card);
      return 0;

}

/* removes a socdev */
static int soc_remove(struct platform_device *pdev)
{
      struct snd_soc_card *card = platform_get_drvdata(pdev);

      snd_soc_unregister_card(card);
      return 0;
}

static int soc_poweroff(struct device *dev)
{
      struct platform_device *pdev = to_platform_device(dev);
      struct snd_soc_card *card = platform_get_drvdata(pdev);
      int i;

      if (!card->instantiated)
            return 0;

      /* Flush out pmdown_time work - we actually do want to run it
       * now, we're shutting down so no imminent restart. */
      for (i = 0; i < card->num_rtd; i++) {
            struct snd_soc_pcm_runtime *rtd = &card->rtd[i];
            flush_delayed_work_sync(&rtd->delayed_work);
      }

      snd_soc_dapm_shutdown(card);

      return 0;
}

static const struct dev_pm_ops soc_pm_ops = {
      .suspend = soc_suspend,
      .resume = soc_resume,
      .poweroff = soc_poweroff,
};

/* ASoC platform driver */
static struct platform_driver soc_driver = {
      .driver           = {
            .name       = "soc-audio",
            .owner            = THIS_MODULE,
            .pm         = &soc_pm_ops,
      },
      .probe            = soc_probe,
      .remove           = soc_remove,
};

/* create a new pcm */
static int soc_new_pcm(struct snd_soc_pcm_runtime *rtd, int num)
{
      struct snd_soc_codec *codec = rtd->codec;
      struct snd_soc_platform *platform = rtd->platform;
      struct snd_soc_dai *codec_dai = rtd->codec_dai;
      struct snd_soc_dai *cpu_dai = rtd->cpu_dai;
      struct snd_pcm *pcm;
      char new_name[64];
      int ret = 0, playback = 0, capture = 0;

      /* check client and interface hw capabilities */
      snprintf(new_name, sizeof(new_name), "%s %s-%d",
                  rtd->dai_link->stream_name, codec_dai->name, num);

      if (codec_dai->driver->playback.channels_min)
            playback = 1;
      if (codec_dai->driver->capture.channels_min)
            capture = 1;

      dev_dbg(rtd->card->dev, "registered pcm #%d %s\n",num,new_name);
      ret = snd_pcm_new(rtd->card->snd_card, new_name,
                  num, playback, capture, &pcm);
      if (ret < 0) {
            printk(KERN_ERR "asoc: can't create pcm for codec %s\n", codec->name);
            return ret;
      }

      rtd->pcm = pcm;
      pcm->private_data = rtd;
      soc_pcm_ops.mmap = platform->driver->ops->mmap;
      soc_pcm_ops.pointer = platform->driver->ops->pointer;
      soc_pcm_ops.ioctl = platform->driver->ops->ioctl;
      soc_pcm_ops.copy = platform->driver->ops->copy;
      soc_pcm_ops.silence = platform->driver->ops->silence;
      soc_pcm_ops.ack = platform->driver->ops->ack;
      soc_pcm_ops.page = platform->driver->ops->page;

      if (playback)
            snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &soc_pcm_ops);

      if (capture)
            snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &soc_pcm_ops);

      ret = platform->driver->pcm_new(rtd->card->snd_card, codec_dai, pcm);
      if (ret < 0) {
            printk(KERN_ERR "asoc: platform pcm constructor failed\n");
            return ret;
      }

      pcm->private_free = platform->driver->pcm_free;
      printk(KERN_INFO "asoc: %s <-> %s mapping ok\n", codec_dai->name,
            cpu_dai->name);
      return ret;
}

/**
 * snd_soc_codec_volatile_register: Report if a register is volatile.
 *
 * @codec: CODEC to query.
 * @reg: Register to query.
 *
 * Boolean function indiciating if a CODEC register is volatile.
 */
int snd_soc_codec_volatile_register(struct snd_soc_codec *codec, int reg)
{
      if (codec->volatile_register)
            return codec->volatile_register(codec, reg);
      else
            return 0;
}
EXPORT_SYMBOL_GPL(snd_soc_codec_volatile_register);

/**
 * snd_soc_new_ac97_codec - initailise AC97 device
 * @codec: audio codec
 * @ops: AC97 bus operations
 * @num: AC97 codec number
 *
 * Initialises AC97 codec resources for use by ad-hoc devices only.
 */
int snd_soc_new_ac97_codec(struct snd_soc_codec *codec,
      struct snd_ac97_bus_ops *ops, int num)
{
      mutex_lock(&codec->mutex);

      codec->ac97 = kzalloc(sizeof(struct snd_ac97), GFP_KERNEL);
      if (codec->ac97 == NULL) {
            mutex_unlock(&codec->mutex);
            return -ENOMEM;
      }

      codec->ac97->bus = kzalloc(sizeof(struct snd_ac97_bus), GFP_KERNEL);
      if (codec->ac97->bus == NULL) {
            kfree(codec->ac97);
            codec->ac97 = NULL;
            mutex_unlock(&codec->mutex);
            return -ENOMEM;
      }

      codec->ac97->bus->ops = ops;
      codec->ac97->num = num;

      /*
       * Mark the AC97 device to be created by us. This way we ensure that the
       * device will be registered with the device subsystem later on.
       */
      codec->ac97_created = 1;

      mutex_unlock(&codec->mutex);
      return 0;
}
EXPORT_SYMBOL_GPL(snd_soc_new_ac97_codec);

/**
 * snd_soc_free_ac97_codec - free AC97 codec device
 * @codec: audio codec
 *
 * Frees AC97 codec device resources.
 */
void snd_soc_free_ac97_codec(struct snd_soc_codec *codec)
{
      mutex_lock(&codec->mutex);
#ifdef CONFIG_SND_SOC_AC97_BUS
      soc_unregister_ac97_dai_link(codec);
#endif
      kfree(codec->ac97->bus);
      kfree(codec->ac97);
      codec->ac97 = NULL;
      codec->ac97_created = 0;
      mutex_unlock(&codec->mutex);
}
EXPORT_SYMBOL_GPL(snd_soc_free_ac97_codec);

unsigned int snd_soc_read(struct snd_soc_codec *codec, unsigned int reg)
{
      unsigned int ret;

      ret = codec->read(codec, reg);
      dev_dbg(codec->dev, "read %x => %x\n", reg, ret);
      trace_snd_soc_reg_read(codec, reg, ret);

      return ret;
}
EXPORT_SYMBOL_GPL(snd_soc_read);

unsigned int snd_soc_write(struct snd_soc_codec *codec,
                     unsigned int reg, unsigned int val)
{
      dev_dbg(codec->dev, "write %x = %x\n", reg, val);
      trace_snd_soc_reg_write(codec, reg, val);
      return codec->write(codec, reg, val);
}
EXPORT_SYMBOL_GPL(snd_soc_write);

