Logo Search packages:      
Sourcecode: alsa-driver version File versions  Download package

fsl_dma.c

/*
 * Freescale DMA ALSA SoC PCM driver
 *
 * Author: Timur Tabi <timur@freescale.com>
 *
 * Copyright 2007-2010 Freescale Semiconductor, Inc.
 *
 * This file is licensed under the terms of the GNU General Public License
 * version 2.  This program is licensed "as is" without any warranty of any
 * kind, whether express or implied.
 *
 * This driver implements ASoC support for the Elo DMA controller, which is
 * the DMA controller on Freescale 83xx, 85xx, and 86xx SOCs. In ALSA terms,
 * the PCM driver is what handles the DMA buffer.
 */

#include <linux/module.h>
#include <linux/init.h>
#include <linux/platform_device.h>
#include <linux/dma-mapping.h>
#include <linux/interrupt.h>
#include <linux/delay.h>
#include <linux/gfp.h>
#include <linux/of_platform.h>
#include <linux/list.h>
#include <linux/slab.h>

#include <sound/core.h>
#include <sound/pcm.h>
#include <sound/pcm_params.h>
#include <sound/soc.h>

#include <asm/io.h>

#include "fsl_dma.h"
#include "fsl_ssi.h"    /* For the offset of stx0 and srx0 */

/*
 * The formats that the DMA controller supports, which is anything
 * that is 8, 16, or 32 bits.
 */
#define FSLDMA_PCM_FORMATS (SNDRV_PCM_FMTBIT_S8       | \
                      SNDRV_PCM_FMTBIT_U8       | \
                      SNDRV_PCM_FMTBIT_S16_LE     | \
                      SNDRV_PCM_FMTBIT_S16_BE     | \
                      SNDRV_PCM_FMTBIT_U16_LE     | \
                      SNDRV_PCM_FMTBIT_U16_BE     | \
                      SNDRV_PCM_FMTBIT_S24_LE     | \
                      SNDRV_PCM_FMTBIT_S24_BE     | \
                      SNDRV_PCM_FMTBIT_U24_LE     | \
                      SNDRV_PCM_FMTBIT_U24_BE     | \
                      SNDRV_PCM_FMTBIT_S32_LE     | \
                      SNDRV_PCM_FMTBIT_S32_BE     | \
                      SNDRV_PCM_FMTBIT_U32_LE     | \
                      SNDRV_PCM_FMTBIT_U32_BE)

#define FSLDMA_PCM_RATES (SNDRV_PCM_RATE_5512 | SNDRV_PCM_RATE_8000_192000 | \
                    SNDRV_PCM_RATE_CONTINUOUS)

00060 struct dma_object {
      struct snd_soc_platform_driver dai;
      dma_addr_t ssi_stx_phys;
      dma_addr_t ssi_srx_phys;
      unsigned int ssi_fifo_depth;
      struct ccsr_dma_channel __iomem *channel;
      unsigned int irq;
      bool assigned;
      char path[1];
};

/*
 * The number of DMA links to use.  Two is the bare minimum, but if you
 * have really small links you might need more.
 */
#define NUM_DMA_LINKS   2

/** fsl_dma_private: p-substream DMA data
 *
 * Each substream has a 1-to-1 association with a DMA channel.
 *
 * The link[] array is first because it needs to be aligned on a 32-byte
 * boundary, so putting it first will ensure alignment without padding the
 * structure.
 *
 * @link[]: array of link descriptors
 * @dma_channel: pointer to the DMA channel's registers
 * @irq: IRQ for this DMA channel
 * @substream: pointer to the substream object, needed by the ISR
 * @ssi_sxx_phys: bus address of the STX or SRX register to use
 * @ld_buf_phys: physical address of the LD buffer
 * @current_link: index into link[] of the link currently being processed
 * @dma_buf_phys: physical address of the DMA buffer
 * @dma_buf_next: physical address of the next period to process
 * @dma_buf_end: physical address of the byte after the end of the DMA
 * @buffer period_size: the size of a single period
 * @num_periods: the number of periods in the DMA buffer
 */
00098 struct fsl_dma_private {
      struct fsl_dma_link_descriptor link[NUM_DMA_LINKS];
      struct ccsr_dma_channel __iomem *dma_channel;
      unsigned int irq;
      struct snd_pcm_substream *substream;
      dma_addr_t ssi_sxx_phys;
      unsigned int ssi_fifo_depth;
      dma_addr_t ld_buf_phys;
      unsigned int current_link;
      dma_addr_t dma_buf_phys;
      dma_addr_t dma_buf_next;
      dma_addr_t dma_buf_end;
      size_t period_size;
      unsigned int num_periods;
};

