Logo Search packages:      
Sourcecode: alsa-driver version File versions

soc-core.c

/*
 * soc-core.c  --  ALSA SoC Audio Layer
 *
 * Copyright 2005 Wolfson Microelectronics PLC.
 * Copyright 2005 Openedhand Ltd.
 *
 * Author: Liam Girdwood <lrg@slimlogic.co.uk>
 *         with code, comments and ideas from :-
 *         Richard Purdie <richard@openedhand.com>
 *
 *  This program is free software; you can redistribute  it and/or modify it
 *  under  the terms of  the GNU General  Public License as published by the
 *  Free Software Foundation;  either version 2 of the  License, or (at your
 *  option) any later version.
 *
 *  TODO:
 *   o Add hw rules to enforce rates, etc.
 *   o More testing with other codecs/machines.
 *   o Add more codecs and platforms to ensure good API coverage.
 *   o Support TDM on PCM and I2S
 */

#include <linux/module.h>
#include <linux/moduleparam.h>
#include <linux/init.h>
#include <linux/delay.h>
#include <linux/pm.h>
#include <linux/bitops.h>
#include <linux/debugfs.h>
#include <linux/platform_device.h>
#include <sound/ac97_codec.h>
#include <sound/core.h>
#include <sound/pcm.h>
#include <sound/pcm_params.h>
#include <sound/soc.h>
#include <sound/soc-dapm.h>
#include <sound/initval.h>

static DEFINE_MUTEX(pcm_mutex);
static DEFINE_MUTEX(io_mutex);
static DECLARE_WAIT_QUEUE_HEAD(soc_pm_waitq);

#ifdef CONFIG_DEBUG_FS
static struct dentry *debugfs_root;
#endif

static DEFINE_MUTEX(client_mutex);
static LIST_HEAD(card_list);
static LIST_HEAD(dai_list);
static LIST_HEAD(platform_list);
static LIST_HEAD(codec_list);

static int snd_soc_register_card(struct snd_soc_card *card);
static int snd_soc_unregister_card(struct snd_soc_card *card);

/*
 * This is a timeout to do a DAPM powerdown after a stream is closed().
 * It can be used to eliminate pops between different playback streams, e.g.
 * between two audio tracks.
 */
static int pmdown_time = 5000;
module_param(pmdown_time, int, 0);
MODULE_PARM_DESC(pmdown_time, "DAPM stream powerdown time (msecs)");

/*
 * This function forces any delayed work to be queued and run.
 */
static int run_delayed_work(struct delayed_work *dwork)
{
      int ret;

      /* cancel any work waiting to be queued. */
      ret = cancel_delayed_work(dwork);

      /* if there was any work waiting then we run it now and
       * wait for it's completion */
      if (ret) {
            schedule_delayed_work(dwork, 0);
            flush_scheduled_work();
      }
      return ret;
}

#ifdef CONFIG_SND_SOC_AC97_BUS
/* unregister ac97 codec */
static int soc_ac97_dev_unregister(struct snd_soc_codec *codec)
{
      if (codec->ac97->dev.bus)
            device_unregister(&codec->ac97->dev);
      return 0;
}

/* stop no dev release warning */
static void soc_ac97_device_release(struct device *dev){}

/* register ac97 codec to bus */
static int soc_ac97_dev_register(struct snd_soc_codec *codec)
{
      int err;

      codec->ac97->dev.bus = &ac97_bus_type;
      codec->ac97->dev.parent = codec->card->dev;
      codec->ac97->dev.release = soc_ac97_device_release;

      dev_set_name(&codec->ac97->dev, "%d-%d:%s",
                 codec->card->number, 0, codec->name);
      err = device_register(&codec->ac97->dev);
      if (err < 0) {
            snd_printk(KERN_ERR "Can't register ac97 bus\n");
            codec->ac97->dev.bus = NULL;
            return err;
      }
      return 0;
}
#endif

static int soc_pcm_apply_symmetry(struct snd_pcm_substream *substream)
{
      struct snd_soc_pcm_runtime *rtd = substream->private_data;
      struct snd_soc_device *socdev = rtd->socdev;
      struct snd_soc_card *card = socdev->card;
      struct snd_soc_dai_link *machine = rtd->dai;
      struct snd_soc_dai *cpu_dai = machine->cpu_dai;
      struct snd_soc_dai *codec_dai = machine->codec_dai;
      int ret;

      if (codec_dai->symmetric_rates || cpu_dai->symmetric_rates ||
          machine->symmetric_rates) {
            dev_dbg(card->dev, "Symmetry forces %dHz rate\n", 
                  machine->rate);