/**
 * snd_soc_update_bits - update codec register bits
 * @codec: audio codec
 * @reg: codec register
 * @mask: register mask
 * @value: new value
 *
 * Writes new register value.
 *
 * Returns 1 for change, 0 for no change, or negative error code.
 */
int snd_soc_update_bits(struct snd_soc_codec *codec, unsigned short reg,
                        unsigned int mask, unsigned int value)
{
      int change;
      unsigned int old, new;
      int ret;

      ret = snd_soc_read(codec, reg);
      if (ret < 0)
            return ret;

      old = ret;
      new = (old & ~mask) | value;
      change = old != new;
      if (change) {
            ret = snd_soc_write(codec, reg, new);
            if (ret < 0)
                  return ret;
      }

      return change;
}
EXPORT_SYMBOL_GPL(snd_soc_update_bits);

/**
 * snd_soc_update_bits_locked - update codec register bits
 * @codec: audio codec
 * @reg: codec register
 * @mask: register mask
 * @value: new value
 *
 * Writes new register value, and takes the codec mutex.
 *
 * Returns 1 for change else 0.
 */
int snd_soc_update_bits_locked(struct snd_soc_codec *codec,
                         unsigned short reg, unsigned int mask,
                         unsigned int value)
{
      int change;

      mutex_lock(&codec->mutex);
      change = snd_soc_update_bits(codec, reg, mask, value);
      mutex_unlock(&codec->mutex);

      return change;
}
EXPORT_SYMBOL_GPL(snd_soc_update_bits_locked);

/**
 * snd_soc_test_bits - test register for change
 * @codec: audio codec
 * @reg: codec register
 * @mask: register mask
 * @value: new value
 *
 * Tests a register with a new value and checks if the new value is
 * different from the old value.
 *
 * Returns 1 for change else 0.
 */
int snd_soc_test_bits(struct snd_soc_codec *codec, unsigned short reg,
                        unsigned int mask, unsigned int value)
{
      int change;
      unsigned int old, new;

      old = snd_soc_read(codec, reg);
      new = (old & ~mask) | value;
      change = old != new;

      return change;
}
EXPORT_SYMBOL_GPL(snd_soc_test_bits);

/**
 * snd_soc_set_runtime_hwparams - set the runtime hardware parameters
 * @substream: the pcm substream
 * @hw: the hardware parameters
 *
 * Sets the substream runtime hardware parameters.
 */
int snd_soc_set_runtime_hwparams(struct snd_pcm_substream *substream,
      const struct snd_pcm_hardware *hw)
{
      struct snd_pcm_runtime *runtime = substream->runtime;
      runtime->hw.info = hw->info;
      runtime->hw.formats = hw->formats;
      runtime->hw.period_bytes_min = hw->period_bytes_min;
      runtime->hw.period_bytes_max = hw->period_bytes_max;
      runtime->hw.periods_min = hw->periods_min;
      runtime->hw.periods_max = hw->periods_max;
      runtime->hw.buffer_bytes_max = hw->buffer_bytes_max;
      runtime->hw.fifo_size = hw->fifo_size;
      return 0;
}
EXPORT_SYMBOL_GPL(snd_soc_set_runtime_hwparams);

/**
 * snd_soc_cnew - create new control
 * @_template: control template
 * @data: control private data
 * @long_name: control long name
 *
 * Create a new mixer control from a template control.
 *
 * Returns 0 for success, else error.
 */
struct snd_kcontrol *snd_soc_cnew(const struct snd_kcontrol_new *_template,
      void *data, char *long_name)
{
      struct snd_kcontrol_new template;

      memcpy(&template, _template, sizeof(template));
      if (long_name)
            template.name = long_name;
      template.index = 0;

      return snd_ctl_new1(&template, data);
}
EXPORT_SYMBOL_GPL(snd_soc_cnew);

/**
 * snd_soc_add_controls - add an array of controls to a codec.
 * Convienience function to add a list of controls. Many codecs were
 * duplicating this code.
 *
 * @codec: codec to add controls to
 * @controls: array of controls to add
 * @num_controls: number of elements in the array
 *
 * Return 0 for success, else error.
 */
int snd_soc_add_controls(struct snd_soc_codec *codec,
      const struct snd_kcontrol_new *controls, int num_controls)
{
      struct snd_card *card = codec->card->snd_card;
      char prefixed_name[44], *name;
      int err, i;

      for (i = 0; i < num_controls; i++) {
            const struct snd_kcontrol_new *control = &controls[i];
            if (codec->name_prefix) {
                  snprintf(prefixed_name, sizeof(prefixed_name), "%s %s",
                         codec->name_prefix, control->name);
                  name = prefixed_name;
            } else {
                  name = control->name;
            }
            err = snd_ctl_add(card, snd_soc_cnew(control, codec, name));
            if (err < 0) {
                  dev_err(codec->dev, "%s: Failed to add %s: %d\n",
                        codec->name, name, err);
                  return err;
            }
      }

      return 0;
}
EXPORT_SYMBOL_GPL(snd_soc_add_controls);

/**
 * snd_soc_info_enum_double - enumerated double mixer info callback
 * @kcontrol: mixer control
 * @uinfo: control element information
 *
 * Callback to provide information about a double enumerated
 * mixer control.
 *
 * Returns 0 for success.
 */
int snd_soc_info_enum_double(struct snd_kcontrol *kcontrol,
      struct snd_ctl_elem_info *uinfo)
{
      struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;

      uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
      uinfo->count = e->shift_l == e->shift_r ? 1 : 2;
      uinfo->value.enumerated.items = e->max;

      if (uinfo->value.enumerated.item > e->max - 1)
            uinfo->value.enumerated.item = e->max - 1;
      strcpy(uinfo->value.enumerated.name,
            e->texts[uinfo->value.enumerated.item]);
      return 0;
}
EXPORT_SYMBOL_GPL(snd_soc_info_enum_double);

/**
 * snd_soc_get_enum_double - enumerated double mixer get callback
 * @kcontrol: mixer control
 * @ucontrol: control element information
 *
 * Callback to get the value of a double enumerated mixer.
 *
 * Returns 0 for success.
 */
int snd_soc_get_enum_double(struct snd_kcontrol *kcontrol,
      struct snd_ctl_elem_value *ucontrol)
{
      struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
      struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
      unsigned int val, bitmask;

      for (bitmask = 1; bitmask < e->max; bitmask <<= 1)
            ;
      val = snd_soc_read(codec, e->reg);
      ucontrol->value.enumerated.item[0]
            = (val >> e->shift_l) & (bitmask - 1);
      if (e->shift_l != e->shift_r)
            ucontrol->value.enumerated.item[1] =
                  (val >> e->shift_r) & (bitmask - 1);

      return 0;
}
EXPORT_SYMBOL_GPL(snd_soc_get_enum_double);

