Logo Search packages:      
Sourcecode: alsa-driver version File versions  Download package

hal2.c

/*
 *  Driver for A2 audio system used in SGI machines
 *  Copyright (c) 2008 Thomas Bogendoerfer <tsbogend@alpha.fanken.de>
 *
 *  Based on OSS code from Ladislav Michl <ladis@linux-mips.org>, which
 *  was based on code from Ulf Carlsson
 *
 *  This program is free software; you can redistribute it and/or modify
 *  it under the terms of the GNU General Public License version 2 as
 *  published by the Free Software Foundation.
 *
 *  This program is distributed in the hope that it will be useful,
 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *  GNU General Public License for more details.
 *
 *  You should have received a copy of the GNU General Public License
 *  along with this program; if not, write to the Free Software
 *  Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
 *
 */
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/dma-mapping.h>
#include <linux/platform_device.h>
#include <linux/io.h>
#include <linux/slab.h>

#include <asm/sgi/hpc3.h>
#include <asm/sgi/ip22.h>

#include <sound/core.h>
#include <sound/control.h>
#include <sound/pcm.h>
#include <sound/pcm-indirect.h>
#include <sound/initval.h>

#include "hal2.h"

static int index = SNDRV_DEFAULT_IDX1;  /* Index 0-MAX */
static char *id = SNDRV_DEFAULT_STR1;   /* ID for this card */

module_param(index, int, 0444);
MODULE_PARM_DESC(index, "Index value for SGI HAL2 soundcard.");
module_param(id, charp, 0444);
MODULE_PARM_DESC(id, "ID string for SGI HAL2 soundcard.");
MODULE_DESCRIPTION("ALSA driver for SGI HAL2 audio");
MODULE_AUTHOR("Thomas Bogendoerfer");
MODULE_LICENSE("GPL");


#define H2_BLOCK_SIZE   1024
#define H2_BUF_SIZE     16384

00056 struct hal2_pbus {
      struct hpc3_pbus_dmacregs *pbus;
      int pbusnr;
      unsigned int ctrl;            /* Current state of pbus->pbdma_ctrl */
};

00062 struct hal2_desc {
      struct hpc_dma_desc desc;
      u32 pad;                /* padding */
};

00067 struct hal2_codec {
      struct snd_pcm_indirect pcm_indirect;
      struct snd_pcm_substream *substream;

      unsigned char *buffer;
      dma_addr_t buffer_dma;
      struct hal2_desc *desc;
      dma_addr_t desc_dma;
      int desc_count;
      struct hal2_pbus pbus;
      int voices;             /* mono/stereo */
      unsigned int sample_rate;
      unsigned int master;          /* Master frequency */
      unsigned short mod;           /* MOD value */
      unsigned short inc;           /* INC value */
};

#define H2_MIX_OUTPUT_ATT     0
#define H2_MIX_INPUT_GAIN     1

00087 struct snd_hal2 {
      struct snd_card *card;

      struct hal2_ctl_regs *ctl_regs;     /* HAL2 ctl registers */
      struct hal2_aes_regs *aes_regs;     /* HAL2 aes registers */
      struct hal2_vol_regs *vol_regs;     /* HAL2 vol registers */
      struct hal2_syn_regs *syn_regs;     /* HAL2 syn registers */

      struct hal2_codec dac;
      struct hal2_codec adc;
};

#define H2_INDIRECT_WAIT(regs)      while (hal2_read(&regs->isr) & H2_ISR_TSTATUS);

#define H2_READ_ADDR(addr)    (addr | (1<<7))
#define H2_WRITE_ADDR(addr)   (addr)

static inline u32 hal2_read(u32 *reg)
{
      return __raw_readl(reg);
}

static inline void hal2_write(u32 val, u32 *reg)
{
      __raw_writel(val, reg);
}


static u32 hal2_i_read32(struct snd_hal2 *hal2, u16 addr)
{
      u32 ret;
      struct hal2_ctl_regs *regs = hal2->ctl_regs;

      hal2_write(H2_READ_ADDR(addr), &regs->iar);
      H2_INDIRECT_WAIT(regs);
      ret = hal2_read(&regs->idr0) & 0xffff;
      hal2_write(H2_READ_ADDR(addr) | 0x1, &regs->iar);
      H2_INDIRECT_WAIT(regs);
      ret |= (hal2_read(&regs->idr0) & 0xffff) << 16;
      return ret;
}

static void hal2_i_write16(struct snd_hal2 *hal2, u16 addr, u16 val)
{
      struct hal2_ctl_regs *regs = hal2->ctl_regs;