/**
 * fsl_dma_hardare: define characteristics of the PCM hardware.
 *
 * The PCM hardware is the Freescale DMA controller.  This structure defines
 * the capabilities of that hardware.
 *
 * Since the sampling rate and data format are not controlled by the DMA
 * controller, we specify no limits for those values.  The only exception is
 * period_bytes_min, which is set to a reasonably low value to prevent the
 * DMA controller from generating too many interrupts per second.
 *
 * Since each link descriptor has a 32-bit byte count field, we set
 * period_bytes_max to the largest 32-bit number.  We also have no maximum
 * number of periods.
 *
 * Note that we specify SNDRV_PCM_INFO_JOINT_DUPLEX here, but only because a
 * limitation in the SSI driver requires the sample rates for playback and
 * capture to be the same.
 */
static const struct snd_pcm_hardware fsl_dma_hardware = {

      .info             = SNDRV_PCM_INFO_INTERLEAVED |
                          SNDRV_PCM_INFO_MMAP |
                          SNDRV_PCM_INFO_MMAP_VALID |
                          SNDRV_PCM_INFO_JOINT_DUPLEX |
                          SNDRV_PCM_INFO_PAUSE,
      .formats          = FSLDMA_PCM_FORMATS,
      .rates            = FSLDMA_PCM_RATES,
      .rate_min         = 5512,
      .rate_max         = 192000,
      .period_bytes_min       = 512,      /* A reasonable limit */
      .period_bytes_max       = (u32) -1,
      .periods_min      = NUM_DMA_LINKS,
      .periods_max      = (unsigned int) -1,
      .buffer_bytes_max       = 128 * 1024,   /* A reasonable limit */
};

/**
 * fsl_dma_abort_stream: tell ALSA that the DMA transfer has aborted
 *
 * This function should be called by the ISR whenever the DMA controller
 * halts data transfer.
 */
static void fsl_dma_abort_stream(struct snd_pcm_substream *substream)
{
      unsigned long flags;

      snd_pcm_stream_lock_irqsave(substream, flags);

      if (snd_pcm_running(substream))
            snd_pcm_stop(substream, SNDRV_PCM_STATE_XRUN);

      snd_pcm_stream_unlock_irqrestore(substream, flags);
}

/**
 * fsl_dma_update_pointers - update LD pointers to point to the next period
 *
 * As each period is completed, this function changes the the link
 * descriptor pointers for that period to point to the next period.
 */
static void fsl_dma_update_pointers(struct fsl_dma_private *dma_private)
{
      struct fsl_dma_link_descriptor *link =
            &dma_private->link[dma_private->current_link];

      /* Update our link descriptors to point to the next period. On a 36-bit
       * system, we also need to update the ESAD bits.  We also set (keep) the
       * snoop bits.  See the comments in fsl_dma_hw_params() about snooping.
       */
      if (dma_private->substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
            link->source_addr = cpu_to_be32(dma_private->dma_buf_next);
#ifdef CONFIG_PHYS_64BIT
            link->source_attr = cpu_to_be32(CCSR_DMA_ATR_SNOOP |
                  upper_32_bits(dma_private->dma_buf_next));
#endif
      } else {
            link->dest_addr = cpu_to_be32(dma_private->dma_buf_next);
#ifdef CONFIG_PHYS_64BIT
            link->dest_attr = cpu_to_be32(CCSR_DMA_ATR_SNOOP |
                  upper_32_bits(dma_private->dma_buf_next));
#endif
      }

      /* Update our variables for next time */
      dma_private->dma_buf_next += dma_private->period_size;

      if (dma_private->dma_buf_next >= dma_private->dma_buf_end)
            dma_private->dma_buf_next = dma_private->dma_buf_phys;

      if (++dma_private->current_link >= NUM_DMA_LINKS)
            dma_private->current_link = 0;
}

/**
 * fsl_dma_isr: interrupt handler for the DMA controller
 *
 * @irq: IRQ of the DMA channel
 * @dev_id: pointer to the dma_private structure for this DMA channel
 */
static irqreturn_t fsl_dma_isr(int irq, void *dev_id)
{
      struct fsl_dma_private *dma_private = dev_id;
      struct snd_pcm_substream *substream = dma_private->substream;
      struct snd_soc_pcm_runtime *rtd = substream->private_data;
      struct device *dev = rtd->platform->dev;
      struct ccsr_dma_channel __iomem *dma_channel = dma_private->dma_channel;
      irqreturn_t ret = IRQ_NONE;
      u32 sr, sr2 = 0;