/**
 * snd_soc_put_enum_double - enumerated double mixer put callback
 * @kcontrol: mixer control
 * @ucontrol: control element information
 *
 * Callback to set the value of a double enumerated mixer.
 *
 * Returns 0 for success.
 */
int snd_soc_put_enum_double(struct snd_kcontrol *kcontrol,
      struct snd_ctl_elem_value *ucontrol)
{
      struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
      struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
      unsigned int val;
      unsigned int mask, bitmask;

      for (bitmask = 1; bitmask < e->max; bitmask <<= 1)
            ;
      if (ucontrol->value.enumerated.item[0] > e->max - 1)
            return -EINVAL;
      val = ucontrol->value.enumerated.item[0] << e->shift_l;
      mask = (bitmask - 1) << e->shift_l;
      if (e->shift_l != e->shift_r) {
            if (ucontrol->value.enumerated.item[1] > e->max - 1)
                  return -EINVAL;
            val |= ucontrol->value.enumerated.item[1] << e->shift_r;
            mask |= (bitmask - 1) << e->shift_r;
      }

      return snd_soc_update_bits_locked(codec, e->reg, mask, val);
}
EXPORT_SYMBOL_GPL(snd_soc_put_enum_double);

/**
 * snd_soc_get_value_enum_double - semi enumerated double mixer get callback
 * @kcontrol: mixer control
 * @ucontrol: control element information
 *
 * Callback to get the value of a double semi enumerated mixer.
 *
 * Semi enumerated mixer: the enumerated items are referred as values. Can be
 * used for handling bitfield coded enumeration for example.
 *
 * Returns 0 for success.
 */
int snd_soc_get_value_enum_double(struct snd_kcontrol *kcontrol,
      struct snd_ctl_elem_value *ucontrol)
{
      struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
      struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
      unsigned int reg_val, val, mux;

      reg_val = snd_soc_read(codec, e->reg);
      val = (reg_val >> e->shift_l) & e->mask;
      for (mux = 0; mux < e->max; mux++) {
            if (val == e->values[mux])
                  break;
      }
      ucontrol->value.enumerated.item[0] = mux;
      if (e->shift_l != e->shift_r) {
            val = (reg_val >> e->shift_r) & e->mask;
            for (mux = 0; mux < e->max; mux++) {
                  if (val == e->values[mux])
                        break;
            }
            ucontrol->value.enumerated.item[1] = mux;
      }

      return 0;
}
EXPORT_SYMBOL_GPL(snd_soc_get_value_enum_double);

/**
 * snd_soc_put_value_enum_double - semi enumerated double mixer put callback
 * @kcontrol: mixer control
 * @ucontrol: control element information
 *
 * Callback to set the value of a double semi enumerated mixer.
 *
 * Semi enumerated mixer: the enumerated items are referred as values. Can be
 * used for handling bitfield coded enumeration for example.
 *
 * Returns 0 for success.
 */
int snd_soc_put_value_enum_double(struct snd_kcontrol *kcontrol,
      struct snd_ctl_elem_value *ucontrol)
{
      struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
      struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
      unsigned int val;
      unsigned int mask;

      if (ucontrol->value.enumerated.item[0] > e->max - 1)
            return -EINVAL;
      val = e->values[ucontrol->value.enumerated.item[0]] << e->shift_l;
      mask = e->mask << e->shift_l;
      if (e->shift_l != e->shift_r) {
            if (ucontrol->value.enumerated.item[1] > e->max - 1)
                  return -EINVAL;
            val |= e->values[ucontrol->value.enumerated.item[1]] << e->shift_r;
            mask |= e->mask << e->shift_r;
      }

      return snd_soc_update_bits_locked(codec, e->reg, mask, val);
}
EXPORT_SYMBOL_GPL(snd_soc_put_value_enum_double);

/**
 * snd_soc_info_enum_ext - external enumerated single mixer info callback
 * @kcontrol: mixer control
 * @uinfo: control element information
 *
 * Callback to provide information about an external enumerated
 * single mixer.
 *
 * Returns 0 for success.
 */
int snd_soc_info_enum_ext(struct snd_kcontrol *kcontrol,
      struct snd_ctl_elem_info *uinfo)
{
      struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;

      uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
      uinfo->count = 1;
      uinfo->value.enumerated.items = e->max;

      if (uinfo->value.enumerated.item > e->max - 1)
            uinfo->value.enumerated.item = e->max - 1;
      strcpy(uinfo->value.enumerated.name,
            e->texts[uinfo->value.enumerated.item]);
      return 0;
}
EXPORT_SYMBOL_GPL(snd_soc_info_enum_ext);

/**
 * snd_soc_info_volsw_ext - external single mixer info callback
 * @kcontrol: mixer control
 * @uinfo: control element information
 *
 * Callback to provide information about a single external mixer control.
 *
 * Returns 0 for success.
 */
int snd_soc_info_volsw_ext(struct snd_kcontrol *kcontrol,
      struct snd_ctl_elem_info *uinfo)
{
      int max = kcontrol->private_value;

      if (max == 1 && !strstr(kcontrol->id.name, " Volume"))
            uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
      else
            uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;

      uinfo->count = 1;
      uinfo->value.integer.min = 0;
      uinfo->value.integer.max = max;
      return 0;
}
EXPORT_SYMBOL_GPL(snd_soc_info_volsw_ext);

/**
 * snd_soc_info_volsw - single mixer info callback
 * @kcontrol: mixer control
 * @uinfo: control element information
 *
 * Callback to provide information about a single mixer control.
 *
 * Returns 0 for success.
 */
int snd_soc_info_volsw(struct snd_kcontrol *kcontrol,
      struct snd_ctl_elem_info *uinfo)
{
      struct soc_mixer_control *mc =
            (struct soc_mixer_control *)kcontrol->private_value;
      int platform_max;
      unsigned int shift = mc->shift;
      unsigned int rshift = mc->rshift;

      if (!mc->platform_max)
            mc->platform_max = mc->max;
      platform_max = mc->platform_max;

      if (platform_max == 1 && !strstr(kcontrol->id.name, " Volume"))
            uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
      else
            uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;

      uinfo->count = shift == rshift ? 1 : 2;
      uinfo->value.integer.min = 0;
      uinfo->value.integer.max = platform_max;
      return 0;
}
EXPORT_SYMBOL_GPL(snd_soc_info_volsw);

/**
 * snd_soc_get_volsw - single mixer get callback
 * @kcontrol: mixer control
 * @ucontrol: control element information
 *
 * Callback to get the value of a single mixer control.
 *
 * Returns 0 for success.
 */
int snd_soc_get_volsw(struct snd_kcontrol *kcontrol,
      struct snd_ctl_elem_value *ucontrol)
{
      struct soc_mixer_control *mc =
            (struct soc_mixer_control *)kcontrol->private_value;
      struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
      unsigned int reg = mc->reg;
      unsigned int shift = mc->shift;
      unsigned int rshift = mc->rshift;
      int max = mc->max;
      unsigned int mask = (1 << fls(max)) - 1;
      unsigned int invert = mc->invert;

      ucontrol->value.integer.value[0] =
            (snd_soc_read(codec, reg) >> shift) & mask;
      if (shift != rshift)
            ucontrol->value.integer.value[1] =
                  (snd_soc_read(codec, reg) >> rshift) & mask;
      if (invert) {
            ucontrol->value.integer.value[0] =
                  max - ucontrol->value.integer.value[0];
            if (shift != rshift)
                  ucontrol->value.integer.value[1] =
                        max - ucontrol->value.integer.value[1];
      }

      return 0;
}
EXPORT_SYMBOL_GPL(snd_soc_get_volsw);

