Logo Search packages:      
Sourcecode: alsa-driver version File versions  Download package

tas.c

/*
 * Apple Onboard Audio driver for tas codec
 *
 * Copyright 2006 Johannes Berg <johannes@sipsolutions.net>
 *
 * GPL v2, can be found in COPYING.
 *
 * Open questions:
 *  - How to distinguish between 3004 and versions?
 *
 * FIXMEs:
 *  - This codec driver doesn't honour the 'connected'
 *    property of the aoa_codec struct, hence if
 *    it is used in machines where not everything is
 *    connected it will display wrong mixer elements.
 *  - Driver assumes that the microphone is always
 *    monaureal and connected to the right channel of
 *    the input. This should also be a codec-dependent
 *    flag, maybe the codec should have 3 different
 *    bits for the three different possibilities how
 *    it can be hooked up...
 *    But as long as I don't see any hardware hooked
 *    up that way...
 *  - As Apple notes in their code, the tas3004 seems
 *    to delay the right channel by one sample. You can
 *    see this when for example recording stereo in
 *    audacity, or recording the tas output via cable
 *    on another machine (use a sinus generator or so).
 *    I tried programming the BiQuads but couldn't
 *    make the delay work, maybe someone can read the
 *    datasheet and fix it. The relevant Apple comment
 *    is in AppleTAS3004Audio.cpp lines 1637 ff. Note
 *    that their comment describing how they program
 *    the filters sucks...
 *
 * Other things:
 *  - this should actually register *two* aoa_codec
 *    structs since it has two inputs. Then it must
 *    use the prepare callback to forbid running the
 *    secondary output on a different clock.
 *    Also, whatever bus knows how to do this must
 *    provide two soundbus_dev devices and the fabric
 *    must be able to link them correctly.
 *
 *    I don't even know if Apple ever uses the second
 *    port on the tas3004 though, I don't think their
 *    i2s controllers can even do it. OTOH, they all
 *    derive the clocks from common clocks, so it
 *    might just be possible. The framework allows the
 *    codec to refine the transfer_info items in the
 *    usable callback, so we can simply remove the
 *    rates the second instance is not using when it
 *    actually is in use.
 *    Maybe we'll need to make the sound busses have
 *    a 'clock group id' value so the codec can
 *    determine if the two outputs can be driven at
 *    the same time. But that is likely overkill, up
 *    to the fabric to not link them up incorrectly,
 *    and up to the hardware designer to not wire
 *    them up in some weird unusable way.
 */
#include <stddef.h>
#include <linux/i2c.h>
#include <asm/pmac_low_i2c.h>
#include <asm/prom.h>
#include <linux/delay.h>
#include <linux/module.h>
#include <linux/mutex.h>
#include <linux/slab.h>

MODULE_AUTHOR("Johannes Berg <johannes@sipsolutions.net>");
MODULE_LICENSE("GPL");
MODULE_DESCRIPTION("tas codec driver for snd-aoa");

#include "tas.h"
#include "tas-gain-table.h"
#include "tas-basstreble.h"
#include "../aoa.h"
#include "../soundbus/soundbus.h"

#define PFX "snd-aoa-codec-tas: "


struct tas {
      struct aoa_codec  codec;
      struct i2c_client *i2c;
      u32               mute_l:1, mute_r:1 ,
                        controls_created:1 ,
                        drc_enabled:1,
                        hw_enabled:1;
      u8                cached_volume_l, cached_volume_r;
      u8                mixer_l[3], mixer_r[3];
      u8                bass, treble;
      u8                acr;
      int               drc_range;
      /* protects hardware access against concurrency from
       * userspace when hitting controls and during
       * codec init/suspend/resume */
      struct mutex            mtx;
};

static int tas_reset_init(struct tas *tas);

static struct tas *codec_to_tas(struct aoa_codec *codec)
{
      return container_of(codec, struct tas, codec);
}

static inline int tas_write_reg(struct tas *tas, u8 reg, u8 len, u8 *data)
{
      if (len == 1)
            return i2c_smbus_write_byte_data(tas->i2c, reg, *data);
      else
            return i2c_smbus_write_i2c_block_data(tas->i2c, reg, len, data);
}

static void tas3004_set_drc(struct tas *tas)
{
      unsigned char val[6];