      /* We got an interrupt, so read the status register to see what we
         were interrupted for.
       */
      sr = in_be32(&dma_channel->sr);

      if (sr & CCSR_DMA_SR_TE) {
            dev_err(dev, "dma transmit error\n");
            fsl_dma_abort_stream(substream);
            sr2 |= CCSR_DMA_SR_TE;
            ret = IRQ_HANDLED;
      }

      if (sr & CCSR_DMA_SR_CH)
            ret = IRQ_HANDLED;

      if (sr & CCSR_DMA_SR_PE) {
            dev_err(dev, "dma programming error\n");
            fsl_dma_abort_stream(substream);
            sr2 |= CCSR_DMA_SR_PE;
            ret = IRQ_HANDLED;
      }

      if (sr & CCSR_DMA_SR_EOLNI) {
            sr2 |= CCSR_DMA_SR_EOLNI;
            ret = IRQ_HANDLED;
      }

      if (sr & CCSR_DMA_SR_CB)
            ret = IRQ_HANDLED;

      if (sr & CCSR_DMA_SR_EOSI) {
            /* Tell ALSA we completed a period. */
            snd_pcm_period_elapsed(substream);

            /*
             * Update our link descriptors to point to the next period. We
             * only need to do this if the number of periods is not equal to
             * the number of links.
             */
            if (dma_private->num_periods != NUM_DMA_LINKS)
                  fsl_dma_update_pointers(dma_private);

            sr2 |= CCSR_DMA_SR_EOSI;
            ret = IRQ_HANDLED;
      }

      if (sr & CCSR_DMA_SR_EOLSI) {
            sr2 |= CCSR_DMA_SR_EOLSI;
            ret = IRQ_HANDLED;
      }

      /* Clear the bits that we set */
      if (sr2)
            out_be32(&dma_channel->sr, sr2);

      return ret;
}

/**
 * fsl_dma_new: initialize this PCM driver.
 *
 * This function is called when the codec driver calls snd_soc_new_pcms(),
 * once for each .dai_link in the machine driver's snd_soc_card
 * structure.
 *
 * snd_dma_alloc_pages() is just a front-end to dma_alloc_coherent(), which
 * (currently) always allocates the DMA buffer in lowmem, even if GFP_HIGHMEM
 * is specified. Therefore, any DMA buffers we allocate will always be in low
 * memory, but we support for 36-bit physical addresses anyway.
 *
 * Regardless of where the memory is actually allocated, since the device can
 * technically DMA to any 36-bit address, we do need to set the DMA mask to 36.
 */
static int fsl_dma_new(struct snd_card *card, struct snd_soc_dai *dai,
      struct snd_pcm *pcm)
{
      static u64 fsl_dma_dmamask = DMA_BIT_MASK(36);
      int ret;

      if (!card->dev->dma_mask)
            card->dev->dma_mask = &fsl_dma_dmamask;

      if (!card->dev->coherent_dma_mask)
            card->dev->coherent_dma_mask = fsl_dma_dmamask;

      /* Some codecs have separate DAIs for playback and capture, so we
       * should allocate a DMA buffer only for the streams that are valid.
       */

      if (dai->driver->playback.channels_min) {
            ret = snd_dma_alloc_pages(SNDRV_DMA_TYPE_DEV, card->dev,
                  fsl_dma_hardware.buffer_bytes_max,
                  &pcm->streams[0].substream->dma_buffer);
            if (ret) {
                  dev_err(card->dev, "can't alloc playback dma buffer\n");
                  return ret;
            }
      }

      if (dai->driver->capture.channels_min) {
            ret = snd_dma_alloc_pages(SNDRV_DMA_TYPE_DEV, card->dev,
                  fsl_dma_hardware.buffer_bytes_max,
                  &pcm->streams[1].substream->dma_buffer);
            if (ret) {
                  snd_dma_free_pages(&pcm->streams[0].substream->dma_buffer);
                  dev_err(card->dev, "can't alloc capture dma buffer\n");
                  return ret;
            }
      }