/**
 * snd_soc_put_volsw - single mixer put callback
 * @kcontrol: mixer control
 * @ucontrol: control element information
 *
 * Callback to set the value of a single mixer control.
 *
 * Returns 0 for success.
 */
int snd_soc_put_volsw(struct snd_kcontrol *kcontrol,
      struct snd_ctl_elem_value *ucontrol)
{
      struct soc_mixer_control *mc =
            (struct soc_mixer_control *)kcontrol->private_value;
      struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
      unsigned int reg = mc->reg;
      unsigned int shift = mc->shift;
      unsigned int rshift = mc->rshift;
      int max = mc->max;
      unsigned int mask = (1 << fls(max)) - 1;
      unsigned int invert = mc->invert;
      unsigned int val, val2, val_mask;

      val = (ucontrol->value.integer.value[0] & mask);
      if (invert)
            val = max - val;
      val_mask = mask << shift;
      val = val << shift;
      if (shift != rshift) {
            val2 = (ucontrol->value.integer.value[1] & mask);
            if (invert)
                  val2 = max - val2;
            val_mask |= mask << rshift;
            val |= val2 << rshift;
      }
      return snd_soc_update_bits_locked(codec, reg, val_mask, val);
}
EXPORT_SYMBOL_GPL(snd_soc_put_volsw);

/**
 * snd_soc_info_volsw_2r - double mixer info callback
 * @kcontrol: mixer control
 * @uinfo: control element information
 *
 * Callback to provide information about a double mixer control that
 * spans 2 codec registers.
 *
 * Returns 0 for success.
 */
int snd_soc_info_volsw_2r(struct snd_kcontrol *kcontrol,
      struct snd_ctl_elem_info *uinfo)
{
      struct soc_mixer_control *mc =
            (struct soc_mixer_control *)kcontrol->private_value;
      int platform_max;

      if (!mc->platform_max)
            mc->platform_max = mc->max;
      platform_max = mc->platform_max;

      if (platform_max == 1 && !strstr(kcontrol->id.name, " Volume"))
            uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
      else
            uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;

      uinfo->count = 2;
      uinfo->value.integer.min = 0;
      uinfo->value.integer.max = platform_max;
      return 0;
}
EXPORT_SYMBOL_GPL(snd_soc_info_volsw_2r);

/**
 * snd_soc_get_volsw_2r - double mixer get callback
 * @kcontrol: mixer control
 * @ucontrol: control element information
 *
 * Callback to get the value of a double mixer control that spans 2 registers.
 *
 * Returns 0 for success.
 */
int snd_soc_get_volsw_2r(struct snd_kcontrol *kcontrol,
      struct snd_ctl_elem_value *ucontrol)
{
      struct soc_mixer_control *mc =
            (struct soc_mixer_control *)kcontrol->private_value;
      struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
      unsigned int reg = mc->reg;
      unsigned int reg2 = mc->rreg;
      unsigned int shift = mc->shift;
      int max = mc->max;
      unsigned int mask = (1 << fls(max)) - 1;
      unsigned int invert = mc->invert;

      ucontrol->value.integer.value[0] =
            (snd_soc_read(codec, reg) >> shift) & mask;
      ucontrol->value.integer.value[1] =
            (snd_soc_read(codec, reg2) >> shift) & mask;
      if (invert) {
            ucontrol->value.integer.value[0] =
                  max - ucontrol->value.integer.value[0];
            ucontrol->value.integer.value[1] =
                  max - ucontrol->value.integer.value[1];
      }

      return 0;
}
EXPORT_SYMBOL_GPL(snd_soc_get_volsw_2r);

/**
 * snd_soc_put_volsw_2r - double mixer set callback
 * @kcontrol: mixer control
 * @ucontrol: control element information
 *
 * Callback to set the value of a double mixer control that spans 2 registers.
 *
 * Returns 0 for success.
 */
int snd_soc_put_volsw_2r(struct snd_kcontrol *kcontrol,
      struct snd_ctl_elem_value *ucontrol)
{
      struct soc_mixer_control *mc =
            (struct soc_mixer_control *)kcontrol->private_value;
      struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
      unsigned int reg = mc->reg;
      unsigned int reg2 = mc->rreg;
      unsigned int shift = mc->shift;
      int max = mc->max;
      unsigned int mask = (1 << fls(max)) - 1;
      unsigned int invert = mc->invert;
      int err;
      unsigned int val, val2, val_mask;

      val_mask = mask << shift;
      val = (ucontrol->value.integer.value[0] & mask);
      val2 = (ucontrol->value.integer.value[1] & mask);

      if (invert) {
            val = max - val;
            val2 = max - val2;
      }

      val = val << shift;
      val2 = val2 << shift;

      err = snd_soc_update_bits_locked(codec, reg, val_mask, val);
      if (err < 0)
            return err;

      err = snd_soc_update_bits_locked(codec, reg2, val_mask, val2);
      return err;
}
EXPORT_SYMBOL_GPL(snd_soc_put_volsw_2r);

/**
 * snd_soc_info_volsw_s8 - signed mixer info callback
 * @kcontrol: mixer control
 * @uinfo: control element information
 *
 * Callback to provide information about a signed mixer control.
 *
 * Returns 0 for success.
 */
int snd_soc_info_volsw_s8(struct snd_kcontrol *kcontrol,
      struct snd_ctl_elem_info *uinfo)
{
      struct soc_mixer_control *mc =
            (struct soc_mixer_control *)kcontrol->private_value;
      int platform_max;
      int min = mc->min;

      if (!mc->platform_max)
            mc->platform_max = mc->max;
      platform_max = mc->platform_max;

      uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
      uinfo->count = 2;
      uinfo->value.integer.min = 0;
      uinfo->value.integer.max = platform_max - min;
      return 0;
}
EXPORT_SYMBOL_GPL(snd_soc_info_volsw_s8);

/**
 * snd_soc_get_volsw_s8 - signed mixer get callback
 * @kcontrol: mixer control
 * @ucontrol: control element information
 *
 * Callback to get the value of a signed mixer control.
 *
 * Returns 0 for success.
 */
int snd_soc_get_volsw_s8(struct snd_kcontrol *kcontrol,
      struct snd_ctl_elem_value *ucontrol)
{
      struct soc_mixer_control *mc =
            (struct soc_mixer_control *)kcontrol->private_value;
      struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
      unsigned int reg = mc->reg;
      int min = mc->min;
      int val = snd_soc_read(codec, reg);

      ucontrol->value.integer.value[0] =
            ((signed char)(val & 0xff))-min;
      ucontrol->value.integer.value[1] =
            ((signed char)((val >> 8) & 0xff))-min;
      return 0;
}
EXPORT_SYMBOL_GPL(snd_soc_get_volsw_s8);