      if (tas->drc_enabled)
            val[0] = 0x50; /* 3:1 above threshold */
      else
            val[0] = 0x51; /* disabled */
      val[1] = 0x02; /* 1:1 below threshold */
      if (tas->drc_range > 0xef)
            val[2] = 0xef;
      else if (tas->drc_range < 0)
            val[2] = 0x00;
      else
            val[2] = tas->drc_range;
      val[3] = 0xb0;
      val[4] = 0x60;
      val[5] = 0xa0;

      tas_write_reg(tas, TAS_REG_DRC, 6, val);
}

static void tas_set_treble(struct tas *tas)
{
      u8 tmp;

      tmp = tas3004_treble(tas->treble);
      tas_write_reg(tas, TAS_REG_TREBLE, 1, &tmp);
}

static void tas_set_bass(struct tas *tas)
{
      u8 tmp;

      tmp = tas3004_bass(tas->bass);
      tas_write_reg(tas, TAS_REG_BASS, 1, &tmp);
}

static void tas_set_volume(struct tas *tas)
{
      u8 block[6];
      int tmp;
      u8 left, right;

      left = tas->cached_volume_l;
      right = tas->cached_volume_r;

      if (left > 177) left = 177;
      if (right > 177) right = 177;

      if (tas->mute_l) left = 0;
      if (tas->mute_r) right = 0;

      /* analysing the volume and mixer tables shows
       * that they are similar enough when we shift
       * the mixer table down by 4 bits. The error
       * is miniscule, in just one item the error
       * is 1, at a value of 0x07f17b (mixer table
       * value is 0x07f17a) */
      tmp = tas_gaintable[left];
      block[0] = tmp>>20;
      block[1] = tmp>>12;
      block[2] = tmp>>4;
      tmp = tas_gaintable[right];
      block[3] = tmp>>20;
      block[4] = tmp>>12;
      block[5] = tmp>>4;
      tas_write_reg(tas, TAS_REG_VOL, 6, block);
}

static void tas_set_mixer(struct tas *tas)
{
      u8 block[9];
      int tmp, i;
      u8 val;

      for (i=0;i<3;i++) {
            val = tas->mixer_l[i];
            if (val > 177) val = 177;
            tmp = tas_gaintable[val];
            block[3*i+0] = tmp>>16;
            block[3*i+1] = tmp>>8;
            block[3*i+2] = tmp;
      }
      tas_write_reg(tas, TAS_REG_LMIX, 9, block);

      for (i=0;i<3;i++) {
            val = tas->mixer_r[i];
            if (val > 177) val = 177;
            tmp = tas_gaintable[val];
            block[3*i+0] = tmp>>16;
            block[3*i+1] = tmp>>8;
            block[3*i+2] = tmp;
      }
      tas_write_reg(tas, TAS_REG_RMIX, 9, block);
}

/* alsa stuff */

static int tas_dev_register(struct snd_device *dev)
{
      return 0;
}

static struct snd_device_ops ops = {
      .dev_register = tas_dev_register,
};

static int tas_snd_vol_info(struct snd_kcontrol *kcontrol,
      struct snd_ctl_elem_info *uinfo)
{
      uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
      uinfo->count = 2;
      uinfo->value.integer.min = 0;
      uinfo->value.integer.max = 177;
      return 0;
}

static int tas_snd_vol_get(struct snd_kcontrol *kcontrol,
      struct snd_ctl_elem_value *ucontrol)
{
      struct tas *tas = snd_kcontrol_chip(kcontrol);

      mutex_lock(&tas->mtx);
      ucontrol->value.integer.value[0] = tas->cached_volume_l;
      ucontrol->value.integer.value[1] = tas->cached_volume_r;
      mutex_unlock(&tas->mtx);
      return 0;
}

static int tas_snd_vol_put(struct snd_kcontrol *kcontrol,
      struct snd_ctl_elem_value *ucontrol)
{
      struct tas *tas = snd_kcontrol_chip(kcontrol);

      if (ucontrol->value.integer.value[0] < 0 ||
          ucontrol->value.integer.value[0] > 177)
            return -EINVAL;
      if (ucontrol->value.integer.value[1] < 0 ||
          ucontrol->value.integer.value[1] > 177)
            return -EINVAL;

      mutex_lock(&tas->mtx);
      if (tas->cached_volume_l == ucontrol->value.integer.value[0]
       && tas->cached_volume_r == ucontrol->value.integer.value[1]) {
            mutex_unlock(&tas->mtx);
            return 0;
      }

      tas->cached_volume_l = ucontrol->value.integer.value[0];
      tas->cached_volume_r = ucontrol->value.integer.value[1];
      if (tas->hw_enabled)
            tas_set_volume(tas);
      mutex_unlock(&tas->mtx);
      return 1;
}

static struct snd_kcontrol_new volume_control = {
      .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
      .name = "Master Playback Volume",
      .access = SNDRV_CTL_ELEM_ACCESS_READWRITE,
      .info = tas_snd_vol_info,
      .get = tas_snd_vol_get,
      .put = tas_snd_vol_put,
};