            ret = snd_pcm_hw_constraint_minmax(substream->runtime,
                                       SNDRV_PCM_HW_PARAM_RATE,
                                       machine->rate,
                                       machine->rate);
            if (ret < 0) {
                  dev_err(card->dev,
                        "Unable to apply rate symmetry constraint: %d\n", ret);
                  return ret;
            }
      }

      return 0;
}

/*
 * Called by ALSA when a PCM substream is opened, the runtime->hw record is
 * then initialized and any private data can be allocated. This also calls
 * startup for the cpu DAI, platform, machine and codec DAI.
 */
static int soc_pcm_open(struct snd_pcm_substream *substream)
{
      struct snd_soc_pcm_runtime *rtd = substream->private_data;
      struct snd_soc_device *socdev = rtd->socdev;
      struct snd_soc_card *card = socdev->card;
      struct snd_pcm_runtime *runtime = substream->runtime;
      struct snd_soc_dai_link *machine = rtd->dai;
      struct snd_soc_platform *platform = card->platform;
      struct snd_soc_dai *cpu_dai = machine->cpu_dai;
      struct snd_soc_dai *codec_dai = machine->codec_dai;
      int ret = 0;

      mutex_lock(&pcm_mutex);

      /* startup the audio subsystem */
      if (cpu_dai->ops->startup) {
            ret = cpu_dai->ops->startup(substream, cpu_dai);
            if (ret < 0) {
                  printk(KERN_ERR "asoc: can't open interface %s\n",
                        cpu_dai->name);
                  goto out;
            }
      }

      if (platform->pcm_ops->open) {
            ret = platform->pcm_ops->open(substream);
            if (ret < 0) {
                  printk(KERN_ERR "asoc: can't open platform %s\n", platform->name);
                  goto platform_err;
            }
      }

      if (codec_dai->ops->startup) {
            ret = codec_dai->ops->startup(substream, codec_dai);
            if (ret < 0) {
                  printk(KERN_ERR "asoc: can't open codec %s\n",
                        codec_dai->name);
                  goto codec_dai_err;
            }
      }

      if (machine->ops && machine->ops->startup) {
            ret = machine->ops->startup(substream);
            if (ret < 0) {
                  printk(KERN_ERR "asoc: %s startup failed\n", machine->name);
                  goto machine_err;
            }
      }

      /* Check that the codec and cpu DAI's are compatible */
      if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
            runtime->hw.rate_min =
                  max(codec_dai->playback.rate_min,
                      cpu_dai->playback.rate_min);
            runtime->hw.rate_max =
                  min(codec_dai->playback.rate_max,
                      cpu_dai->playback.rate_max);
            runtime->hw.channels_min =
                  max(codec_dai->playback.channels_min,
                        cpu_dai->playback.channels_min);
            runtime->hw.channels_max =
                  min(codec_dai->playback.channels_max,
                        cpu_dai->playback.channels_max);
            runtime->hw.formats =
                  codec_dai->playback.formats & cpu_dai->playback.formats;
            runtime->hw.rates =
                  codec_dai->playback.rates & cpu_dai->playback.rates;
      } else {
            runtime->hw.rate_min =
                  max(codec_dai->capture.rate_min,
                      cpu_dai->capture.rate_min);
            runtime->hw.rate_max =
                  min(codec_dai->capture.rate_max,
                      cpu_dai->capture.rate_max);
            runtime->hw.channels_min =
                  max(codec_dai->capture.channels_min,
                        cpu_dai->capture.channels_min);
            runtime->hw.channels_max =
                  min(codec_dai->capture.channels_max,
                        cpu_dai->capture.channels_max);
            runtime->hw.formats =
                  codec_dai->capture.formats & cpu_dai->capture.formats;
            runtime->hw.rates =
                  codec_dai->capture.rates & cpu_dai->capture.rates;
      }

      snd_pcm_limit_hw_rates(runtime);
      if (!runtime->hw.rates) {
            printk(KERN_ERR "asoc: %s <-> %s No matching rates\n",
                  codec_dai->name, cpu_dai->name);
            goto machine_err;
      }
      if (!runtime->hw.formats) {
            printk(KERN_ERR "asoc: %s <-> %s No matching formats\n",
                  codec_dai->name, cpu_dai->name);
            goto machine_err;
      }
      if (!runtime->hw.channels_min || !runtime->hw.channels_max) {
            printk(KERN_ERR "asoc: %s <-> %s No matching channels\n",
                  codec_dai->name, cpu_dai->name);
            goto machine_err;
      }