/**
 * snd_soc_put_volsw_sgn - signed mixer put callback
 * @kcontrol: mixer control
 * @ucontrol: control element information
 *
 * Callback to set the value of a signed mixer control.
 *
 * Returns 0 for success.
 */
int snd_soc_put_volsw_s8(struct snd_kcontrol *kcontrol,
      struct snd_ctl_elem_value *ucontrol)
{
      struct soc_mixer_control *mc =
            (struct soc_mixer_control *)kcontrol->private_value;
      struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
      unsigned int reg = mc->reg;
      int min = mc->min;
      unsigned int val;

      val = (ucontrol->value.integer.value[0]+min) & 0xff;
      val |= ((ucontrol->value.integer.value[1]+min) & 0xff) << 8;

      return snd_soc_update_bits_locked(codec, reg, 0xffff, val);
}
EXPORT_SYMBOL_GPL(snd_soc_put_volsw_s8);

/**
 * snd_soc_limit_volume - Set new limit to an existing volume control.
 *
 * @codec: where to look for the control
 * @name: Name of the control
 * @max: new maximum limit
 *
 * Return 0 for success, else error.
 */
int snd_soc_limit_volume(struct snd_soc_codec *codec,
      const char *name, int max)
{
      struct snd_card *card = codec->card->snd_card;
      struct snd_kcontrol *kctl;
      struct soc_mixer_control *mc;
      int found = 0;
      int ret = -EINVAL;

      /* Sanity check for name and max */
      if (unlikely(!name || max <= 0))
            return -EINVAL;

      list_for_each_entry(kctl, &card->controls, list) {
            if (!strncmp(kctl->id.name, name, sizeof(kctl->id.name))) {
                  found = 1;
                  break;
            }
      }
      if (found) {
            mc = (struct soc_mixer_control *)kctl->private_value;
            if (max <= mc->max) {
                  mc->platform_max = max;
                  ret = 0;
            }
      }
      return ret;
}
EXPORT_SYMBOL_GPL(snd_soc_limit_volume);

/**
 * snd_soc_info_volsw_2r_sx - double with tlv and variable data size
 *  mixer info callback
 * @kcontrol: mixer control
 * @uinfo: control element information
 *
 * Returns 0 for success.
 */
int snd_soc_info_volsw_2r_sx(struct snd_kcontrol *kcontrol,
                  struct snd_ctl_elem_info *uinfo)
{
      struct soc_mixer_control *mc =
            (struct soc_mixer_control *)kcontrol->private_value;
      int max = mc->max;
      int min = mc->min;

      uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
      uinfo->count = 2;
      uinfo->value.integer.min = 0;
      uinfo->value.integer.max = max-min;

      return 0;
}
EXPORT_SYMBOL_GPL(snd_soc_info_volsw_2r_sx);

/**
 * snd_soc_get_volsw_2r_sx - double with tlv and variable data size
 *  mixer get callback
 * @kcontrol: mixer control
 * @uinfo: control element information
 *
 * Returns 0 for success.
 */
int snd_soc_get_volsw_2r_sx(struct snd_kcontrol *kcontrol,
                  struct snd_ctl_elem_value *ucontrol)
{
      struct soc_mixer_control *mc =
            (struct soc_mixer_control *)kcontrol->private_value;
      struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
      unsigned int mask = (1<<mc->shift)-1;
      int min = mc->min;
      int val = snd_soc_read(codec, mc->reg) & mask;
      int valr = snd_soc_read(codec, mc->rreg) & mask;

      ucontrol->value.integer.value[0] = ((val & 0xff)-min) & mask;
      ucontrol->value.integer.value[1] = ((valr & 0xff)-min) & mask;
      return 0;
}
EXPORT_SYMBOL_GPL(snd_soc_get_volsw_2r_sx);

/**
 * snd_soc_put_volsw_2r_sx - double with tlv and variable data size
 *  mixer put callback
 * @kcontrol: mixer control
 * @uinfo: control element information
 *
 * Returns 0 for success.
 */
int snd_soc_put_volsw_2r_sx(struct snd_kcontrol *kcontrol,
                  struct snd_ctl_elem_value *ucontrol)
{
      struct soc_mixer_control *mc =
            (struct soc_mixer_control *)kcontrol->private_value;
      struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
      unsigned int mask = (1<<mc->shift)-1;
      int min = mc->min;
      int ret;
      unsigned int val, valr, oval, ovalr;

      val = ((ucontrol->value.integer.value[0]+min) & 0xff);
      val &= mask;
      valr = ((ucontrol->value.integer.value[1]+min) & 0xff);
      valr &= mask;

      oval = snd_soc_read(codec, mc->reg) & mask;
      ovalr = snd_soc_read(codec, mc->rreg) & mask;

      ret = 0;
      if (oval != val) {
            ret = snd_soc_write(codec, mc->reg, val);
            if (ret < 0)
                  return ret;
      }
      if (ovalr != valr) {
            ret = snd_soc_write(codec, mc->rreg, valr);
            if (ret < 0)
                  return ret;
      }

      return 0;
}
EXPORT_SYMBOL_GPL(snd_soc_put_volsw_2r_sx);

/**
 * snd_soc_dai_set_sysclk - configure DAI system or master clock.
 * @dai: DAI
 * @clk_id: DAI specific clock ID
 * @freq: new clock frequency in Hz
 * @dir: new clock direction - input/output.
 *
 * Configures the DAI master (MCLK) or system (SYSCLK) clocking.
 */
int snd_soc_dai_set_sysclk(struct snd_soc_dai *dai, int clk_id,
      unsigned int freq, int dir)
{
      if (dai->driver && dai->driver->ops->set_sysclk)
            return dai->driver->ops->set_sysclk(dai, clk_id, freq, dir);
      else
            return -EINVAL;
}
EXPORT_SYMBOL_GPL(snd_soc_dai_set_sysclk);

/**
 * snd_soc_dai_set_clkdiv - configure DAI clock dividers.
 * @dai: DAI
 * @div_id: DAI specific clock divider ID
 * @div: new clock divisor.
 *
 * Configures the clock dividers. This is used to derive the best DAI bit and
 * frame clocks from the system or master clock. It's best to set the DAI bit
 * and frame clocks as low as possible to save system power.
 */
int snd_soc_dai_set_clkdiv(struct snd_soc_dai *dai,
      int div_id, int div)
{
      if (dai->driver && dai->driver->ops->set_clkdiv)
            return dai->driver->ops->set_clkdiv(dai, div_id, div);
      else
            return -EINVAL;
}
EXPORT_SYMBOL_GPL(snd_soc_dai_set_clkdiv);

/**
 * snd_soc_dai_set_pll - configure DAI PLL.
 * @dai: DAI
 * @pll_id: DAI specific PLL ID
 * @source: DAI specific source for the PLL
 * @freq_in: PLL input clock frequency in Hz
 * @freq_out: requested PLL output clock frequency in Hz
 *
 * Configures and enables PLL to generate output clock based on input clock.
 */
int snd_soc_dai_set_pll(struct snd_soc_dai *dai, int pll_id, int source,
      unsigned int freq_in, unsigned int freq_out)
{
      if (dai->driver && dai->driver->ops->set_pll)
            return dai->driver->ops->set_pll(dai, pll_id, source,
                               freq_in, freq_out);
      else
            return -EINVAL;
}
EXPORT_SYMBOL_GPL(snd_soc_dai_set_pll);