#define tas_snd_mute_info     snd_ctl_boolean_stereo_info

static int tas_snd_mute_get(struct snd_kcontrol *kcontrol,
      struct snd_ctl_elem_value *ucontrol)
{
      struct tas *tas = snd_kcontrol_chip(kcontrol);

      mutex_lock(&tas->mtx);
      ucontrol->value.integer.value[0] = !tas->mute_l;
      ucontrol->value.integer.value[1] = !tas->mute_r;
      mutex_unlock(&tas->mtx);
      return 0;
}

static int tas_snd_mute_put(struct snd_kcontrol *kcontrol,
      struct snd_ctl_elem_value *ucontrol)
{
      struct tas *tas = snd_kcontrol_chip(kcontrol);

      mutex_lock(&tas->mtx);
      if (tas->mute_l == !ucontrol->value.integer.value[0]
       && tas->mute_r == !ucontrol->value.integer.value[1]) {
            mutex_unlock(&tas->mtx);
            return 0;
      }

      tas->mute_l = !ucontrol->value.integer.value[0];
      tas->mute_r = !ucontrol->value.integer.value[1];
      if (tas->hw_enabled)
            tas_set_volume(tas);
      mutex_unlock(&tas->mtx);
      return 1;
}

static struct snd_kcontrol_new mute_control = {
      .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
      .name = "Master Playback Switch",
      .access = SNDRV_CTL_ELEM_ACCESS_READWRITE,
      .info = tas_snd_mute_info,
      .get = tas_snd_mute_get,
      .put = tas_snd_mute_put,
};

static int tas_snd_mixer_info(struct snd_kcontrol *kcontrol,
      struct snd_ctl_elem_info *uinfo)
{
      uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
      uinfo->count = 2;
      uinfo->value.integer.min = 0;
      uinfo->value.integer.max = 177;
      return 0;
}

static int tas_snd_mixer_get(struct snd_kcontrol *kcontrol,
      struct snd_ctl_elem_value *ucontrol)
{
      struct tas *tas = snd_kcontrol_chip(kcontrol);
      int idx = kcontrol->private_value;

      mutex_lock(&tas->mtx);
      ucontrol->value.integer.value[0] = tas->mixer_l[idx];
      ucontrol->value.integer.value[1] = tas->mixer_r[idx];
      mutex_unlock(&tas->mtx);

      return 0;
}

static int tas_snd_mixer_put(struct snd_kcontrol *kcontrol,
      struct snd_ctl_elem_value *ucontrol)
{
      struct tas *tas = snd_kcontrol_chip(kcontrol);
      int idx = kcontrol->private_value;

      mutex_lock(&tas->mtx);
      if (tas->mixer_l[idx] == ucontrol->value.integer.value[0]
       && tas->mixer_r[idx] == ucontrol->value.integer.value[1]) {
            mutex_unlock(&tas->mtx);
            return 0;
      }

      tas->mixer_l[idx] = ucontrol->value.integer.value[0];
      tas->mixer_r[idx] = ucontrol->value.integer.value[1];

      if (tas->hw_enabled)
            tas_set_mixer(tas);
      mutex_unlock(&tas->mtx);
      return 1;
}

#define MIXER_CONTROL(n,descr,idx)              \
static struct snd_kcontrol_new n##_control = {        \
      .iface = SNDRV_CTL_ELEM_IFACE_MIXER,            \
      .name = descr " Playback Volume",         \
      .access = SNDRV_CTL_ELEM_ACCESS_READWRITE,      \
      .info = tas_snd_mixer_info,               \
      .get = tas_snd_mixer_get,                 \
      .put = tas_snd_mixer_put,                 \
      .private_value = idx,                     \
}