      return 0;
}

/**
 * fsl_dma_open: open a new substream.
 *
 * Each substream has its own DMA buffer.
 *
 * ALSA divides the DMA buffer into N periods.  We create NUM_DMA_LINKS link
 * descriptors that ping-pong from one period to the next.  For example, if
 * there are six periods and two link descriptors, this is how they look
 * before playback starts:
 *
 *             The last link descriptor
 *   ____________  points back to the first
 *  |        |
 *  V        |
 *  ___    ___   |
 * |   |->|   |->|
 * |___|  |___|
 *   |      |
 *   |      |
 *   V      V
 *  _________________________________________
 * |      |      |      |      |      |      |  The DMA buffer is
 * |      |      |      |      |      |      |    divided into 6 parts
 * |______|______|______|______|______|______|
 *
 * and here's how they look after the first period is finished playing:
 *
 *   ____________
 *  |        |
 *  V        |
 *  ___    ___   |
 * |   |->|   |->|
 * |___|  |___|
 *   |      |
 *   |______________
 *          |       |
 *          V       V
 *  _________________________________________
 * |      |      |      |      |      |      |
 * |      |      |      |      |      |      |
 * |______|______|______|______|______|______|
 *
 * The first link descriptor now points to the third period.  The DMA
 * controller is currently playing the second period.  When it finishes, it
 * will jump back to the first descriptor and play the third period.
 *
 * There are four reasons we do this:
 *
 * 1. The only way to get the DMA controller to automatically restart the
 *    transfer when it gets to the end of the buffer is to use chaining
 *    mode.  Basic direct mode doesn't offer that feature.
 * 2. We need to receive an interrupt at the end of every period.  The DMA
 *    controller can generate an interrupt at the end of every link transfer
 *    (aka segment).  Making each period into a DMA segment will give us the
 *    interrupts we need.
 * 3. By creating only two link descriptors, regardless of the number of
 *    periods, we do not need to reallocate the link descriptors if the
 *    number of periods changes.
 * 4. All of the audio data is still stored in a single, contiguous DMA
 *    buffer, which is what ALSA expects.  We're just dividing it into
 *    contiguous parts, and creating a link descriptor for each one.
 */
static int fsl_dma_open(struct snd_pcm_substream *substream)
{
      struct snd_pcm_runtime *runtime = substream->runtime;
      struct snd_soc_pcm_runtime *rtd = substream->private_data;
      struct device *dev = rtd->platform->dev;
      struct dma_object *dma =
            container_of(rtd->platform->driver, struct dma_object, dai);
      struct fsl_dma_private *dma_private;
      struct ccsr_dma_channel __iomem *dma_channel;
      dma_addr_t ld_buf_phys;
      u64 temp_link;    /* Pointer to next link descriptor */
      u32 mr;
      unsigned int channel;
      int ret = 0;
      unsigned int i;

      /*
       * Reject any DMA buffer whose size is not a multiple of the period
       * size.  We need to make sure that the DMA buffer can be evenly divided
       * into periods.
       */
      ret = snd_pcm_hw_constraint_integer(runtime,
            SNDRV_PCM_HW_PARAM_PERIODS);
      if (ret < 0) {
            dev_err(dev, "invalid buffer size\n");
            return ret;
      }

      channel = substream->stream == SNDRV_PCM_STREAM_PLAYBACK ? 0 : 1;

      if (dma->assigned) {
            dev_err(dev, "dma channel already assigned\n");
            return -EBUSY;
      }

      dma_private = dma_alloc_coherent(dev, sizeof(struct fsl_dma_private),
                               &ld_buf_phys, GFP_KERNEL);
      if (!dma_private) {
            dev_err(dev, "can't allocate dma private data\n");
            return -ENOMEM;
      }
      if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
            dma_private->ssi_sxx_phys = dma->ssi_stx_phys;
      else
            dma_private->ssi_sxx_phys = dma->ssi_srx_phys;

      dma_private->ssi_fifo_depth = dma->ssi_fifo_depth;
      dma_private->dma_channel = dma->channel;
      dma_private->irq = dma->irq;
      dma_private->substream = substream;
      dma_private->ld_buf_phys = ld_buf_phys;
      dma_private->dma_buf_phys = substream->dma_buffer.addr;

      ret = request_irq(dma_private->irq, fsl_dma_isr, 0, "DMA", dma_private);
      if (ret) {
            dev_err(dev, "can't register ISR for IRQ %u (ret=%i)\n",
                  dma_private->irq, ret);
            dma_free_coherent(dev, sizeof(struct fsl_dma_private),
                  dma_private, dma_private->ld_buf_phys);
            return ret;
      }

      dma->assigned = 1;

      snd_pcm_set_runtime_buffer(substream, &substream->dma_buffer);
      snd_soc_set_runtime_hwparams(substream, &fsl_dma_hardware);
      runtime->private_data = dma_private;

      /* Program the fixed DMA controller parameters */

      dma_channel = dma_private->dma_channel;

      temp_link = dma_private->ld_buf_phys +
            sizeof(struct fsl_dma_link_descriptor);

      for (i = 0; i < NUM_DMA_LINKS; i++) {
            dma_private->link[i].next = cpu_to_be64(temp_link);

            temp_link += sizeof(struct fsl_dma_link_descriptor);
      }
      /* The last link descriptor points to the first */
      dma_private->link[i - 1].next = cpu_to_be64(dma_private->ld_buf_phys);

      /* Tell the DMA controller where the first link descriptor is */
      out_be32(&dma_channel->clndar,
            CCSR_DMA_CLNDAR_ADDR(dma_private->ld_buf_phys));
      out_be32(&dma_channel->eclndar,
            CCSR_DMA_ECLNDAR_ADDR(dma_private->ld_buf_phys));

      /* The manual says the BCR must be clear before enabling EMP */
      out_be32(&dma_channel->bcr, 0);

      /*
       * Program the mode register for interrupts, external master control,
       * and source/destination hold.  Also clear the Channel Abort bit.
       */
      mr = in_be32(&dma_channel->mr) &
            ~(CCSR_DMA_MR_CA | CCSR_DMA_MR_DAHE | CCSR_DMA_MR_SAHE);