/**
 * snd_soc_dai_set_fmt - configure DAI hardware audio format.
 * @dai: DAI
 * @fmt: SND_SOC_DAIFMT_ format value.
 *
 * Configures the DAI hardware format and clocking.
 */
int snd_soc_dai_set_fmt(struct snd_soc_dai *dai, unsigned int fmt)
{
      if (dai->driver && dai->driver->ops->set_fmt)
            return dai->driver->ops->set_fmt(dai, fmt);
      else
            return -EINVAL;
}
EXPORT_SYMBOL_GPL(snd_soc_dai_set_fmt);

/**
 * snd_soc_dai_set_tdm_slot - configure DAI TDM.
 * @dai: DAI
 * @tx_mask: bitmask representing active TX slots.
 * @rx_mask: bitmask representing active RX slots.
 * @slots: Number of slots in use.
 * @slot_width: Width in bits for each slot.
 *
 * Configures a DAI for TDM operation. Both mask and slots are codec and DAI
 * specific.
 */
int snd_soc_dai_set_tdm_slot(struct snd_soc_dai *dai,
      unsigned int tx_mask, unsigned int rx_mask, int slots, int slot_width)
{
      if (dai->driver && dai->driver->ops->set_tdm_slot)
            return dai->driver->ops->set_tdm_slot(dai, tx_mask, rx_mask,
                        slots, slot_width);
      else
            return -EINVAL;
}
EXPORT_SYMBOL_GPL(snd_soc_dai_set_tdm_slot);

/**
 * snd_soc_dai_set_channel_map - configure DAI audio channel map
 * @dai: DAI
 * @tx_num: how many TX channels
 * @tx_slot: pointer to an array which imply the TX slot number channel
 *           0~num-1 uses
 * @rx_num: how many RX channels
 * @rx_slot: pointer to an array which imply the RX slot number channel
 *           0~num-1 uses
 *
 * configure the relationship between channel number and TDM slot number.
 */
int snd_soc_dai_set_channel_map(struct snd_soc_dai *dai,
      unsigned int tx_num, unsigned int *tx_slot,
      unsigned int rx_num, unsigned int *rx_slot)
{
      if (dai->driver && dai->driver->ops->set_channel_map)
            return dai->driver->ops->set_channel_map(dai, tx_num, tx_slot,
                  rx_num, rx_slot);
      else
            return -EINVAL;
}
EXPORT_SYMBOL_GPL(snd_soc_dai_set_channel_map);

/**
 * snd_soc_dai_set_tristate - configure DAI system or master clock.
 * @dai: DAI
 * @tristate: tristate enable
 *
 * Tristates the DAI so that others can use it.
 */
int snd_soc_dai_set_tristate(struct snd_soc_dai *dai, int tristate)
{
      if (dai->driver && dai->driver->ops->set_tristate)
            return dai->driver->ops->set_tristate(dai, tristate);
      else
            return -EINVAL;
}
EXPORT_SYMBOL_GPL(snd_soc_dai_set_tristate);

/**
 * snd_soc_dai_digital_mute - configure DAI system or master clock.
 * @dai: DAI
 * @mute: mute enable
 *
 * Mutes the DAI DAC.
 */
int snd_soc_dai_digital_mute(struct snd_soc_dai *dai, int mute)
{
      if (dai->driver && dai->driver->ops->digital_mute)
            return dai->driver->ops->digital_mute(dai, mute);
      else
            return -EINVAL;
}
EXPORT_SYMBOL_GPL(snd_soc_dai_digital_mute);

/**
 * snd_soc_register_card - Register a card with the ASoC core
 *
 * @card: Card to register
 *
 */
int snd_soc_register_card(struct snd_soc_card *card)
{
      int i;

      if (!card->name || !card->dev)
            return -EINVAL;

      soc_init_card_debugfs(card);

      card->rtd = kzalloc(sizeof(struct snd_soc_pcm_runtime) *
                      (card->num_links + card->num_aux_devs),
                      GFP_KERNEL);
      if (card->rtd == NULL)
            return -ENOMEM;
      card->rtd_aux = &card->rtd[card->num_links];

      for (i = 0; i < card->num_links; i++)
            card->rtd[i].dai_link = &card->dai_link[i];

      INIT_LIST_HEAD(&card->list);
      card->instantiated = 0;
      mutex_init(&card->mutex);

      mutex_lock(&client_mutex);
      list_add(&card->list, &card_list);
      snd_soc_instantiate_cards();
      mutex_unlock(&client_mutex);

      dev_dbg(card->dev, "Registered card '%s'\n", card->name);

      return 0;
}
EXPORT_SYMBOL_GPL(snd_soc_register_card);

/**
 * snd_soc_unregister_card - Unregister a card with the ASoC core
 *
 * @card: Card to unregister
 *
 */
int snd_soc_unregister_card(struct snd_soc_card *card)
{
      if (card->instantiated)
            soc_cleanup_card_resources(card);
      mutex_lock(&client_mutex);
      list_del(&card->list);
      mutex_unlock(&client_mutex);
      dev_dbg(card->dev, "Unregistered card '%s'\n", card->name);

      return 0;
}
EXPORT_SYMBOL_GPL(snd_soc_unregister_card);

/*
 * Simplify DAI link configuration by removing ".-1" from device names
 * and sanitizing names.
 */
static char *fmt_single_name(struct device *dev, int *id)
{
      char *found, name[NAME_SIZE];
      int id1, id2;

      if (dev_name(dev) == NULL)
            return NULL;

      strlcpy(name, dev_name(dev), NAME_SIZE);

      /* are we a "%s.%d" name (platform and SPI components) */
      found = strstr(name, dev->driver->name);
      if (found) {
            /* get ID */
            if (sscanf(&found[strlen(dev->driver->name)], ".%d", id) == 1) {

                  /* discard ID from name if ID == -1 */
                  if (*id == -1)
                        found[strlen(dev->driver->name)] = '\0';
            }

      } else {
            /* I2C component devices are named "bus-addr"  */
            if (sscanf(name, "%x-%x", &id1, &id2) == 2) {
                  char tmp[NAME_SIZE];

                  /* create unique ID number from I2C addr and bus */
                  *id = ((id1 & 0xffff) << 16) + id2;