      hal2_write(val, &regs->idr0);
      hal2_write(0, &regs->idr1);
      hal2_write(0, &regs->idr2);
      hal2_write(0, &regs->idr3);
      hal2_write(H2_WRITE_ADDR(addr), &regs->iar);
      H2_INDIRECT_WAIT(regs);
}

static void hal2_i_write32(struct snd_hal2 *hal2, u16 addr, u32 val)
{
      struct hal2_ctl_regs *regs = hal2->ctl_regs;

      hal2_write(val & 0xffff, &regs->idr0);
      hal2_write(val >> 16, &regs->idr1);
      hal2_write(0, &regs->idr2);
      hal2_write(0, &regs->idr3);
      hal2_write(H2_WRITE_ADDR(addr), &regs->iar);
      H2_INDIRECT_WAIT(regs);
}

static void hal2_i_setbit16(struct snd_hal2 *hal2, u16 addr, u16 bit)
{
      struct hal2_ctl_regs *regs = hal2->ctl_regs;

      hal2_write(H2_READ_ADDR(addr), &regs->iar);
      H2_INDIRECT_WAIT(regs);
      hal2_write((hal2_read(&regs->idr0) & 0xffff) | bit, &regs->idr0);
      hal2_write(0, &regs->idr1);
      hal2_write(0, &regs->idr2);
      hal2_write(0, &regs->idr3);
      hal2_write(H2_WRITE_ADDR(addr), &regs->iar);
      H2_INDIRECT_WAIT(regs);
}

static void hal2_i_clearbit16(struct snd_hal2 *hal2, u16 addr, u16 bit)
{
      struct hal2_ctl_regs *regs = hal2->ctl_regs;

      hal2_write(H2_READ_ADDR(addr), &regs->iar);
      H2_INDIRECT_WAIT(regs);
      hal2_write((hal2_read(&regs->idr0) & 0xffff) & ~bit, &regs->idr0);
      hal2_write(0, &regs->idr1);
      hal2_write(0, &regs->idr2);
      hal2_write(0, &regs->idr3);
      hal2_write(H2_WRITE_ADDR(addr), &regs->iar);
      H2_INDIRECT_WAIT(regs);
}

static int hal2_gain_info(struct snd_kcontrol *kcontrol,
                         struct snd_ctl_elem_info *uinfo)
{
      uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
      uinfo->count = 2;
      uinfo->value.integer.min = 0;
      switch ((int)kcontrol->private_value) {
      case H2_MIX_OUTPUT_ATT:
            uinfo->value.integer.max = 31;
            break;
      case H2_MIX_INPUT_GAIN:
            uinfo->value.integer.max = 15;
            break;
      }
      return 0;
}

static int hal2_gain_get(struct snd_kcontrol *kcontrol,
                         struct snd_ctl_elem_value *ucontrol)
{
      struct snd_hal2 *hal2 = snd_kcontrol_chip(kcontrol);
      u32 tmp;
      int l, r;

      switch ((int)kcontrol->private_value) {
      case H2_MIX_OUTPUT_ATT:
            tmp = hal2_i_read32(hal2, H2I_DAC_C2);
            if (tmp & H2I_C2_MUTE) {
                  l = 0;
                  r = 0;
            } else {
                  l = 31 - ((tmp >> H2I_C2_L_ATT_SHIFT) & 31);
                  r = 31 - ((tmp >> H2I_C2_R_ATT_SHIFT) & 31);
            }
            break;
      case H2_MIX_INPUT_GAIN:
            tmp = hal2_i_read32(hal2, H2I_ADC_C2);
            l = (tmp >> H2I_C2_L_GAIN_SHIFT) & 15;
            r = (tmp >> H2I_C2_R_GAIN_SHIFT) & 15;
            break;
      }
      ucontrol->value.integer.value[0] = l;
      ucontrol->value.integer.value[1] = r;

      return 0;
}

static int hal2_gain_put(struct snd_kcontrol *kcontrol,
                   struct snd_ctl_elem_value *ucontrol)
{
      struct snd_hal2 *hal2 = snd_kcontrol_chip(kcontrol);
      u32 old, new;
      int l, r;

      l = ucontrol->value.integer.value[0];
      r = ucontrol->value.integer.value[1];