      /* Symmetry only applies if we've already got an active stream. */
      if (cpu_dai->active || codec_dai->active) {
            ret = soc_pcm_apply_symmetry(substream);
            if (ret != 0)
                  goto machine_err;
      }

      pr_debug("asoc: %s <-> %s info:\n", codec_dai->name, cpu_dai->name);
      pr_debug("asoc: rate mask 0x%x\n", runtime->hw.rates);
      pr_debug("asoc: min ch %d max ch %d\n", runtime->hw.channels_min,
             runtime->hw.channels_max);
      pr_debug("asoc: min rate %d max rate %d\n", runtime->hw.rate_min,
             runtime->hw.rate_max);

      if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
            cpu_dai->playback.active = codec_dai->playback.active = 1;
      else
            cpu_dai->capture.active = codec_dai->capture.active = 1;
      cpu_dai->active = codec_dai->active = 1;
      cpu_dai->runtime = runtime;
      card->codec->active++;
      mutex_unlock(&pcm_mutex);
      return 0;

machine_err:
      if (machine->ops && machine->ops->shutdown)
            machine->ops->shutdown(substream);

codec_dai_err:
      if (platform->pcm_ops->close)
            platform->pcm_ops->close(substream);

platform_err:
      if (cpu_dai->ops->shutdown)
            cpu_dai->ops->shutdown(substream, cpu_dai);
out:
      mutex_unlock(&pcm_mutex);
      return ret;
}

/*
 * Power down the audio subsystem pmdown_time msecs after close is called.
 * This is to ensure there are no pops or clicks in between any music tracks
 * due to DAPM power cycling.
 */
static void close_delayed_work(struct work_struct *work)
{
      struct snd_soc_card *card = container_of(work, struct snd_soc_card,
                                     delayed_work.work);
      struct snd_soc_codec *codec = card->codec;
      struct snd_soc_dai *codec_dai;
      int i;

      mutex_lock(&pcm_mutex);
      for (i = 0; i < codec->num_dai; i++) {
            codec_dai = &codec->dai[i];

            pr_debug("pop wq checking: %s status: %s waiting: %s\n",
                   codec_dai->playback.stream_name,
                   codec_dai->playback.active ? "active" : "inactive",
                   codec_dai->pop_wait ? "yes" : "no");

            /* are we waiting on this codec DAI stream */
            if (codec_dai->pop_wait == 1) {
                  codec_dai->pop_wait = 0;
                  snd_soc_dapm_stream_event(codec,
                        codec_dai->playback.stream_name,
                        SND_SOC_DAPM_STREAM_STOP);
            }
      }
      mutex_unlock(&pcm_mutex);
}

/*
 * Called by ALSA when a PCM substream is closed. Private data can be
 * freed here. The cpu DAI, codec DAI, machine and platform are also
 * shutdown.
 */
static int soc_codec_close(struct snd_pcm_substream *substream)
{
      struct snd_soc_pcm_runtime *rtd = substream->private_data;
      struct snd_soc_device *socdev = rtd->socdev;
      struct snd_soc_card *card = socdev->card;
      struct snd_soc_dai_link *machine = rtd->dai;
      struct snd_soc_platform *platform = card->platform;
      struct snd_soc_dai *cpu_dai = machine->cpu_dai;
      struct snd_soc_dai *codec_dai = machine->codec_dai;
      struct snd_soc_codec *codec = card->codec;

      mutex_lock(&pcm_mutex);

      if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
            cpu_dai->playback.active = codec_dai->playback.active = 0;
      else
            cpu_dai->capture.active = codec_dai->capture.active = 0;

      if (codec_dai->playback.active == 0 &&
            codec_dai->capture.active == 0) {
            cpu_dai->active = codec_dai->active = 0;
      }
      codec->active--;

      /* Muting the DAC suppresses artifacts caused during digital
       * shutdown, for example from stopping clocks.
       */
      if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
            snd_soc_dai_digital_mute(codec_dai, 1);

      if (cpu_dai->ops->shutdown)
            cpu_dai->ops->shutdown(substream, cpu_dai);

      if (codec_dai->ops->shutdown)
            codec_dai->ops->shutdown(substream, codec_dai);

      if (machine->ops && machine->ops->shutdown)
            machine->ops->shutdown(substream);

      if (platform->pcm_ops->close)
            platform->pcm_ops->close(substream);
      cpu_dai->runtime = NULL;

      if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
            /* start delayed pop wq here for playback streams */
            codec_dai->pop_wait = 1;
            schedule_delayed_work(&card->delayed_work,
                  msecs_to_jiffies(pmdown_time));
      } else {
            /* capture streams can be powered down now */
            snd_soc_dapm_stream_event(codec,
                  codec_dai->capture.stream_name,
                  SND_SOC_DAPM_STREAM_STOP);
      }