      /*
       * We want External Master Start and External Master Pause enabled,
       * because the SSI is controlling the DMA controller.  We want the DMA
       * controller to be set up in advance, and then we signal only the SSI
       * to start transferring.
       *
       * We want End-Of-Segment Interrupts enabled, because this will generate
       * an interrupt at the end of each segment (each link descriptor
       * represents one segment).  Each DMA segment is the same thing as an
       * ALSA period, so this is how we get an interrupt at the end of every
       * period.
       *
       * We want Error Interrupt enabled, so that we can get an error if
       * the DMA controller is mis-programmed somehow.
       */
      mr |= CCSR_DMA_MR_EOSIE | CCSR_DMA_MR_EIE | CCSR_DMA_MR_EMP_EN |
            CCSR_DMA_MR_EMS_EN;

      /* For playback, we want the destination address to be held.  For
         capture, set the source address to be held. */
      mr |= (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) ?
            CCSR_DMA_MR_DAHE : CCSR_DMA_MR_SAHE;

      out_be32(&dma_channel->mr, mr);

      return 0;
}

/**
 * fsl_dma_hw_params: continue initializing the DMA links
 *
 * This function obtains hardware parameters about the opened stream and
 * programs the DMA controller accordingly.
 *
 * One drawback of big-endian is that when copying integers of different
 * sizes to a fixed-sized register, the address to which the integer must be
 * copied is dependent on the size of the integer.
 *
 * For example, if P is the address of a 32-bit register, and X is a 32-bit
 * integer, then X should be copied to address P.  However, if X is a 16-bit
 * integer, then it should be copied to P+2.  If X is an 8-bit register,
 * then it should be copied to P+3.
 *
 * So for playback of 8-bit samples, the DMA controller must transfer single
 * bytes from the DMA buffer to the last byte of the STX0 register, i.e.
 * offset by 3 bytes. For 16-bit samples, the offset is two bytes.
 *
 * For 24-bit samples, the offset is 1 byte.  However, the DMA controller
 * does not support 3-byte copies (the DAHTS register supports only 1, 2, 4,
 * and 8 bytes at a time).  So we do not support packed 24-bit samples.
 * 24-bit data must be padded to 32 bits.
 */
static int fsl_dma_hw_params(struct snd_pcm_substream *substream,
      struct snd_pcm_hw_params *hw_params)
{
      struct snd_pcm_runtime *runtime = substream->runtime;
      struct fsl_dma_private *dma_private = runtime->private_data;
      struct snd_soc_pcm_runtime *rtd = substream->private_data;
      struct device *dev = rtd->platform->dev;

      /* Number of bits per sample */
      unsigned int sample_bits =
            snd_pcm_format_physical_width(params_format(hw_params));

      /* Number of bytes per frame */
      unsigned int sample_bytes = sample_bits / 8;

      /* Bus address of SSI STX register */
      dma_addr_t ssi_sxx_phys = dma_private->ssi_sxx_phys;

      /* Size of the DMA buffer, in bytes */
      size_t buffer_size = params_buffer_bytes(hw_params);

      /* Number of bytes per period */
      size_t period_size = params_period_bytes(hw_params);

      /* Pointer to next period */
      dma_addr_t temp_addr = substream->dma_buffer.addr;

      /* Pointer to DMA controller */
      struct ccsr_dma_channel __iomem *dma_channel = dma_private->dma_channel;

      u32 mr; /* DMA Mode Register */

      unsigned int i;

      /* Initialize our DMA tracking variables */
      dma_private->period_size = period_size;
      dma_private->num_periods = params_periods(hw_params);
      dma_private->dma_buf_end = dma_private->dma_buf_phys + buffer_size;
      dma_private->dma_buf_next = dma_private->dma_buf_phys +
            (NUM_DMA_LINKS * period_size);

      if (dma_private->dma_buf_next >= dma_private->dma_buf_end)
            /* This happens if the number of periods == NUM_DMA_LINKS */
            dma_private->dma_buf_next = dma_private->dma_buf_phys;

      mr = in_be32(&dma_channel->mr) & ~(CCSR_DMA_MR_BWC_MASK |
              CCSR_DMA_MR_SAHTS_MASK | CCSR_DMA_MR_DAHTS_MASK);

      /* Due to a quirk of the SSI's STX register, the target address
       * for the DMA operations depends on the sample size.  So we calculate
       * that offset here.  While we're at it, also tell the DMA controller
       * how much data to transfer per sample.
       */
      switch (sample_bits) {
      case 8:
            mr |= CCSR_DMA_MR_DAHTS_1 | CCSR_DMA_MR_SAHTS_1;
            ssi_sxx_phys += 3;
            break;
      case 16:
            mr |= CCSR_DMA_MR_DAHTS_2 | CCSR_DMA_MR_SAHTS_2;
            ssi_sxx_phys += 2;
            break;
      case 32:
            mr |= CCSR_DMA_MR_DAHTS_4 | CCSR_DMA_MR_SAHTS_4;
            break;
      default:
            /* We should never get here */
            dev_err(dev, "unsupported sample size %u\n", sample_bits);
            return -EINVAL;
      }