                  /* sanitize component name for DAI link creation */
                  snprintf(tmp, NAME_SIZE, "%s.%s", dev->driver->name, name);
                  strlcpy(name, tmp, NAME_SIZE);
            } else
                  *id = 0;
      }

      return kstrdup(name, GFP_KERNEL);
}

/*
 * Simplify DAI link naming for single devices with multiple DAIs by removing
 * any ".-1" and using the DAI name (instead of device name).
 */
static inline char *fmt_multiple_name(struct device *dev,
            struct snd_soc_dai_driver *dai_drv)
{
      if (dai_drv->name == NULL) {
            printk(KERN_ERR "asoc: error - multiple DAI %s registered with no name\n",
                        dev_name(dev));
            return NULL;
      }

      return kstrdup(dai_drv->name, GFP_KERNEL);
}

/**
 * snd_soc_register_dai - Register a DAI with the ASoC core
 *
 * @dai: DAI to register
 */
int snd_soc_register_dai(struct device *dev,
            struct snd_soc_dai_driver *dai_drv)
{
      struct snd_soc_dai *dai;

      dev_dbg(dev, "dai register %s\n", dev_name(dev));

      dai = kzalloc(sizeof(struct snd_soc_dai), GFP_KERNEL);
      if (dai == NULL)
                  return -ENOMEM;

      /* create DAI component name */
      dai->name = fmt_single_name(dev, &dai->id);
      if (dai->name == NULL) {
            kfree(dai);
            return -ENOMEM;
      }

      dai->dev = dev;
      dai->driver = dai_drv;
      if (!dai->driver->ops)
            dai->driver->ops = &null_dai_ops;

      mutex_lock(&client_mutex);
      list_add(&dai->list, &dai_list);
      snd_soc_instantiate_cards();
      mutex_unlock(&client_mutex);

      pr_debug("Registered DAI '%s'\n", dai->name);

      return 0;
}
EXPORT_SYMBOL_GPL(snd_soc_register_dai);

/**
 * snd_soc_unregister_dai - Unregister a DAI from the ASoC core
 *
 * @dai: DAI to unregister
 */
void snd_soc_unregister_dai(struct device *dev)
{
      struct snd_soc_dai *dai;

      list_for_each_entry(dai, &dai_list, list) {
            if (dev == dai->dev)
                  goto found;
      }
      return;

found:
      mutex_lock(&client_mutex);
      list_del(&dai->list);
      mutex_unlock(&client_mutex);

      pr_debug("Unregistered DAI '%s'\n", dai->name);
      kfree(dai->name);
      kfree(dai);
}
EXPORT_SYMBOL_GPL(snd_soc_unregister_dai);

/**
 * snd_soc_register_dais - Register multiple DAIs with the ASoC core
 *
 * @dai: Array of DAIs to register
 * @count: Number of DAIs
 */
int snd_soc_register_dais(struct device *dev,
            struct snd_soc_dai_driver *dai_drv, size_t count)
{
      struct snd_soc_dai *dai;
      int i, ret = 0;

      dev_dbg(dev, "dai register %s #%Zu\n", dev_name(dev), count);

      for (i = 0; i < count; i++) {

            dai = kzalloc(sizeof(struct snd_soc_dai), GFP_KERNEL);
            if (dai == NULL) {
                  ret = -ENOMEM;
                  goto err;
            }

            /* create DAI component name */
            dai->name = fmt_multiple_name(dev, &dai_drv[i]);
            if (dai->name == NULL) {
                  kfree(dai);
                  ret = -EINVAL;
                  goto err;
            }

            dai->dev = dev;
            dai->driver = &dai_drv[i];
            if (dai->driver->id)
                  dai->id = dai->driver->id;
            else
                  dai->id = i;
            if (!dai->driver->ops)
                  dai->driver->ops = &null_dai_ops;

            mutex_lock(&client_mutex);
            list_add(&dai->list, &dai_list);
            mutex_unlock(&client_mutex);

            pr_debug("Registered DAI '%s'\n", dai->name);
      }

      mutex_lock(&client_mutex);
      snd_soc_instantiate_cards();
      mutex_unlock(&client_mutex);
      return 0;

err:
      for (i--; i >= 0; i--)
            snd_soc_unregister_dai(dev);

      return ret;
}
EXPORT_SYMBOL_GPL(snd_soc_register_dais);

/**
 * snd_soc_unregister_dais - Unregister multiple DAIs from the ASoC core
 *
 * @dai: Array of DAIs to unregister
 * @count: Number of DAIs
 */
void snd_soc_unregister_dais(struct device *dev, size_t count)
{
      int i;

      for (i = 0; i < count; i++)
            snd_soc_unregister_dai(dev);
}
EXPORT_SYMBOL_GPL(snd_soc_unregister_dais);

/**
 * snd_soc_register_platform - Register a platform with the ASoC core
 *
 * @platform: platform to register
 */
int snd_soc_register_platform(struct device *dev,
            struct snd_soc_platform_driver *platform_drv)
{
      struct snd_soc_platform *platform;

      dev_dbg(dev, "platform register %s\n", dev_name(dev));

      platform = kzalloc(sizeof(struct snd_soc_platform), GFP_KERNEL);
      if (platform == NULL)
                  return -ENOMEM;

      /* create platform component name */
      platform->name = fmt_single_name(dev, &platform->id);
      if (platform->name == NULL) {
            kfree(platform);
            return -ENOMEM;
      }

      platform->dev = dev;
      platform->driver = platform_drv;

      mutex_lock(&client_mutex);
      list_add(&platform->list, &platform_list);
      snd_soc_instantiate_cards();
      mutex_unlock(&client_mutex);

      pr_debug("Registered platform '%s'\n", platform->name);

      return 0;
}
EXPORT_SYMBOL_GPL(snd_soc_register_platform);

/**
 * snd_soc_unregister_platform - Unregister a platform from the ASoC core
 *
 * @platform: platform to unregister
 */
void snd_soc_unregister_platform(struct device *dev)
{
      struct snd_soc_platform *platform;

      list_for_each_entry(platform, &platform_list, list) {
            if (dev == platform->dev)
                  goto found;
      }
      return;

found:
      mutex_lock(&client_mutex);
      list_del(&platform->list);
      mutex_unlock(&client_mutex);

      pr_debug("Unregistered platform '%s'\n", platform->name);
      kfree(platform->name);
      kfree(platform);
}
EXPORT_SYMBOL_GPL(snd_soc_unregister_platform);

static u64 codec_format_map[] = {
      SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_S16_BE,
      SNDRV_PCM_FMTBIT_U16_LE | SNDRV_PCM_FMTBIT_U16_BE,
      SNDRV_PCM_FMTBIT_S24_LE | SNDRV_PCM_FMTBIT_S24_BE,
      SNDRV_PCM_FMTBIT_U24_LE | SNDRV_PCM_FMTBIT_U24_BE,
      SNDRV_PCM_FMTBIT_S32_LE | SNDRV_PCM_FMTBIT_S32_BE,
      SNDRV_PCM_FMTBIT_U32_LE | SNDRV_PCM_FMTBIT_U32_BE,
      SNDRV_PCM_FMTBIT_S24_3LE | SNDRV_PCM_FMTBIT_U24_3BE,
      SNDRV_PCM_FMTBIT_U24_3LE | SNDRV_PCM_FMTBIT_U24_3BE,
      SNDRV_PCM_FMTBIT_S20_3LE | SNDRV_PCM_FMTBIT_S20_3BE,
      SNDRV_PCM_FMTBIT_U20_3LE | SNDRV_PCM_FMTBIT_U20_3BE,
      SNDRV_PCM_FMTBIT_S18_3LE | SNDRV_PCM_FMTBIT_S18_3BE,
      SNDRV_PCM_FMTBIT_U18_3LE | SNDRV_PCM_FMTBIT_U18_3BE,
      SNDRV_PCM_FMTBIT_FLOAT_LE | SNDRV_PCM_FMTBIT_FLOAT_BE,
      SNDRV_PCM_FMTBIT_FLOAT64_LE | SNDRV_PCM_FMTBIT_FLOAT64_BE,
      SNDRV_PCM_FMTBIT_IEC958_SUBFRAME_LE
      | SNDRV_PCM_FMTBIT_IEC958_SUBFRAME_BE,
};