      mutex_unlock(&pcm_mutex);
      return 0;
}

/*
 * Called by ALSA when the PCM substream is prepared, can set format, sample
 * rate, etc.  This function is non atomic and can be called multiple times,
 * it can refer to the runtime info.
 */
static int soc_pcm_prepare(struct snd_pcm_substream *substream)
{
      struct snd_soc_pcm_runtime *rtd = substream->private_data;
      struct snd_soc_device *socdev = rtd->socdev;
      struct snd_soc_card *card = socdev->card;
      struct snd_soc_dai_link *machine = rtd->dai;
      struct snd_soc_platform *platform = card->platform;
      struct snd_soc_dai *cpu_dai = machine->cpu_dai;
      struct snd_soc_dai *codec_dai = machine->codec_dai;
      struct snd_soc_codec *codec = card->codec;
      int ret = 0;

      mutex_lock(&pcm_mutex);

      if (machine->ops && machine->ops->prepare) {
            ret = machine->ops->prepare(substream);
            if (ret < 0) {
                  printk(KERN_ERR "asoc: machine prepare error\n");
                  goto out;
            }
      }

      if (platform->pcm_ops->prepare) {
            ret = platform->pcm_ops->prepare(substream);
            if (ret < 0) {
                  printk(KERN_ERR "asoc: platform prepare error\n");
                  goto out;
            }
      }

      if (codec_dai->ops->prepare) {
            ret = codec_dai->ops->prepare(substream, codec_dai);
            if (ret < 0) {
                  printk(KERN_ERR "asoc: codec DAI prepare error\n");
                  goto out;
            }
      }

      if (cpu_dai->ops->prepare) {
            ret = cpu_dai->ops->prepare(substream, cpu_dai);
            if (ret < 0) {
                  printk(KERN_ERR "asoc: cpu DAI prepare error\n");
                  goto out;
            }
      }

      /* cancel any delayed stream shutdown that is pending */
      if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK &&
          codec_dai->pop_wait) {
            codec_dai->pop_wait = 0;
            cancel_delayed_work(&card->delayed_work);
      }

      if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
            snd_soc_dapm_stream_event(codec,
                                codec_dai->playback.stream_name,
                                SND_SOC_DAPM_STREAM_START);
      else
            snd_soc_dapm_stream_event(codec,
                                codec_dai->capture.stream_name,
                                SND_SOC_DAPM_STREAM_START);

      snd_soc_dai_digital_mute(codec_dai, 0);

out:
      mutex_unlock(&pcm_mutex);
      return ret;
}

/*
 * Called by ALSA when the hardware params are set by application. This
 * function can also be called multiple times and can allocate buffers
 * (using snd_pcm_lib_* ). It's non-atomic.
 */
static int soc_pcm_hw_params(struct snd_pcm_substream *substream,
                        struct snd_pcm_hw_params *params)
{
      struct snd_soc_pcm_runtime *rtd = substream->private_data;
      struct snd_soc_device *socdev = rtd->socdev;
      struct snd_soc_dai_link *machine = rtd->dai;
      struct snd_soc_card *card = socdev->card;
      struct snd_soc_platform *platform = card->platform;
      struct snd_soc_dai *cpu_dai = machine->cpu_dai;
      struct snd_soc_dai *codec_dai = machine->codec_dai;
      int ret = 0;

      mutex_lock(&pcm_mutex);

      if (machine->ops && machine->ops->hw_params) {
            ret = machine->ops->hw_params(substream, params);
            if (ret < 0) {
                  printk(KERN_ERR "asoc: machine hw_params failed\n");
                  goto out;
            }
      }

      if (codec_dai->ops->hw_params) {
            ret = codec_dai->ops->hw_params(substream, params, codec_dai);
            if (ret < 0) {
                  printk(KERN_ERR "asoc: can't set codec %s hw params\n",
                        codec_dai->name);
                  goto codec_err;
            }
      }

      if (cpu_dai->ops->hw_params) {
            ret = cpu_dai->ops->hw_params(substream, params, cpu_dai);
            if (ret < 0) {
                  printk(KERN_ERR "asoc: interface %s hw params failed\n",
                        cpu_dai->name);
                  goto interface_err;
            }
      }

      if (platform->pcm_ops->hw_params) {
            ret = platform->pcm_ops->hw_params(substream, params);
            if (ret < 0) {
                  printk(KERN_ERR "asoc: platform %s hw params failed\n",
                        platform->name);
                  goto platform_err;
            }
      }

      machine->rate = params_rate(params);

out:
      mutex_unlock(&pcm_mutex);
      return ret;

platform_err:
      if (cpu_dai->ops->hw_free)
            cpu_dai->ops->hw_free(substream, cpu_dai);

interface_err:
      if (codec_dai->ops->hw_free)
            codec_dai->ops->hw_free(substream, codec_dai);

codec_err:
      if (machine->ops && machine->ops->hw_free)
            machine->ops->hw_free(substream);

      mutex_unlock(&pcm_mutex);
      return ret;
}

/*
 * Free's resources allocated by hw_params, can be called multiple times
 */
static int soc_pcm_hw_free(struct snd_pcm_substream *substream)
{
      struct snd_soc_pcm_runtime *rtd = substream->private_data;
      struct snd_soc_device *socdev = rtd->socdev;
      struct snd_soc_dai_link *machine = rtd->dai;
      struct snd_soc_card *card = socdev->card;
      struct snd_soc_platform *platform = card->platform;
      struct snd_soc_dai *cpu_dai = machine->cpu_dai;
      struct snd_soc_dai *codec_dai = machine->codec_dai;
      struct snd_soc_codec *codec = card->codec;

      mutex_lock(&pcm_mutex);