MIXER_CONTROL(pcm1, "PCM", 0);
MIXER_CONTROL(monitor, "Monitor", 2);

static int tas_snd_drc_range_info(struct snd_kcontrol *kcontrol,
      struct snd_ctl_elem_info *uinfo)
{
      uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
      uinfo->count = 1;
      uinfo->value.integer.min = 0;
      uinfo->value.integer.max = TAS3004_DRC_MAX;
      return 0;
}

static int tas_snd_drc_range_get(struct snd_kcontrol *kcontrol,
      struct snd_ctl_elem_value *ucontrol)
{
      struct tas *tas = snd_kcontrol_chip(kcontrol);

      mutex_lock(&tas->mtx);
      ucontrol->value.integer.value[0] = tas->drc_range;
      mutex_unlock(&tas->mtx);
      return 0;
}

static int tas_snd_drc_range_put(struct snd_kcontrol *kcontrol,
      struct snd_ctl_elem_value *ucontrol)
{
      struct tas *tas = snd_kcontrol_chip(kcontrol);

      if (ucontrol->value.integer.value[0] < 0 ||
          ucontrol->value.integer.value[0] > TAS3004_DRC_MAX)
            return -EINVAL;

      mutex_lock(&tas->mtx);
      if (tas->drc_range == ucontrol->value.integer.value[0]) {
            mutex_unlock(&tas->mtx);
            return 0;
      }

      tas->drc_range = ucontrol->value.integer.value[0];
      if (tas->hw_enabled)
            tas3004_set_drc(tas);
      mutex_unlock(&tas->mtx);
      return 1;
}

static struct snd_kcontrol_new drc_range_control = {
      .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
      .name = "DRC Range",
      .access = SNDRV_CTL_ELEM_ACCESS_READWRITE,
      .info = tas_snd_drc_range_info,
      .get = tas_snd_drc_range_get,
      .put = tas_snd_drc_range_put,
};

#define tas_snd_drc_switch_info           snd_ctl_boolean_mono_info

static int tas_snd_drc_switch_get(struct snd_kcontrol *kcontrol,
      struct snd_ctl_elem_value *ucontrol)
{
      struct tas *tas = snd_kcontrol_chip(kcontrol);

      mutex_lock(&tas->mtx);
      ucontrol->value.integer.value[0] = tas->drc_enabled;
      mutex_unlock(&tas->mtx);
      return 0;
}

static int tas_snd_drc_switch_put(struct snd_kcontrol *kcontrol,
      struct snd_ctl_elem_value *ucontrol)
{
      struct tas *tas = snd_kcontrol_chip(kcontrol);

      mutex_lock(&tas->mtx);
      if (tas->drc_enabled == ucontrol->value.integer.value[0]) {
            mutex_unlock(&tas->mtx);
            return 0;
      }

      tas->drc_enabled = !!ucontrol->value.integer.value[0];
      if (tas->hw_enabled)
            tas3004_set_drc(tas);
      mutex_unlock(&tas->mtx);
      return 1;
}

static struct snd_kcontrol_new drc_switch_control = {
      .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
      .name = "DRC Range Switch",
      .access = SNDRV_CTL_ELEM_ACCESS_READWRITE,
      .info = tas_snd_drc_switch_info,
      .get = tas_snd_drc_switch_get,
      .put = tas_snd_drc_switch_put,
};

static int tas_snd_capture_source_info(struct snd_kcontrol *kcontrol,
      struct snd_ctl_elem_info *uinfo)
{
      static char *texts[] = { "Line-In", "Microphone" };

      uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
      uinfo->count = 1;
      uinfo->value.enumerated.items = 2;
      if (uinfo->value.enumerated.item > 1)
            uinfo->value.enumerated.item = 1;
      strcpy(uinfo->value.enumerated.name, texts[uinfo->value.enumerated.item]);
      return 0;
}

static int tas_snd_capture_source_get(struct snd_kcontrol *kcontrol,
      struct snd_ctl_elem_value *ucontrol)
{
      struct tas *tas = snd_kcontrol_chip(kcontrol);

      mutex_lock(&tas->mtx);
      ucontrol->value.enumerated.item[0] = !!(tas->acr & TAS_ACR_INPUT_B);
      mutex_unlock(&tas->mtx);
      return 0;
}

static int tas_snd_capture_source_put(struct snd_kcontrol *kcontrol,
      struct snd_ctl_elem_value *ucontrol)
{
      struct tas *tas = snd_kcontrol_chip(kcontrol);
      int oldacr;

      if (ucontrol->value.enumerated.item[0] > 1)
            return -EINVAL;
      mutex_lock(&tas->mtx);
      oldacr = tas->acr;