      switch ((int)kcontrol->private_value) {
      case H2_MIX_OUTPUT_ATT:
            old = hal2_i_read32(hal2, H2I_DAC_C2);
            new = old & ~(H2I_C2_L_ATT_M | H2I_C2_R_ATT_M | H2I_C2_MUTE);
            if (l | r) {
                  l = 31 - l;
                  r = 31 - r;
                  new |= (l << H2I_C2_L_ATT_SHIFT);
                  new |= (r << H2I_C2_R_ATT_SHIFT);
            } else
                  new |= H2I_C2_L_ATT_M | H2I_C2_R_ATT_M | H2I_C2_MUTE;
            hal2_i_write32(hal2, H2I_DAC_C2, new);
            break;
      case H2_MIX_INPUT_GAIN:
            old = hal2_i_read32(hal2, H2I_ADC_C2);
            new = old & ~(H2I_C2_L_GAIN_M | H2I_C2_R_GAIN_M);
            new |= (l << H2I_C2_L_GAIN_SHIFT);
            new |= (r << H2I_C2_R_GAIN_SHIFT);
            hal2_i_write32(hal2, H2I_ADC_C2, new);
            break;
      }
      return old != new;
}

static struct snd_kcontrol_new hal2_ctrl_headphone __devinitdata = {
      .iface          = SNDRV_CTL_ELEM_IFACE_MIXER,
      .name           = "Headphone Playback Volume",
      .access         = SNDRV_CTL_ELEM_ACCESS_READWRITE,
      .private_value  = H2_MIX_OUTPUT_ATT,
      .info           = hal2_gain_info,
      .get            = hal2_gain_get,
      .put            = hal2_gain_put,
};

static struct snd_kcontrol_new hal2_ctrl_mic __devinitdata = {
      .iface          = SNDRV_CTL_ELEM_IFACE_MIXER,
      .name           = "Mic Capture Volume",
      .access         = SNDRV_CTL_ELEM_ACCESS_READWRITE,
      .private_value  = H2_MIX_INPUT_GAIN,
      .info           = hal2_gain_info,
      .get            = hal2_gain_get,
      .put            = hal2_gain_put,
};

static int __devinit hal2_mixer_create(struct snd_hal2 *hal2)
{
      int err;

      /* mute DAC */
      hal2_i_write32(hal2, H2I_DAC_C2,
                   H2I_C2_L_ATT_M | H2I_C2_R_ATT_M | H2I_C2_MUTE);
      /* mute ADC */
      hal2_i_write32(hal2, H2I_ADC_C2, 0);

      err = snd_ctl_add(hal2->card,
                    snd_ctl_new1(&hal2_ctrl_headphone, hal2));
      if (err < 0)
            return err;

      err = snd_ctl_add(hal2->card,
                    snd_ctl_new1(&hal2_ctrl_mic, hal2));
      if (err < 0)
            return err;

      return 0;
}

static irqreturn_t hal2_interrupt(int irq, void *dev_id)
{
      struct snd_hal2 *hal2 = dev_id;
      irqreturn_t ret = IRQ_NONE;

      /* decide what caused this interrupt */
      if (hal2->dac.pbus.pbus->pbdma_ctrl & HPC3_PDMACTRL_INT) {
            snd_pcm_period_elapsed(hal2->dac.substream);
            ret = IRQ_HANDLED;
      }
      if (hal2->adc.pbus.pbus->pbdma_ctrl & HPC3_PDMACTRL_INT) {
            snd_pcm_period_elapsed(hal2->adc.substream);
            ret = IRQ_HANDLED;
      }
      return ret;
}

static int hal2_compute_rate(struct hal2_codec *codec, unsigned int rate)
{
      unsigned short mod;

      if (44100 % rate < 48000 % rate) {
            mod = 4 * 44100 / rate;
            codec->master = 44100;
      } else {
            mod = 4 * 48000 / rate;
            codec->master = 48000;
      }

      codec->inc = 4;
      codec->mod = mod;
      rate = 4 * codec->master / mod;

      return rate;
}

static void hal2_set_dac_rate(struct snd_hal2 *hal2)
{
      unsigned int master = hal2->dac.master;
      int inc = hal2->dac.inc;
      int mod = hal2->dac.mod;

      hal2_i_write16(hal2, H2I_BRES1_C1, (master == 44100) ? 1 : 0);
      hal2_i_write32(hal2, H2I_BRES1_C2,
                   ((0xffff & (inc - mod - 1)) << 16) | inc);
}

static void hal2_set_adc_rate(struct snd_hal2 *hal2)
{
      unsigned int master = hal2->adc.master;
      int inc = hal2->adc.inc;
      int mod = hal2->adc.mod;

      hal2_i_write16(hal2, H2I_BRES2_C1, (master == 44100) ? 1 : 0);
      hal2_i_write32(hal2, H2I_BRES2_C2,
                   ((0xffff & (inc - mod - 1)) << 16) | inc);
}

static void hal2_setup_dac(struct snd_hal2 *hal2)
{
      unsigned int fifobeg, fifoend, highwater, sample_size;
      struct hal2_pbus *pbus = &hal2->dac.pbus;