      /* apply codec digital mute */
      if (!codec->active)
            snd_soc_dai_digital_mute(codec_dai, 1);

      /* free any machine hw params */
      if (machine->ops && machine->ops->hw_free)
            machine->ops->hw_free(substream);

      /* free any DMA resources */
      if (platform->pcm_ops->hw_free)
            platform->pcm_ops->hw_free(substream);

      /* now free hw params for the DAI's  */
      if (codec_dai->ops->hw_free)
            codec_dai->ops->hw_free(substream, codec_dai);

      if (cpu_dai->ops->hw_free)
            cpu_dai->ops->hw_free(substream, cpu_dai);

      mutex_unlock(&pcm_mutex);
      return 0;
}

static int soc_pcm_trigger(struct snd_pcm_substream *substream, int cmd)
{
      struct snd_soc_pcm_runtime *rtd = substream->private_data;
      struct snd_soc_device *socdev = rtd->socdev;
      struct snd_soc_card *card= socdev->card;
      struct snd_soc_dai_link *machine = rtd->dai;
      struct snd_soc_platform *platform = card->platform;
      struct snd_soc_dai *cpu_dai = machine->cpu_dai;
      struct snd_soc_dai *codec_dai = machine->codec_dai;
      int ret;

      if (codec_dai->ops->trigger) {
            ret = codec_dai->ops->trigger(substream, cmd, codec_dai);
            if (ret < 0)
                  return ret;
      }

      if (platform->pcm_ops->trigger) {
            ret = platform->pcm_ops->trigger(substream, cmd);
            if (ret < 0)
                  return ret;
      }

      if (cpu_dai->ops->trigger) {
            ret = cpu_dai->ops->trigger(substream, cmd, cpu_dai);
            if (ret < 0)
                  return ret;
      }
      return 0;
}

/* ASoC PCM operations */
static struct snd_pcm_ops soc_pcm_ops = {
      .open       = soc_pcm_open,
      .close            = soc_codec_close,
      .hw_params  = soc_pcm_hw_params,
      .hw_free    = soc_pcm_hw_free,
      .prepare    = soc_pcm_prepare,
      .trigger    = soc_pcm_trigger,
};

#ifdef CONFIG_PM
/* powers down audio subsystem for suspend */
static int soc_suspend(struct device *dev)
{
      struct platform_device *pdev = to_platform_device(dev);
      struct snd_soc_device *socdev = platform_get_drvdata(pdev);
      struct snd_soc_card *card = socdev->card;
      struct snd_soc_platform *platform = card->platform;
      struct snd_soc_codec_device *codec_dev = socdev->codec_dev;
      struct snd_soc_codec *codec = card->codec;
      int i;

      /* If the initialization of this soc device failed, there is no codec
       * associated with it. Just bail out in this case.
       */
      if (!codec)
            return 0;

      /* Due to the resume being scheduled into a workqueue we could
      * suspend before that's finished - wait for it to complete.
       */
      snd_power_lock(codec->card);
      snd_power_wait(codec->card, SNDRV_CTL_POWER_D0);
      snd_power_unlock(codec->card);

      /* we're going to block userspace touching us until resume completes */
      snd_power_change_state(codec->card, SNDRV_CTL_POWER_D3hot);

      /* mute any active DAC's */
      for (i = 0; i < card->num_links; i++) {
            struct snd_soc_dai *dai = card->dai_link[i].codec_dai;
            if (dai->ops->digital_mute && dai->playback.active)
                  dai->ops->digital_mute(dai, 1);
      }

      /* suspend all pcms */
      for (i = 0; i < card->num_links; i++)
            snd_pcm_suspend_all(card->dai_link[i].pcm);

      if (card->suspend_pre)
            card->suspend_pre(pdev, PMSG_SUSPEND);

      for (i = 0; i < card->num_links; i++) {
            struct snd_soc_dai  *cpu_dai = card->dai_link[i].cpu_dai;
            if (cpu_dai->suspend && !cpu_dai->ac97_control)
                  cpu_dai->suspend(cpu_dai);
            if (platform->suspend)
                  platform->suspend(cpu_dai);
      }