      /*
       * Despite what the data sheet says in one place, the
       * TAS_ACR_B_MONAUREAL bit forces mono output even when
       * input A (line in) is selected.
       */
      tas->acr &= ~(TAS_ACR_INPUT_B | TAS_ACR_B_MONAUREAL);
      if (ucontrol->value.enumerated.item[0])
            tas->acr |= TAS_ACR_INPUT_B | TAS_ACR_B_MONAUREAL |
                  TAS_ACR_B_MON_SEL_RIGHT;
      if (oldacr == tas->acr) {
            mutex_unlock(&tas->mtx);
            return 0;
      }
      if (tas->hw_enabled)
            tas_write_reg(tas, TAS_REG_ACR, 1, &tas->acr);
      mutex_unlock(&tas->mtx);
      return 1;
}

static struct snd_kcontrol_new capture_source_control = {
      .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
      /* If we name this 'Input Source', it properly shows up in
       * alsamixer as a selection, * but it's shown under the
       * 'Playback' category.
       * If I name it 'Capture Source', it shows up in strange
       * ways (two bools of which one can be selected at a
       * time) but at least it's shown in the 'Capture'
       * category.
       * I was told that this was due to backward compatibility,
       * but I don't understand then why the mangling is *not*
       * done when I name it "Input Source".....
       */
      .name = "Capture Source",
      .access = SNDRV_CTL_ELEM_ACCESS_READWRITE,
      .info = tas_snd_capture_source_info,
      .get = tas_snd_capture_source_get,
      .put = tas_snd_capture_source_put,
};

static int tas_snd_treble_info(struct snd_kcontrol *kcontrol,
      struct snd_ctl_elem_info *uinfo)
{
      uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
      uinfo->count = 1;
      uinfo->value.integer.min = TAS3004_TREBLE_MIN;
      uinfo->value.integer.max = TAS3004_TREBLE_MAX;
      return 0;
}

static int tas_snd_treble_get(struct snd_kcontrol *kcontrol,
      struct snd_ctl_elem_value *ucontrol)
{
      struct tas *tas = snd_kcontrol_chip(kcontrol);

      mutex_lock(&tas->mtx);
      ucontrol->value.integer.value[0] = tas->treble;
      mutex_unlock(&tas->mtx);
      return 0;
}

static int tas_snd_treble_put(struct snd_kcontrol *kcontrol,
      struct snd_ctl_elem_value *ucontrol)
{
      struct tas *tas = snd_kcontrol_chip(kcontrol);

      if (ucontrol->value.integer.value[0] < TAS3004_TREBLE_MIN ||
          ucontrol->value.integer.value[0] > TAS3004_TREBLE_MAX)
            return -EINVAL;
      mutex_lock(&tas->mtx);
      if (tas->treble == ucontrol->value.integer.value[0]) {
            mutex_unlock(&tas->mtx);
            return 0;
      }

      tas->treble = ucontrol->value.integer.value[0];
      if (tas->hw_enabled)
            tas_set_treble(tas);
      mutex_unlock(&tas->mtx);
      return 1;
}

static struct snd_kcontrol_new treble_control = {
      .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
      .name = "Treble",
      .access = SNDRV_CTL_ELEM_ACCESS_READWRITE,
      .info = tas_snd_treble_info,
      .get = tas_snd_treble_get,
      .put = tas_snd_treble_put,
};

static int tas_snd_bass_info(struct snd_kcontrol *kcontrol,
      struct snd_ctl_elem_info *uinfo)
{
      uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
      uinfo->count = 1;
      uinfo->value.integer.min = TAS3004_BASS_MIN;
      uinfo->value.integer.max = TAS3004_BASS_MAX;
      return 0;
}

static int tas_snd_bass_get(struct snd_kcontrol *kcontrol,
      struct snd_ctl_elem_value *ucontrol)
{
      struct tas *tas = snd_kcontrol_chip(kcontrol);

      mutex_lock(&tas->mtx);
      ucontrol->value.integer.value[0] = tas->bass;
      mutex_unlock(&tas->mtx);
      return 0;
}

static int tas_snd_bass_put(struct snd_kcontrol *kcontrol,
      struct snd_ctl_elem_value *ucontrol)
{
      struct tas *tas = snd_kcontrol_chip(kcontrol);

      if (ucontrol->value.integer.value[0] < TAS3004_BASS_MIN ||
          ucontrol->value.integer.value[0] > TAS3004_BASS_MAX)
            return -EINVAL;
      mutex_lock(&tas->mtx);
      if (tas->bass == ucontrol->value.integer.value[0]) {
            mutex_unlock(&tas->mtx);
            return 0;
      }