      /* Now we set up some PBUS information. The PBUS needs information about
       * what portion of the fifo it will use. If it's receiving or
       * transmitting, and finally whether the stream is little endian or big
       * endian. The information is written later, on the start call.
       */
      sample_size = 2 * hal2->dac.voices;
      /* Fifo should be set to hold exactly four samples. Highwater mark
       * should be set to two samples. */
      highwater = (sample_size * 2) >> 1; /* halfwords */
      fifobeg = 0;                        /* playback is first */
      fifoend = (sample_size * 4) >> 3;   /* doublewords */
      pbus->ctrl = HPC3_PDMACTRL_RT | HPC3_PDMACTRL_LD |
                 (highwater << 8) | (fifobeg << 16) | (fifoend << 24);
      /* We disable everything before we do anything at all */
      pbus->pbus->pbdma_ctrl = HPC3_PDMACTRL_LD;
      hal2_i_clearbit16(hal2, H2I_DMA_PORT_EN, H2I_DMA_PORT_EN_CODECTX);
      /* Setup the HAL2 for playback */
      hal2_set_dac_rate(hal2);
      /* Set endianess */
      hal2_i_clearbit16(hal2, H2I_DMA_END, H2I_DMA_END_CODECTX);
      /* Set DMA bus */
      hal2_i_setbit16(hal2, H2I_DMA_DRV, (1 << pbus->pbusnr));
      /* We are using 1st Bresenham clock generator for playback */
      hal2_i_write16(hal2, H2I_DAC_C1, (pbus->pbusnr << H2I_C1_DMA_SHIFT)
                  | (1 << H2I_C1_CLKID_SHIFT)
                  | (hal2->dac.voices << H2I_C1_DATAT_SHIFT));
}

static void hal2_setup_adc(struct snd_hal2 *hal2)
{
      unsigned int fifobeg, fifoend, highwater, sample_size;
      struct hal2_pbus *pbus = &hal2->adc.pbus;

      sample_size = 2 * hal2->adc.voices;
      highwater = (sample_size * 2) >> 1;       /* halfwords */
      fifobeg = (4 * 4) >> 3;                   /* record is second */
      fifoend = (4 * 4 + sample_size * 4) >> 3; /* doublewords */
      pbus->ctrl = HPC3_PDMACTRL_RT | HPC3_PDMACTRL_RCV | HPC3_PDMACTRL_LD |
                 (highwater << 8) | (fifobeg << 16) | (fifoend << 24);
      pbus->pbus->pbdma_ctrl = HPC3_PDMACTRL_LD;
      hal2_i_clearbit16(hal2, H2I_DMA_PORT_EN, H2I_DMA_PORT_EN_CODECR);
      /* Setup the HAL2 for record */
      hal2_set_adc_rate(hal2);
      /* Set endianess */
      hal2_i_clearbit16(hal2, H2I_DMA_END, H2I_DMA_END_CODECR);
      /* Set DMA bus */
      hal2_i_setbit16(hal2, H2I_DMA_DRV, (1 << pbus->pbusnr));
      /* We are using 2nd Bresenham clock generator for record */
      hal2_i_write16(hal2, H2I_ADC_C1, (pbus->pbusnr << H2I_C1_DMA_SHIFT)
                  | (2 << H2I_C1_CLKID_SHIFT)
                  | (hal2->adc.voices << H2I_C1_DATAT_SHIFT));
}

static void hal2_start_dac(struct snd_hal2 *hal2)
{
      struct hal2_pbus *pbus = &hal2->dac.pbus;

      pbus->pbus->pbdma_dptr = hal2->dac.desc_dma;
      pbus->pbus->pbdma_ctrl = pbus->ctrl | HPC3_PDMACTRL_ACT;
      /* enable DAC */
      hal2_i_setbit16(hal2, H2I_DMA_PORT_EN, H2I_DMA_PORT_EN_CODECTX);
}

static void hal2_start_adc(struct snd_hal2 *hal2)
{
      struct hal2_pbus *pbus = &hal2->adc.pbus;

      pbus->pbus->pbdma_dptr = hal2->adc.desc_dma;
      pbus->pbus->pbdma_ctrl = pbus->ctrl | HPC3_PDMACTRL_ACT;
      /* enable ADC */
      hal2_i_setbit16(hal2, H2I_DMA_PORT_EN, H2I_DMA_PORT_EN_CODECR);
}

static inline void hal2_stop_dac(struct snd_hal2 *hal2)
{
      hal2->dac.pbus.pbus->pbdma_ctrl = HPC3_PDMACTRL_LD;
      /* The HAL2 itself may remain enabled safely */
}