      /* close any waiting streams and save state */
      run_delayed_work(&card->delayed_work);
      codec->suspend_bias_level = codec->bias_level;

      for (i = 0; i < codec->num_dai; i++) {
            char *stream = codec->dai[i].playback.stream_name;
            if (stream != NULL)
                  snd_soc_dapm_stream_event(codec, stream,
                        SND_SOC_DAPM_STREAM_SUSPEND);
            stream = codec->dai[i].capture.stream_name;
            if (stream != NULL)
                  snd_soc_dapm_stream_event(codec, stream,
                        SND_SOC_DAPM_STREAM_SUSPEND);
      }

      if (codec_dev->suspend)
            codec_dev->suspend(pdev, PMSG_SUSPEND);

      for (i = 0; i < card->num_links; i++) {
            struct snd_soc_dai *cpu_dai = card->dai_link[i].cpu_dai;
            if (cpu_dai->suspend && cpu_dai->ac97_control)
                  cpu_dai->suspend(cpu_dai);
      }

      if (card->suspend_post)
            card->suspend_post(pdev, PMSG_SUSPEND);

      return 0;
}

/* deferred resume work, so resume can complete before we finished
 * setting our codec back up, which can be very slow on I2C
 */
static void soc_resume_deferred(struct work_struct *work)
{
      struct snd_soc_card *card = container_of(work,
                                     struct snd_soc_card,
                                     deferred_resume_work);
      struct snd_soc_device *socdev = card->socdev;
      struct snd_soc_platform *platform = card->platform;
      struct snd_soc_codec_device *codec_dev = socdev->codec_dev;
      struct snd_soc_codec *codec = card->codec;
      struct platform_device *pdev = to_platform_device(socdev->dev);
      int i;

      /* our power state is still SNDRV_CTL_POWER_D3hot from suspend time,
       * so userspace apps are blocked from touching us
       */

      dev_dbg(socdev->dev, "starting resume work\n");

      if (card->resume_pre)
            card->resume_pre(pdev);

      for (i = 0; i < card->num_links; i++) {
            struct snd_soc_dai *cpu_dai = card->dai_link[i].cpu_dai;
            if (cpu_dai->resume && cpu_dai->ac97_control)
                  cpu_dai->resume(cpu_dai);
      }

      if (codec_dev->resume)
            codec_dev->resume(pdev);

      for (i = 0; i < codec->num_dai; i++) {
            char *stream = codec->dai[i].playback.stream_name;
            if (stream != NULL)
                  snd_soc_dapm_stream_event(codec, stream,
                        SND_SOC_DAPM_STREAM_RESUME);
            stream = codec->dai[i].capture.stream_name;
            if (stream != NULL)
                  snd_soc_dapm_stream_event(codec, stream,
                        SND_SOC_DAPM_STREAM_RESUME);
      }

      /* unmute any active DACs */
      for (i = 0; i < card->num_links; i++) {
            struct snd_soc_dai *dai = card->dai_link[i].codec_dai;
            if (dai->ops->digital_mute && dai->playback.active)
                  dai->ops->digital_mute(dai, 0);
      }

      for (i = 0; i < card->num_links; i++) {
            struct snd_soc_dai *cpu_dai = card->dai_link[i].cpu_dai;
            if (cpu_dai->resume && !cpu_dai->ac97_control)
                  cpu_dai->resume(cpu_dai);
            if (platform->resume)
                  platform->resume(cpu_dai);
      }

      if (card->resume_post)
            card->resume_post(pdev);

      dev_dbg(socdev->dev, "resume work completed\n");

      /* userspace can access us now we are back as we were before */
      snd_power_change_state(codec->card, SNDRV_CTL_POWER_D0);
}

/* powers up audio subsystem after a suspend */
static int soc_resume(struct device *dev)
{
      struct platform_device *pdev = to_platform_device(dev);
      struct snd_soc_device *socdev = platform_get_drvdata(pdev);
      struct snd_soc_card *card = socdev->card;
      struct snd_soc_dai *cpu_dai = card->dai_link[0].cpu_dai;

      /* AC97 devices might have other drivers hanging off them so
       * need to resume immediately.  Other drivers don't have that
       * problem and may take a substantial amount of time to resume
       * due to I/O costs and anti-pop so handle them out of line.
       */
      if (cpu_dai->ac97_control) {
            dev_dbg(socdev->dev, "Resuming AC97 immediately\n");
            soc_resume_deferred(&card->deferred_resume_work);
      } else {
            dev_dbg(socdev->dev, "Scheduling resume work\n");
            if (!schedule_work(&card->deferred_resume_work))
                  dev_err(socdev->dev, "resume work item may be lost\n");
      }

      return 0;
}

/**
 * snd_soc_suspend_device: Notify core of device suspend
 *
 * @dev: Device being suspended.
 *
 * In order to ensure that the entire audio subsystem is suspended in a
 * coordinated fashion ASoC devices should suspend themselves when
 * called by ASoC.  When the standard kernel suspend process asks the
 * device to suspend it should call this function to initiate a suspend
 * of the entire ASoC card.
 *
 * \note Currently this function is stubbed out.
 */
int snd_soc_suspend_device(struct device *dev)
{
      return 0;
}
EXPORT_SYMBOL_GPL(snd_soc_suspend_device);