      /*
       * BWC determines how many bytes are sent/received before the DMA
       * controller checks the SSI to see if it needs to stop. BWC should
       * always be a multiple of the frame size, so that we always transmit
       * whole frames.  Each frame occupies two slots in the FIFO.  The
       * parameter for CCSR_DMA_MR_BWC() is rounded down the next power of two
       * (MR[BWC] can only represent even powers of two).
       *
       * To simplify the process, we set BWC to the largest value that is
       * less than or equal to the FIFO watermark.  For playback, this ensures
       * that we transfer the maximum amount without overrunning the FIFO.
       * For capture, this ensures that we transfer the maximum amount without
       * underrunning the FIFO.
       *
       * f = SSI FIFO depth
       * w = SSI watermark value (which equals f - 2)
       * b = DMA bandwidth count (in bytes)
       * s = sample size (in bytes, which equals frame_size * 2)
       *
       * For playback, we never transmit more than the transmit FIFO
       * watermark, otherwise we might write more data than the FIFO can hold.
       * The watermark is equal to the FIFO depth minus two.
       *
       * For capture, two equations must hold:
       *    w > f - (b / s)
       *    w >= b / s
       *
       * So, b > 2 * s, but b must also be <= s * w.  To simplify, we set
       * b = s * w, which is equal to
       *      (dma_private->ssi_fifo_depth - 2) * sample_bytes.
       */
      mr |= CCSR_DMA_MR_BWC((dma_private->ssi_fifo_depth - 2) * sample_bytes);

      out_be32(&dma_channel->mr, mr);

      for (i = 0; i < NUM_DMA_LINKS; i++) {
            struct fsl_dma_link_descriptor *link = &dma_private->link[i];

            link->count = cpu_to_be32(period_size);

            /* The snoop bit tells the DMA controller whether it should tell
             * the ECM to snoop during a read or write to an address. For
             * audio, we use DMA to transfer data between memory and an I/O
             * device (the SSI's STX0 or SRX0 register). Snooping is only
             * needed if there is a cache, so we need to snoop memory
             * addresses only.  For playback, that means we snoop the source
             * but not the destination.  For capture, we snoop the
             * destination but not the source.
             *
             * Note that failing to snoop properly is unlikely to cause
             * cache incoherency if the period size is larger than the
             * size of L1 cache.  This is because filling in one period will
             * flush out the data for the previous period.  So if you
             * increased period_bytes_min to a large enough size, you might
             * get more performance by not snooping, and you'll still be
             * okay.  You'll need to update fsl_dma_update_pointers() also.
             */
            if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
                  link->source_addr = cpu_to_be32(temp_addr);
                  link->source_attr = cpu_to_be32(CCSR_DMA_ATR_SNOOP |
                        upper_32_bits(temp_addr));

                  link->dest_addr = cpu_to_be32(ssi_sxx_phys);
                  link->dest_attr = cpu_to_be32(CCSR_DMA_ATR_NOSNOOP |
                        upper_32_bits(ssi_sxx_phys));
            } else {
                  link->source_addr = cpu_to_be32(ssi_sxx_phys);
                  link->source_attr = cpu_to_be32(CCSR_DMA_ATR_NOSNOOP |
                        upper_32_bits(ssi_sxx_phys));

                  link->dest_addr = cpu_to_be32(temp_addr);
                  link->dest_attr = cpu_to_be32(CCSR_DMA_ATR_SNOOP |
                        upper_32_bits(temp_addr));
            }

            temp_addr += period_size;
      }

      return 0;
}

/**
 * fsl_dma_pointer: determine the current position of the DMA transfer
 *
 * This function is called by ALSA when ALSA wants to know where in the
 * stream buffer the hardware currently is.
 *
 * For playback, the SAR register contains the physical address of the most
 * recent DMA transfer.  For capture, the value is in the DAR register.
 *
 * The base address of the buffer is stored in the source_addr field of the
 * first link descriptor.
 */
static snd_pcm_uframes_t fsl_dma_pointer(struct snd_pcm_substream *substream)
{
      struct snd_pcm_runtime *runtime = substream->runtime;
      struct fsl_dma_private *dma_private = runtime->private_data;
      struct snd_soc_pcm_runtime *rtd = substream->private_data;
      struct device *dev = rtd->platform->dev;
      struct ccsr_dma_channel __iomem *dma_channel = dma_private->dma_channel;
      dma_addr_t position;
      snd_pcm_uframes_t frames;