      tas->bass = ucontrol->value.integer.value[0];
      if (tas->hw_enabled)
            tas_set_bass(tas);
      mutex_unlock(&tas->mtx);
      return 1;
}

static struct snd_kcontrol_new bass_control = {
      .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
      .name = "Bass",
      .access = SNDRV_CTL_ELEM_ACCESS_READWRITE,
      .info = tas_snd_bass_info,
      .get = tas_snd_bass_get,
      .put = tas_snd_bass_put,
};

static struct transfer_info tas_transfers[] = {
      {
            /* input */
            .formats = SNDRV_PCM_FMTBIT_S16_BE | SNDRV_PCM_FMTBIT_S24_BE,
            .rates = SNDRV_PCM_RATE_32000 | SNDRV_PCM_RATE_44100 | SNDRV_PCM_RATE_48000,
            .transfer_in = 1,
      },
      {
            /* output */
            .formats = SNDRV_PCM_FMTBIT_S16_BE | SNDRV_PCM_FMTBIT_S24_BE,
            .rates = SNDRV_PCM_RATE_32000 | SNDRV_PCM_RATE_44100 | SNDRV_PCM_RATE_48000,
            .transfer_in = 0,
      },
      {}
};

static int tas_usable(struct codec_info_item *cii,
                  struct transfer_info *ti,
                  struct transfer_info *out)
{
      return 1;
}

static int tas_reset_init(struct tas *tas)
{
      u8 tmp;

      tas->codec.gpio->methods->all_amps_off(tas->codec.gpio);
      msleep(5);
      tas->codec.gpio->methods->set_hw_reset(tas->codec.gpio, 0);
      msleep(5);
      tas->codec.gpio->methods->set_hw_reset(tas->codec.gpio, 1);
      msleep(20);
      tas->codec.gpio->methods->set_hw_reset(tas->codec.gpio, 0);
      msleep(10);
      tas->codec.gpio->methods->all_amps_restore(tas->codec.gpio);

      tmp = TAS_MCS_SCLK64 | TAS_MCS_SPORT_MODE_I2S | TAS_MCS_SPORT_WL_24BIT;
      if (tas_write_reg(tas, TAS_REG_MCS, 1, &tmp))
            goto outerr;

      tas->acr |= TAS_ACR_ANALOG_PDOWN;
      if (tas_write_reg(tas, TAS_REG_ACR, 1, &tas->acr))
            goto outerr;

      tmp = 0;
      if (tas_write_reg(tas, TAS_REG_MCS2, 1, &tmp))
            goto outerr;

      tas3004_set_drc(tas);

      /* Set treble & bass to 0dB */
      tas->treble = TAS3004_TREBLE_ZERO;
      tas->bass = TAS3004_BASS_ZERO;
      tas_set_treble(tas);
      tas_set_bass(tas);

      tas->acr &= ~TAS_ACR_ANALOG_PDOWN;
      if (tas_write_reg(tas, TAS_REG_ACR, 1, &tas->acr))
            goto outerr;

      return 0;
 outerr:
      return -ENODEV;
}

static int tas_switch_clock(struct codec_info_item *cii, enum clock_switch clock)
{
      struct tas *tas = cii->codec_data;

      switch(clock) {
      case CLOCK_SWITCH_PREPARE_SLAVE:
            /* Clocks are going away, mute mute mute */
            tas->codec.gpio->methods->all_amps_off(tas->codec.gpio);
            tas->hw_enabled = 0;
            break;
      case CLOCK_SWITCH_SLAVE:
            /* Clocks are back, re-init the codec */
            mutex_lock(&tas->mtx);
            tas_reset_init(tas);
            tas_set_volume(tas);
            tas_set_mixer(tas);
            tas->hw_enabled = 1;
            tas->codec.gpio->methods->all_amps_restore(tas->codec.gpio);
            mutex_unlock(&tas->mtx);
            break;
      default:
            /* doesn't happen as of now */
            return -EINVAL;
      }
      return 0;
}