/**
 * snd_soc_resume_device: Notify core of device resume
 *
 * @dev: Device being resumed.
 *
 * In order to ensure that the entire audio subsystem is resumed in a
 * coordinated fashion ASoC devices should resume themselves when called
 * by ASoC.  When the standard kernel resume process asks the device
 * to resume it should call this function.  Once all the components of
 * the card have notified that they are ready to be resumed the card
 * will be resumed.
 *
 * \note Currently this function is stubbed out.
 */
int snd_soc_resume_device(struct device *dev)
{
      return 0;
}
EXPORT_SYMBOL_GPL(snd_soc_resume_device);
#else
#define soc_suspend     NULL
#define soc_resume      NULL
#endif

static void snd_soc_instantiate_card(struct snd_soc_card *card)
{
      struct platform_device *pdev = container_of(card->dev,
                                        struct platform_device,
                                        dev);
      struct snd_soc_codec_device *codec_dev = card->socdev->codec_dev;
      struct snd_soc_platform *platform;
      struct snd_soc_dai *dai;
      int i, found, ret, ac97;

      if (card->instantiated)
            return;

      found = 0;
      list_for_each_entry(platform, &platform_list, list)
            if (card->platform == platform) {
                  found = 1;
                  break;
            }
      if (!found) {
            dev_dbg(card->dev, "Platform %s not registered\n",
                  card->platform->name);
            return;
      }

      ac97 = 0;
      for (i = 0; i < card->num_links; i++) {
            found = 0;
            list_for_each_entry(dai, &dai_list, list)
                  if (card->dai_link[i].cpu_dai == dai) {
                        found = 1;
                        break;
                  }
            if (!found) {
                  dev_dbg(card->dev, "DAI %s not registered\n",
                        card->dai_link[i].cpu_dai->name);
                  return;
            }

            if (card->dai_link[i].cpu_dai->ac97_control)
                  ac97 = 1;
      }

      /* If we have AC97 in the system then don't wait for the
       * codec.  This will need revisiting if we have to handle
       * systems with mixed AC97 and non-AC97 parts.  Only check for
       * DAIs currently; we can't do this per link since some AC97
       * codecs have non-AC97 DAIs.
       */
      if (!ac97)
            for (i = 0; i < card->num_links; i++) {
                  found = 0;
                  list_for_each_entry(dai, &dai_list, list)
                        if (card->dai_link[i].codec_dai == dai) {
                              found = 1;
                              break;
                        }
                  if (!found) {
                        dev_dbg(card->dev, "DAI %s not registered\n",
                              card->dai_link[i].codec_dai->name);
                        return;
                  }
            }

      /* Note that we do not current check for codec components */

      dev_dbg(card->dev, "All components present, instantiating\n");

      /* Found everything, bring it up */
      if (card->probe) {
            ret = card->probe(pdev);
            if (ret < 0)
                  return;
      }

      for (i = 0; i < card->num_links; i++) {
            struct snd_soc_dai *cpu_dai = card->dai_link[i].cpu_dai;
            if (cpu_dai->probe) {
                  ret = cpu_dai->probe(pdev, cpu_dai);
                  if (ret < 0)
                        goto cpu_dai_err;
            }
      }

      if (codec_dev->probe) {
            ret = codec_dev->probe(pdev);
            if (ret < 0)
                  goto cpu_dai_err;
      }

      if (platform->probe) {
            ret = platform->probe(pdev);
            if (ret < 0)
                  goto platform_err;
      }

      /* DAPM stream work */
      INIT_DELAYED_WORK(&card->delayed_work, close_delayed_work);
#ifdef CONFIG_PM
      /* deferred resume work */
      INIT_WORK(&card->deferred_resume_work, soc_resume_deferred);
#endif

      card->instantiated = 1;

      return;

platform_err:
      if (codec_dev->remove)
            codec_dev->remove(pdev);

cpu_dai_err:
      for (i--; i >= 0; i--) {
            struct snd_soc_dai *cpu_dai = card->dai_link[i].cpu_dai;
            if (cpu_dai->remove)
                  cpu_dai->remove(pdev, cpu_dai);
      }

      if (card->remove)
            card->remove(pdev);
}

/*
 * Attempt to initialise any uninitalised cards.  Must be called with
 * client_mutex.
 */
static void snd_soc_instantiate_cards(void)
{
      struct snd_soc_card *card;
      list_for_each_entry(card, &card_list, list)
            snd_soc_instantiate_card(card);
}