static inline void hal2_stop_adc(struct snd_hal2 *hal2)
{
      hal2->adc.pbus.pbus->pbdma_ctrl = HPC3_PDMACTRL_LD;
}

static int hal2_alloc_dmabuf(struct hal2_codec *codec)
{
      struct hal2_desc *desc;
      dma_addr_t desc_dma, buffer_dma;
      int count = H2_BUF_SIZE / H2_BLOCK_SIZE;
      int i;

      codec->buffer = dma_alloc_noncoherent(NULL, H2_BUF_SIZE,
                                    &buffer_dma, GFP_KERNEL);
      if (!codec->buffer)
            return -ENOMEM;
      desc = dma_alloc_noncoherent(NULL, count * sizeof(struct hal2_desc),
                             &desc_dma, GFP_KERNEL);
      if (!desc) {
            dma_free_noncoherent(NULL, H2_BUF_SIZE,
                             codec->buffer, buffer_dma);
            return -ENOMEM;
      }
      codec->buffer_dma = buffer_dma;
      codec->desc_dma = desc_dma;
      codec->desc = desc;
      for (i = 0; i < count; i++) {
            desc->desc.pbuf = buffer_dma + i * H2_BLOCK_SIZE;
            desc->desc.cntinfo = HPCDMA_XIE | H2_BLOCK_SIZE;
            desc->desc.pnext = (i == count - 1) ?
                  desc_dma : desc_dma + (i + 1) * sizeof(struct hal2_desc);
            desc++;
      }
      dma_cache_sync(NULL, codec->desc, count * sizeof(struct hal2_desc),
                   DMA_TO_DEVICE);
      codec->desc_count = count;
      return 0;
}

static void hal2_free_dmabuf(struct hal2_codec *codec)
{
      dma_free_noncoherent(NULL, codec->desc_count * sizeof(struct hal2_desc),
                       codec->desc, codec->desc_dma);
      dma_free_noncoherent(NULL, H2_BUF_SIZE, codec->buffer,
                       codec->buffer_dma);
}

static struct snd_pcm_hardware hal2_pcm_hw = {
      .info = (SNDRV_PCM_INFO_MMAP |
             SNDRV_PCM_INFO_MMAP_VALID |
             SNDRV_PCM_INFO_INTERLEAVED |
             SNDRV_PCM_INFO_BLOCK_TRANSFER),
      .formats =          SNDRV_PCM_FMTBIT_S16_BE,
      .rates =            SNDRV_PCM_RATE_8000_48000,
      .rate_min =         8000,
      .rate_max =         48000,
      .channels_min =     2,
      .channels_max =     2,
      .buffer_bytes_max = 65536,
      .period_bytes_min = 1024,
      .period_bytes_max = 65536,
      .periods_min =      2,
      .periods_max =      1024,
};

static int hal2_pcm_hw_params(struct snd_pcm_substream *substream,
                        struct snd_pcm_hw_params *params)
{
      int err;

      err = snd_pcm_lib_malloc_pages(substream, params_buffer_bytes(params));
      if (err < 0)
            return err;

      return 0;
}

static int hal2_pcm_hw_free(struct snd_pcm_substream *substream)
{
      return snd_pcm_lib_free_pages(substream);
}

static int hal2_playback_open(struct snd_pcm_substream *substream)
{
      struct snd_pcm_runtime *runtime = substream->runtime;
      struct snd_hal2 *hal2 = snd_pcm_substream_chip(substream);
      int err;

      runtime->hw = hal2_pcm_hw;

      err = hal2_alloc_dmabuf(&hal2->dac);
      if (err)
            return err;
      return 0;
}

static int hal2_playback_close(struct snd_pcm_substream *substream)
{
      struct snd_hal2 *hal2 = snd_pcm_substream_chip(substream);

      hal2_free_dmabuf(&hal2->dac);
      return 0;
}

static int hal2_playback_prepare(struct snd_pcm_substream *substream)
{
      struct snd_hal2 *hal2 = snd_pcm_substream_chip(substream);
      struct snd_pcm_runtime *runtime = substream->runtime;
      struct hal2_codec *dac = &hal2->dac;

      dac->voices = runtime->channels;
      dac->sample_rate = hal2_compute_rate(dac, runtime->rate);
      memset(&dac->pcm_indirect, 0, sizeof(dac->pcm_indirect));
      dac->pcm_indirect.hw_buffer_size = H2_BUF_SIZE;
      dac->pcm_indirect.sw_buffer_size = snd_pcm_lib_buffer_bytes(substream);
      dac->substream = substream;
      hal2_setup_dac(hal2);
      return 0;
}