      /* Obtain the current DMA pointer, but don't read the ESAD bits if we
       * only have 32-bit DMA addresses.  This function is typically called
       * in interrupt context, so we need to optimize it.
       */
      if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
            position = in_be32(&dma_channel->sar);
#ifdef CONFIG_PHYS_64BIT
            position |= (u64)(in_be32(&dma_channel->satr) &
                          CCSR_DMA_ATR_ESAD_MASK) << 32;
#endif
      } else {
            position = in_be32(&dma_channel->dar);
#ifdef CONFIG_PHYS_64BIT
            position |= (u64)(in_be32(&dma_channel->datr) &
                          CCSR_DMA_ATR_ESAD_MASK) << 32;
#endif
      }

      /*
       * When capture is started, the SSI immediately starts to fill its FIFO.
       * This means that the DMA controller is not started until the FIFO is
       * full.  However, ALSA calls this function before that happens, when
       * MR.DAR is still zero.  In this case, just return zero to indicate
       * that nothing has been received yet.
       */
      if (!position)
            return 0;

      if ((position < dma_private->dma_buf_phys) ||
          (position > dma_private->dma_buf_end)) {
            dev_err(dev, "dma pointer is out of range, halting stream\n");
            return SNDRV_PCM_POS_XRUN;
      }

      frames = bytes_to_frames(runtime, position - dma_private->dma_buf_phys);

      /*
       * If the current address is just past the end of the buffer, wrap it
       * around.
       */
      if (frames == runtime->buffer_size)
            frames = 0;

      return frames;
}

/**
 * fsl_dma_hw_free: release resources allocated in fsl_dma_hw_params()
 *
 * Release the resources allocated in fsl_dma_hw_params() and de-program the
 * registers.
 *
 * This function can be called multiple times.
 */
static int fsl_dma_hw_free(struct snd_pcm_substream *substream)
{
      struct snd_pcm_runtime *runtime = substream->runtime;
      struct fsl_dma_private *dma_private = runtime->private_data;

      if (dma_private) {
            struct ccsr_dma_channel __iomem *dma_channel;

            dma_channel = dma_private->dma_channel;

            /* Stop the DMA */
            out_be32(&dma_channel->mr, CCSR_DMA_MR_CA);
            out_be32(&dma_channel->mr, 0);

            /* Reset all the other registers */
            out_be32(&dma_channel->sr, -1);
            out_be32(&dma_channel->clndar, 0);
            out_be32(&dma_channel->eclndar, 0);
            out_be32(&dma_channel->satr, 0);
            out_be32(&dma_channel->sar, 0);
            out_be32(&dma_channel->datr, 0);
            out_be32(&dma_channel->dar, 0);
            out_be32(&dma_channel->bcr, 0);
            out_be32(&dma_channel->nlndar, 0);
            out_be32(&dma_channel->enlndar, 0);
      }

      return 0;
}

/**
 * fsl_dma_close: close the stream.
 */
static int fsl_dma_close(struct snd_pcm_substream *substream)
{
      struct snd_pcm_runtime *runtime = substream->runtime;
      struct fsl_dma_private *dma_private = runtime->private_data;
      struct snd_soc_pcm_runtime *rtd = substream->private_data;
      struct device *dev = rtd->platform->dev;
      struct dma_object *dma =
            container_of(rtd->platform->driver, struct dma_object, dai);

      if (dma_private) {
            if (dma_private->irq)
                  free_irq(dma_private->irq, dma_private);

            if (dma_private->ld_buf_phys) {
                  dma_unmap_single(dev, dma_private->ld_buf_phys,
                               sizeof(dma_private->link),
                               DMA_TO_DEVICE);
            }

            /* Deallocate the fsl_dma_private structure */
            dma_free_coherent(dev, sizeof(struct fsl_dma_private),
                          dma_private, dma_private->ld_buf_phys);
            substream->runtime->private_data = NULL;
      }

      dma->assigned = 0;

      return 0;
}

/*
 * Remove this PCM driver.
 */
static void fsl_dma_free_dma_buffers(struct snd_pcm *pcm)
{
      struct snd_pcm_substream *substream;
      unsigned int i;

      for (i = 0; i < ARRAY_SIZE(pcm->streams); i++) {
            substream = pcm->streams[i].substream;
            if (substream) {
                  snd_dma_free_pages(&substream->dma_buffer);
                  substream->dma_buffer.area = NULL;
                  substream->dma_buffer.addr = 0;
            }
      }
}