#ifdef CONFIG_PM
/* we are controlled via i2c and assume that is always up
 * If that wasn't the case, we'd have to suspend once
 * our i2c device is suspended, and then take note of that! */
static int tas_suspend(struct tas *tas)
{
      mutex_lock(&tas->mtx);
      tas->hw_enabled = 0;
      tas->acr |= TAS_ACR_ANALOG_PDOWN;
      tas_write_reg(tas, TAS_REG_ACR, 1, &tas->acr);
      mutex_unlock(&tas->mtx);
      return 0;
}

static int tas_resume(struct tas *tas)
{
      /* reset codec */
      mutex_lock(&tas->mtx);
      tas_reset_init(tas);
      tas_set_volume(tas);
      tas_set_mixer(tas);
      tas->hw_enabled = 1;
      mutex_unlock(&tas->mtx);
      return 0;
}

static int _tas_suspend(struct codec_info_item *cii, pm_message_t state)
{
      return tas_suspend(cii->codec_data);
}

static int _tas_resume(struct codec_info_item *cii)
{
      return tas_resume(cii->codec_data);
}
#else /* CONFIG_PM */
#define _tas_suspend    NULL
#define _tas_resume     NULL
#endif /* CONFIG_PM */

static struct codec_info tas_codec_info = {
      .transfers = tas_transfers,
      /* in theory, we can drive it at 512 too...
       * but so far the framework doesn't allow
       * for that and I don't see much point in it. */
      .sysclock_factor = 256,
      /* same here, could be 32 for just one 16 bit format */
      .bus_factor = 64,
      .owner = THIS_MODULE,
      .usable = tas_usable,
      .switch_clock = tas_switch_clock,
      .suspend = _tas_suspend,
      .resume = _tas_resume,
};

static int tas_init_codec(struct aoa_codec *codec)
{
      struct tas *tas = codec_to_tas(codec);
      int err;

      if (!tas->codec.gpio || !tas->codec.gpio->methods) {
            printk(KERN_ERR PFX "gpios not assigned!!\n");
            return -EINVAL;
      }

      mutex_lock(&tas->mtx);
      if (tas_reset_init(tas)) {
            printk(KERN_ERR PFX "tas failed to initialise\n");
            mutex_unlock(&tas->mtx);
            return -ENXIO;
      }
      tas->hw_enabled = 1;
      mutex_unlock(&tas->mtx);

      if (tas->codec.soundbus_dev->attach_codec(tas->codec.soundbus_dev,
                                       aoa_get_card(),
                                       &tas_codec_info, tas)) {
            printk(KERN_ERR PFX "error attaching tas to soundbus\n");
            return -ENODEV;
      }

      if (aoa_snd_device_new(SNDRV_DEV_LOWLEVEL, tas, &ops)) {
            printk(KERN_ERR PFX "failed to create tas snd device!\n");
            return -ENODEV;
      }
      err = aoa_snd_ctl_add(snd_ctl_new1(&volume_control, tas));
      if (err)
            goto error;

      err = aoa_snd_ctl_add(snd_ctl_new1(&mute_control, tas));
      if (err)
            goto error;

      err = aoa_snd_ctl_add(snd_ctl_new1(&pcm1_control, tas));
      if (err)
            goto error;

      err = aoa_snd_ctl_add(snd_ctl_new1(&monitor_control, tas));
      if (err)
            goto error;

      err = aoa_snd_ctl_add(snd_ctl_new1(&capture_source_control, tas));
      if (err)
            goto error;

      err = aoa_snd_ctl_add(snd_ctl_new1(&drc_range_control, tas));
      if (err)
            goto error;

      err = aoa_snd_ctl_add(snd_ctl_new1(&drc_switch_control, tas));
      if (err)
            goto error;

      err = aoa_snd_ctl_add(snd_ctl_new1(&treble_control, tas));
      if (err)
            goto error;

      err = aoa_snd_ctl_add(snd_ctl_new1(&bass_control, tas));
      if (err)
            goto error;

      return 0;
 error:
      tas->codec.soundbus_dev->detach_codec(tas->codec.soundbus_dev, tas);
      snd_device_free(aoa_get_card(), tas);
      return err;
}

static void tas_exit_codec(struct aoa_codec *codec)
{
      struct tas *tas = codec_to_tas(codec);

      if (!tas->codec.soundbus_dev)
            return;
      tas->codec.soundbus_dev->detach_codec(tas->codec.soundbus_dev, tas);
}


static int tas_create(struct i2c_adapter *adapter,
                   struct device_node *node,
                   int addr)
{
      struct i2c_board_info info;
      struct i2c_client *client;

      memset(&info, 0, sizeof(struct i2c_board_info));
      strlcpy(info.type, "aoa_codec_tas", I2C_NAME_SIZE);
      info.addr = addr;
      info.platform_data = node;

      client = i2c_new_device(adapter, &info);
      if (!client)
            return -ENODEV;
      /*
       * We know the driver is already loaded, so the device should be
       * already bound. If not it means binding failed, and then there
       * is no point in keeping the device instantiated.
       */
      if (!client->driver) {
            i2c_unregister_device(client);
            return -ENODEV;
      }