static int hal2_playback_trigger(struct snd_pcm_substream *substream, int cmd)
{
      struct snd_hal2 *hal2 = snd_pcm_substream_chip(substream);

      switch (cmd) {
      case SNDRV_PCM_TRIGGER_START:
            hal2->dac.pcm_indirect.hw_io = hal2->dac.buffer_dma;
            hal2->dac.pcm_indirect.hw_data = 0;
            substream->ops->ack(substream);
            hal2_start_dac(hal2);
            break;
      case SNDRV_PCM_TRIGGER_STOP:
            hal2_stop_dac(hal2);
            break;
      default:
            return -EINVAL;
      }
      return 0;
}

static snd_pcm_uframes_t
hal2_playback_pointer(struct snd_pcm_substream *substream)
{
      struct snd_hal2 *hal2 = snd_pcm_substream_chip(substream);
      struct hal2_codec *dac = &hal2->dac;

      return snd_pcm_indirect_playback_pointer(substream, &dac->pcm_indirect,
                                     dac->pbus.pbus->pbdma_bptr);
}

static void hal2_playback_transfer(struct snd_pcm_substream *substream,
                           struct snd_pcm_indirect *rec, size_t bytes)
{
      struct snd_hal2 *hal2 = snd_pcm_substream_chip(substream);
      unsigned char *buf = hal2->dac.buffer + rec->hw_data;

      memcpy(buf, substream->runtime->dma_area + rec->sw_data, bytes);
      dma_cache_sync(NULL, buf, bytes, DMA_TO_DEVICE);

}

static int hal2_playback_ack(struct snd_pcm_substream *substream)
{
      struct snd_hal2 *hal2 = snd_pcm_substream_chip(substream);
      struct hal2_codec *dac = &hal2->dac;

      dac->pcm_indirect.hw_queue_size = H2_BUF_SIZE / 2;
      snd_pcm_indirect_playback_transfer(substream,
                                 &dac->pcm_indirect,
                                 hal2_playback_transfer);
      return 0;
}

static int hal2_capture_open(struct snd_pcm_substream *substream)
{
      struct snd_pcm_runtime *runtime = substream->runtime;
      struct snd_hal2 *hal2 = snd_pcm_substream_chip(substream);
      struct hal2_codec *adc = &hal2->adc;
      int err;

      runtime->hw = hal2_pcm_hw;

      err = hal2_alloc_dmabuf(adc);
      if (err)
            return err;
      return 0;
}

static int hal2_capture_close(struct snd_pcm_substream *substream)
{
      struct snd_hal2 *hal2 = snd_pcm_substream_chip(substream);

      hal2_free_dmabuf(&hal2->adc);
      return 0;
}

static int hal2_capture_prepare(struct snd_pcm_substream *substream)
{
      struct snd_hal2 *hal2 = snd_pcm_substream_chip(substream);
      struct snd_pcm_runtime *runtime = substream->runtime;
      struct hal2_codec *adc = &hal2->adc;

      adc->voices = runtime->channels;
      adc->sample_rate = hal2_compute_rate(adc, runtime->rate);
      memset(&adc->pcm_indirect, 0, sizeof(adc->pcm_indirect));
      adc->pcm_indirect.hw_buffer_size = H2_BUF_SIZE;
      adc->pcm_indirect.hw_queue_size = H2_BUF_SIZE / 2;
      adc->pcm_indirect.sw_buffer_size = snd_pcm_lib_buffer_bytes(substream);
      adc->substream = substream;
      hal2_setup_adc(hal2);
      return 0;
}

static int hal2_capture_trigger(struct snd_pcm_substream *substream, int cmd)
{
      struct snd_hal2 *hal2 = snd_pcm_substream_chip(substream);

      switch (cmd) {
      case SNDRV_PCM_TRIGGER_START:
            hal2->adc.pcm_indirect.hw_io = hal2->adc.buffer_dma;
            hal2->adc.pcm_indirect.hw_data = 0;
            printk(KERN_DEBUG "buffer_dma %x\n", hal2->adc.buffer_dma);
            hal2_start_adc(hal2);
            break;
      case SNDRV_PCM_TRIGGER_STOP:
            hal2_stop_adc(hal2);
            break;
      default:
            return -EINVAL;
      }
      return 0;
}

static snd_pcm_uframes_t
hal2_capture_pointer(struct snd_pcm_substream *substream)
{
      struct snd_hal2 *hal2 = snd_pcm_substream_chip(substream);
      struct hal2_codec *adc = &hal2->adc;

      return snd_pcm_indirect_capture_pointer(substream, &adc->pcm_indirect,
                                    adc->pbus.pbus->pbdma_bptr);
}