/* Fix up the DAI formats for endianness: codecs don't actually see
 * the endianness of the data but we're using the CPU format
 * definitions which do need to include endianness so we ensure that
 * codec DAIs always have both big and little endian variants set.
 */
static void fixup_codec_formats(struct snd_soc_pcm_stream *stream)
{
      int i;

      for (i = 0; i < ARRAY_SIZE(codec_format_map); i++)
            if (stream->formats & codec_format_map[i])
                  stream->formats |= codec_format_map[i];
}

/**
 * snd_soc_register_codec - Register a codec with the ASoC core
 *
 * @codec: codec to register
 */
int snd_soc_register_codec(struct device *dev,
                     const struct snd_soc_codec_driver *codec_drv,
                     struct snd_soc_dai_driver *dai_drv,
                     int num_dai)
{
      size_t reg_size;
      struct snd_soc_codec *codec;
      int ret, i;

      dev_dbg(dev, "codec register %s\n", dev_name(dev));

      codec = kzalloc(sizeof(struct snd_soc_codec), GFP_KERNEL);
      if (codec == NULL)
            return -ENOMEM;

      /* create CODEC component name */
      codec->name = fmt_single_name(dev, &codec->id);
      if (codec->name == NULL) {
            kfree(codec);
            return -ENOMEM;
      }

      if (codec_drv->compress_type)
            codec->compress_type = codec_drv->compress_type;
      else
            codec->compress_type = SND_SOC_FLAT_COMPRESSION;

      codec->write = codec_drv->write;
      codec->read = codec_drv->read;
      codec->volatile_register = codec_drv->volatile_register;
      codec->readable_register = codec_drv->readable_register;
      codec->dapm.bias_level = SND_SOC_BIAS_OFF;
      codec->dapm.dev = dev;
      codec->dapm.codec = codec;
      codec->dev = dev;
      codec->driver = codec_drv;
      codec->num_dai = num_dai;
      mutex_init(&codec->mutex);

      /* allocate CODEC register cache */
      if (codec_drv->reg_cache_size && codec_drv->reg_word_size) {
            reg_size = codec_drv->reg_cache_size * codec_drv->reg_word_size;
            codec->reg_size = reg_size;
            /* it is necessary to make a copy of the default register cache
             * because in the case of using a compression type that requires
             * the default register cache to be marked as __devinitconst the
             * kernel might have freed the array by the time we initialize
             * the cache.
             */
            if (codec_drv->reg_cache_default) {
                  codec->reg_def_copy = kmemdup(codec_drv->reg_cache_default,
                                          reg_size, GFP_KERNEL);
                  if (!codec->reg_def_copy) {
                        ret = -ENOMEM;
                        goto fail;
                  }
            }
      }

      if (codec_drv->reg_access_size && codec_drv->reg_access_default) {
            if (!codec->volatile_register)
                  codec->volatile_register = snd_soc_default_volatile_register;
            if (!codec->readable_register)
                  codec->readable_register = snd_soc_default_readable_register;
      }

      for (i = 0; i < num_dai; i++) {
            fixup_codec_formats(&dai_drv[i].playback);
            fixup_codec_formats(&dai_drv[i].capture);
      }

      /* register any DAIs */
      if (num_dai) {
            ret = snd_soc_register_dais(dev, dai_drv, num_dai);
            if (ret < 0)
                  goto fail;
      }

      mutex_lock(&client_mutex);
      list_add(&codec->list, &codec_list);
      snd_soc_instantiate_cards();
      mutex_unlock(&client_mutex);

      pr_debug("Registered codec '%s'\n", codec->name);
      return 0;

fail:
      kfree(codec->reg_def_copy);
      codec->reg_def_copy = NULL;
      kfree(codec->name);
      kfree(codec);
      return ret;
}
EXPORT_SYMBOL_GPL(snd_soc_register_codec);

/**
 * snd_soc_unregister_codec - Unregister a codec from the ASoC core
 *
 * @codec: codec to unregister
 */
void snd_soc_unregister_codec(struct device *dev)
{
      struct snd_soc_codec *codec;
      int i;

      list_for_each_entry(codec, &codec_list, list) {
            if (dev == codec->dev)
                  goto found;
      }
      return;

found:
      if (codec->num_dai)
            for (i = 0; i < codec->num_dai; i++)
                  snd_soc_unregister_dai(dev);

      mutex_lock(&client_mutex);
      list_del(&codec->list);
      mutex_unlock(&client_mutex);

      pr_debug("Unregistered codec '%s'\n", codec->name);

      snd_soc_cache_exit(codec);
      kfree(codec->reg_def_copy);
      kfree(codec->name);
      kfree(codec);
}
EXPORT_SYMBOL_GPL(snd_soc_unregister_codec);

static int __init snd_soc_init(void)
{
#ifdef CONFIG_DEBUG_FS
      snd_soc_debugfs_root = debugfs_create_dir("asoc", NULL);
      if (IS_ERR(snd_soc_debugfs_root) || !snd_soc_debugfs_root) {
            printk(KERN_WARNING
                   "ASoC: Failed to create debugfs directory\n");
            snd_soc_debugfs_root = NULL;
      }

      if (!debugfs_create_file("codecs", 0444, snd_soc_debugfs_root, NULL,
                         &codec_list_fops))
            pr_warn("ASoC: Failed to create CODEC list debugfs file\n");

      if (!debugfs_create_file("dais", 0444, snd_soc_debugfs_root, NULL,
                         &dai_list_fops))
            pr_warn("ASoC: Failed to create DAI list debugfs file\n");

      if (!debugfs_create_file("platforms", 0444, snd_soc_debugfs_root, NULL,
                         &platform_list_fops))
            pr_warn("ASoC: Failed to create platform list debugfs file\n");
#endif

      return platform_driver_register(&soc_driver);
}
module_init(snd_soc_init);

static void __exit snd_soc_exit(void)
{
#ifdef CONFIG_DEBUG_FS
      debugfs_remove_recursive(snd_soc_debugfs_root);
#endif
      platform_driver_unregister(&soc_driver);
}
module_exit(snd_soc_exit);

/* Module information */
MODULE_AUTHOR("Liam Girdwood, lrg@slimlogic.co.uk");
MODULE_DESCRIPTION("ALSA SoC Core");
MODULE_LICENSE("GPL");
MODULE_ALIAS("platform:soc-audio");

Generated by  Doxygen 1.6.0   Back to index