      /*
       * Let i2c-core delete that device on driver removal.
       * This is safe because i2c-core holds the core_lock mutex for us.
       */
      list_add_tail(&client->detected, &client->driver->clients);
      return 0;
}

static int tas_i2c_probe(struct i2c_client *client,
                   const struct i2c_device_id *id)
{
      struct device_node *node = client->dev.platform_data;
      struct tas *tas;

      tas = kzalloc(sizeof(struct tas), GFP_KERNEL);

      if (!tas)
            return -ENOMEM;

      mutex_init(&tas->mtx);
      tas->i2c = client;
      i2c_set_clientdata(client, tas);

      /* seems that half is a saner default */
      tas->drc_range = TAS3004_DRC_MAX / 2;

      strlcpy(tas->codec.name, "tas", MAX_CODEC_NAME_LEN);
      tas->codec.owner = THIS_MODULE;
      tas->codec.init = tas_init_codec;
      tas->codec.exit = tas_exit_codec;
      tas->codec.node = of_node_get(node);

      if (aoa_codec_register(&tas->codec)) {
            goto fail;
      }
      printk(KERN_DEBUG
             "snd-aoa-codec-tas: tas found, addr 0x%02x on %s\n",
             (unsigned int)client->addr, node->full_name);
      return 0;
 fail:
      mutex_destroy(&tas->mtx);
      kfree(tas);
      return -EINVAL;
}

static int tas_i2c_attach(struct i2c_adapter *adapter)
{
      struct device_node *busnode, *dev = NULL;
      struct pmac_i2c_bus *bus;

      bus = pmac_i2c_adapter_to_bus(adapter);
      if (bus == NULL)
            return -ENODEV;
      busnode = pmac_i2c_get_bus_node(bus);

      while ((dev = of_get_next_child(busnode, dev)) != NULL) {
            if (of_device_is_compatible(dev, "tas3004")) {
                  const u32 *addr;
                  printk(KERN_DEBUG PFX "found tas3004\n");
                  addr = of_get_property(dev, "reg", NULL);
                  if (!addr)
                        continue;
                  return tas_create(adapter, dev, ((*addr) >> 1) & 0x7f);
            }
            /* older machines have no 'codec' node with a 'compatible'
             * property that says 'tas3004', they just have a 'deq'
             * node without any such property... */
            if (strcmp(dev->name, "deq") == 0) {
                  const u32 *_addr;
                  u32 addr;
                  printk(KERN_DEBUG PFX "found 'deq' node\n");
                  _addr = of_get_property(dev, "i2c-address", NULL);
                  if (!_addr)
                        continue;
                  addr = ((*_addr) >> 1) & 0x7f;
                  /* now, if the address doesn't match any of the two
                   * that a tas3004 can have, we cannot handle this.
                   * I doubt it ever happens but hey. */
                  if (addr != 0x34 && addr != 0x35)
                        continue;
                  return tas_create(adapter, dev, addr);
            }
      }
      return -ENODEV;
}

static int tas_i2c_remove(struct i2c_client *client)
{
      struct tas *tas = i2c_get_clientdata(client);
      u8 tmp = TAS_ACR_ANALOG_PDOWN;

      aoa_codec_unregister(&tas->codec);
      of_node_put(tas->codec.node);

      /* power down codec chip */
      tas_write_reg(tas, TAS_REG_ACR, 1, &tmp);

      mutex_destroy(&tas->mtx);
      kfree(tas);
      return 0;
}

static const struct i2c_device_id tas_i2c_id[] = {
      { "aoa_codec_tas", 0 },
      { }
};

static struct i2c_driver tas_driver = {
      .driver = {
            .name = "aoa_codec_tas",
            .owner = THIS_MODULE,
      },
      .attach_adapter = tas_i2c_attach,
      .probe = tas_i2c_probe,
      .remove = tas_i2c_remove,
      .id_table = tas_i2c_id,
};

static int __init tas_init(void)
{
      return i2c_add_driver(&tas_driver);
}

static void __exit tas_exit(void)
{
      i2c_del_driver(&tas_driver);
}

module_init(tas_init);
module_exit(tas_exit);

Generated by  Doxygen 1.6.0   Back to index