static void hal2_capture_transfer(struct snd_pcm_substream *substream,
                          struct snd_pcm_indirect *rec, size_t bytes)
{
      struct snd_hal2 *hal2 = snd_pcm_substream_chip(substream);
      unsigned char *buf = hal2->adc.buffer + rec->hw_data;

      dma_cache_sync(NULL, buf, bytes, DMA_FROM_DEVICE);
      memcpy(substream->runtime->dma_area + rec->sw_data, buf, bytes);
}

static int hal2_capture_ack(struct snd_pcm_substream *substream)
{
      struct snd_hal2 *hal2 = snd_pcm_substream_chip(substream);
      struct hal2_codec *adc = &hal2->adc;

      snd_pcm_indirect_capture_transfer(substream,
                                &adc->pcm_indirect,
                                hal2_capture_transfer);
      return 0;
}

static struct snd_pcm_ops hal2_playback_ops = {
      .open =        hal2_playback_open,
      .close =       hal2_playback_close,
      .ioctl =       snd_pcm_lib_ioctl,
      .hw_params =   hal2_pcm_hw_params,
      .hw_free =     hal2_pcm_hw_free,
      .prepare =     hal2_playback_prepare,
      .trigger =     hal2_playback_trigger,
      .pointer =     hal2_playback_pointer,
      .ack =         hal2_playback_ack,
};

static struct snd_pcm_ops hal2_capture_ops = {
      .open =        hal2_capture_open,
      .close =       hal2_capture_close,
      .ioctl =       snd_pcm_lib_ioctl,
      .hw_params =   hal2_pcm_hw_params,
      .hw_free =     hal2_pcm_hw_free,
      .prepare =     hal2_capture_prepare,
      .trigger =     hal2_capture_trigger,
      .pointer =     hal2_capture_pointer,
      .ack =         hal2_capture_ack,
};

static int __devinit hal2_pcm_create(struct snd_hal2 *hal2)
{
      struct snd_pcm *pcm;
      int err;

      /* create first pcm device with one outputs and one input */
      err = snd_pcm_new(hal2->card, "SGI HAL2 Audio", 0, 1, 1, &pcm);
      if (err < 0)
            return err;

      pcm->private_data = hal2;
      strcpy(pcm->name, "SGI HAL2");

      /* set operators */
      snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK,
                  &hal2_playback_ops);
      snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE,
                  &hal2_capture_ops);
      snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_CONTINUOUS,
                                 snd_dma_continuous_data(GFP_KERNEL),
                                 0, 1024 * 1024);

      return 0;
}

static int hal2_dev_free(struct snd_device *device)
{
      struct snd_hal2 *hal2 = device->device_data;

      free_irq(SGI_HPCDMA_IRQ, hal2);
      kfree(hal2);
      return 0;
}

static struct snd_device_ops hal2_ops = {
      .dev_free = hal2_dev_free,
};

static void hal2_init_codec(struct hal2_codec *codec, struct hpc3_regs *hpc3,
                      int index)
{
      codec->pbus.pbusnr = index;
      codec->pbus.pbus = &hpc3->pbdma[index];
}

static int hal2_detect(struct snd_hal2 *hal2)
{
      unsigned short board, major, minor;
      unsigned short rev;

      /* reset HAL2 */
      hal2_write(0, &hal2->ctl_regs->isr);

      /* release reset */
      hal2_write(H2_ISR_GLOBAL_RESET_N | H2_ISR_CODEC_RESET_N,
               &hal2->ctl_regs->isr);


      hal2_i_write16(hal2, H2I_RELAY_C, H2I_RELAY_C_STATE);
      rev = hal2_read(&hal2->ctl_regs->rev);
      if (rev & H2_REV_AUDIO_PRESENT)
            return -ENODEV;

      board = (rev & H2_REV_BOARD_M) >> 12;
      major = (rev & H2_REV_MAJOR_CHIP_M) >> 4;
      minor = (rev & H2_REV_MINOR_CHIP_M);

      printk(KERN_INFO "SGI HAL2 revision %i.%i.%i\n",
             board, major, minor);

      return 0;
}

static int hal2_create(struct snd_card *card, struct snd_hal2 **rchip)
{
      struct snd_hal2 *hal2;
      struct hpc3_regs *hpc3 = hpc3c0;
      int err;

      hal2 = kzalloc(sizeof(struct snd_hal2), GFP_KERNEL);
      if (!hal2)
            return -ENOMEM;

      hal2->card = card;