/**
 * find_ssi_node -- returns the SSI node that points to his DMA channel node
 *
 * Although this DMA driver attempts to operate independently of the other
 * devices, it still needs to determine some information about the SSI device
 * that it's working with.  Unfortunately, the device tree does not contain
 * a pointer from the DMA channel node to the SSI node -- the pointer goes the
 * other way.  So we need to scan the device tree for SSI nodes until we find
 * the one that points to the given DMA channel node.  It's ugly, but at least
 * it's contained in this one function.
 */
static struct device_node *find_ssi_node(struct device_node *dma_channel_np)
{
      struct device_node *ssi_np, *np;

      for_each_compatible_node(ssi_np, NULL, "fsl,mpc8610-ssi") {
            /* Check each DMA phandle to see if it points to us.  We
             * assume that device_node pointers are a valid comparison.
             */
            np = of_parse_phandle(ssi_np, "fsl,playback-dma", 0);
            if (np == dma_channel_np)
                  return ssi_np;

            np = of_parse_phandle(ssi_np, "fsl,capture-dma", 0);
            if (np == dma_channel_np)
                  return ssi_np;
      }

      return NULL;
}

static struct snd_pcm_ops fsl_dma_ops = {
      .open       = fsl_dma_open,
      .close      = fsl_dma_close,
      .ioctl      = snd_pcm_lib_ioctl,
      .hw_params      = fsl_dma_hw_params,
      .hw_free    = fsl_dma_hw_free,
      .pointer    = fsl_dma_pointer,
};

static int __devinit fsl_soc_dma_probe(struct platform_device *pdev,
                               const struct of_device_id *match)
 {
      struct dma_object *dma;
      struct device_node *np = pdev->dev.of_node;
      struct device_node *ssi_np;
      struct resource res;
      const uint32_t *iprop;
      int ret;

      /* Find the SSI node that points to us. */
      ssi_np = find_ssi_node(np);
      if (!ssi_np) {
            dev_err(&pdev->dev, "cannot find parent SSI node\n");
            return -ENODEV;
      }

      ret = of_address_to_resource(ssi_np, 0, &res);
      if (ret) {
            dev_err(&pdev->dev, "could not determine resources for %s\n",
                  ssi_np->full_name);
            of_node_put(ssi_np);
            return ret;
      }

      dma = kzalloc(sizeof(*dma) + strlen(np->full_name), GFP_KERNEL);
      if (!dma) {
            dev_err(&pdev->dev, "could not allocate dma object\n");
            of_node_put(ssi_np);
            return -ENOMEM;
      }

      strcpy(dma->path, np->full_name);
      dma->dai.ops = &fsl_dma_ops;
      dma->dai.pcm_new = fsl_dma_new;
      dma->dai.pcm_free = fsl_dma_free_dma_buffers;

      /* Store the SSI-specific information that we need */
      dma->ssi_stx_phys = res.start + offsetof(struct ccsr_ssi, stx0);
      dma->ssi_srx_phys = res.start + offsetof(struct ccsr_ssi, srx0);

      iprop = of_get_property(ssi_np, "fsl,fifo-depth", NULL);
      if (iprop)
            dma->ssi_fifo_depth = *iprop;
      else
                /* Older 8610 DTs didn't have the fifo-depth property */
            dma->ssi_fifo_depth = 8;

      of_node_put(ssi_np);

      ret = snd_soc_register_platform(&pdev->dev, &dma->dai);
      if (ret) {
            dev_err(&pdev->dev, "could not register platform\n");
            kfree(dma);
            return ret;
      }

      dma->channel = of_iomap(np, 0);
      dma->irq = irq_of_parse_and_map(np, 0);

      dev_set_drvdata(&pdev->dev, dma);

      return 0;
}

static int __devexit fsl_soc_dma_remove(struct platform_device *pdev)
{
      struct dma_object *dma = dev_get_drvdata(&pdev->dev);

      snd_soc_unregister_platform(&pdev->dev);
      iounmap(dma->channel);
      irq_dispose_mapping(dma->irq);
      kfree(dma);

      return 0;
}

static const struct of_device_id fsl_soc_dma_ids[] = {
      { .compatible = "fsl,ssi-dma-channel", },
      {}
};
MODULE_DEVICE_TABLE(of, fsl_soc_dma_ids);

static struct of_platform_driver fsl_soc_dma_driver = {
      .driver = {
            .name = "fsl-pcm-audio",
            .owner = THIS_MODULE,
            .of_match_table = fsl_soc_dma_ids,
      },
      .probe = fsl_soc_dma_probe,
      .remove = __devexit_p(fsl_soc_dma_remove),
};

static int __init fsl_soc_dma_init(void)
{
      pr_info("Freescale Elo DMA ASoC PCM Driver\n");

      return of_register_platform_driver(&fsl_soc_dma_driver);
}

static void __exit fsl_soc_dma_exit(void)
{
      of_unregister_platform_driver(&fsl_soc_dma_driver);
}

module_init(fsl_soc_dma_init);
module_exit(fsl_soc_dma_exit);

MODULE_AUTHOR("Timur Tabi <timur@freescale.com>");
MODULE_DESCRIPTION("Freescale Elo DMA ASoC PCM Driver");
MODULE_LICENSE("GPL v2");

Generated by  Doxygen 1.6.0   Back to index