      if (request_irq(SGI_HPCDMA_IRQ, hal2_interrupt, IRQF_SHARED,
                  "SGI HAL2", hal2)) {
            printk(KERN_ERR "HAL2: Can't get irq %d\n", SGI_HPCDMA_IRQ);
            kfree(hal2);
            return -EAGAIN;
      }

      hal2->ctl_regs = (struct hal2_ctl_regs *)hpc3->pbus_extregs[0];
      hal2->aes_regs = (struct hal2_aes_regs *)hpc3->pbus_extregs[1];
      hal2->vol_regs = (struct hal2_vol_regs *)hpc3->pbus_extregs[2];
      hal2->syn_regs = (struct hal2_syn_regs *)hpc3->pbus_extregs[3];

      if (hal2_detect(hal2) < 0) {
            kfree(hal2);
            return -ENODEV;
      }

      hal2_init_codec(&hal2->dac, hpc3, 0);
      hal2_init_codec(&hal2->adc, hpc3, 1);

      /*
       * All DMA channel interfaces in HAL2 are designed to operate with
       * PBUS programmed for 2 cycles in D3, 2 cycles in D4 and 2 cycles
       * in D5. HAL2 is a 16-bit device which can accept both big and little
       * endian format. It assumes that even address bytes are on high
       * portion of PBUS (15:8) and assumes that HPC3 is programmed to
       * accept a live (unsynchronized) version of P_DREQ_N from HAL2.
       */
#define HAL2_PBUS_DMACFG ((0 << HPC3_DMACFG_D3R_SHIFT) | \
                    (2 << HPC3_DMACFG_D4R_SHIFT) | \
                    (2 << HPC3_DMACFG_D5R_SHIFT) | \
                    (0 << HPC3_DMACFG_D3W_SHIFT) | \
                    (2 << HPC3_DMACFG_D4W_SHIFT) | \
                    (2 << HPC3_DMACFG_D5W_SHIFT) | \
                        HPC3_DMACFG_DS16 | \
                        HPC3_DMACFG_EVENHI | \
                        HPC3_DMACFG_RTIME | \
                    (8 << HPC3_DMACFG_BURST_SHIFT) | \
                        HPC3_DMACFG_DRQLIVE)
      /*
       * Ignore what's mentioned in the specification and write value which
       * works in The Real World (TM)
       */
      hpc3->pbus_dmacfg[hal2->dac.pbus.pbusnr][0] = 0x8208844;
      hpc3->pbus_dmacfg[hal2->adc.pbus.pbusnr][0] = 0x8208844;

      err = snd_device_new(card, SNDRV_DEV_LOWLEVEL, hal2, &hal2_ops);
      if (err < 0) {
            free_irq(SGI_HPCDMA_IRQ, hal2);
            kfree(hal2);
            return err;
      }
      *rchip = hal2;
      return 0;
}

static int __devinit hal2_probe(struct platform_device *pdev)
{
      struct snd_card *card;
      struct snd_hal2 *chip;
      int err;

      err = snd_card_create(index, id, THIS_MODULE, 0, &card);
      if (err < 0)
            return err;

      err = hal2_create(card, &chip);
      if (err < 0) {
            snd_card_free(card);
            return err;
      }
      snd_card_set_dev(card, &pdev->dev);

      err = hal2_pcm_create(chip);
      if (err < 0) {
            snd_card_free(card);
            return err;
      }
      err = hal2_mixer_create(chip);
      if (err < 0) {
            snd_card_free(card);
            return err;
      }

      strcpy(card->driver, "SGI HAL2 Audio");
      strcpy(card->shortname, "SGI HAL2 Audio");
      sprintf(card->longname, "%s irq %i",
            card->shortname,
            SGI_HPCDMA_IRQ);

      err = snd_card_register(card);
      if (err < 0) {
            snd_card_free(card);
            return err;
      }
      platform_set_drvdata(pdev, card);
      return 0;
}

static int __devexit hal2_remove(struct platform_device *pdev)
{
      struct snd_card *card = platform_get_drvdata(pdev);

      snd_card_free(card);
      platform_set_drvdata(pdev, NULL);
      return 0;
}

static struct platform_driver hal2_driver = {
      .probe      = hal2_probe,
      .remove     = __devexit_p(hal2_remove),
      .driver = {
            .name = "sgihal2",
            .owner      = THIS_MODULE,
      }
};

static int __init alsa_card_hal2_init(void)
{
      return platform_driver_register(&hal2_driver);
}

static void __exit alsa_card_hal2_exit(void)
{
      platform_driver_unregister(&hal2_driver);
}

module_init(alsa_card_hal2_init);
module_exit(alsa_card_hal2_exit);

Generated by  Doxygen 1.6.0   Back to index