/* probes a new socdev */
static int soc_probe(struct platform_device *pdev)
{
      int ret = 0;
      struct snd_soc_device *socdev = platform_get_drvdata(pdev);
      struct snd_soc_card *card = socdev->card;

      /* Bodge while we push things out of socdev */
      card->socdev = socdev;

      /* Bodge while we unpick instantiation */
      card->dev = &pdev->dev;
      ret = snd_soc_register_card(card);
      if (ret != 0) {
            dev_err(&pdev->dev, "Failed to register card\n");
            return ret;
      }

      return 0;
}

/* removes a socdev */
static int soc_remove(struct platform_device *pdev)
{
      int i;
      struct snd_soc_device *socdev = platform_get_drvdata(pdev);
      struct snd_soc_card *card = socdev->card;
      struct snd_soc_platform *platform = card->platform;
      struct snd_soc_codec_device *codec_dev = socdev->codec_dev;

      if (!card->instantiated)
            return 0;

      run_delayed_work(&card->delayed_work);

      if (platform->remove)
            platform->remove(pdev);

      if (codec_dev->remove)
            codec_dev->remove(pdev);

      for (i = 0; i < card->num_links; i++) {
            struct snd_soc_dai *cpu_dai = card->dai_link[i].cpu_dai;
            if (cpu_dai->remove)
                  cpu_dai->remove(pdev, cpu_dai);
      }

      if (card->remove)
            card->remove(pdev);

      snd_soc_unregister_card(card);

      return 0;
}

static int soc_poweroff(struct device *dev)
{
      struct platform_device *pdev = to_platform_device(dev);
      struct snd_soc_device *socdev = platform_get_drvdata(pdev);
      struct snd_soc_card *card = socdev->card;

      if (!card->instantiated)
            return 0;

      /* Flush out pmdown_time work - we actually do want to run it
       * now, we're shutting down so no imminent restart. */
      run_delayed_work(&card->delayed_work);

      snd_soc_dapm_shutdown(socdev);

      return 0;
}

static struct dev_pm_ops soc_pm_ops = {
      .suspend = soc_suspend,
      .resume = soc_resume,
      .poweroff = soc_poweroff,
};

/* ASoC platform driver */
static struct platform_driver soc_driver = {
      .driver           = {
            .name       = "soc-audio",
            .owner            = THIS_MODULE,
            .pm         = &soc_pm_ops,
      },
      .probe            = soc_probe,
      .remove           = soc_remove,
};

/* create a new pcm */
static int soc_new_pcm(struct snd_soc_device *socdev,
      struct snd_soc_dai_link *dai_link, int num)
{
      struct snd_soc_card *card = socdev->card;
      struct snd_soc_codec *codec = card->codec;
      struct snd_soc_platform *platform = card->platform;
      struct snd_soc_dai *codec_dai = dai_link->codec_dai;
      struct snd_soc_dai *cpu_dai = dai_link->cpu_dai;
      struct snd_soc_pcm_runtime *rtd;
      struct snd_pcm *pcm;
      char new_name[64];
      int ret = 0, playback = 0, capture = 0;

      rtd = kzalloc(sizeof(struct snd_soc_pcm_runtime), GFP_KERNEL);
      if (rtd == NULL)
            return -ENOMEM;

      rtd->dai = dai_link;
      rtd->socdev = socdev;
      codec_dai->codec = card->codec;

      /* check client and interface hw capabilities */
      sprintf(new_name, "%s %s-%d", dai_link->stream_name, codec_dai->name,
            num);

      if (codec_dai->playback.channels_min)
            playback = 1;
      if (codec_dai->capture.channels_min)
            capture = 1;

      ret = snd_pcm_new(codec->card, new_name, codec->pcm_devs++, playback,
            capture, &pcm);
      if (ret < 0) {
            printk(KERN_ERR "asoc: can't create pcm for codec %s\n",
                  codec->name);
            kfree(rtd);
            return ret;
      }

      dai_link->pcm = pcm;
      pcm->private_data = rtd;
      soc_pcm_ops.mmap = platform->pcm_ops->mmap;
      soc_pcm_ops.pointer = platform->pcm_ops->pointer;
      soc_pcm_ops.ioctl = platform->pcm_ops->ioctl;
      soc_pcm_ops.copy = platform->pcm_ops->copy;
      soc_pcm_ops.silence = platform->pcm_ops->silence;
      soc_pcm_ops.ack = platform->pcm_ops->ack;
      soc_pcm_ops.page = platform->pcm_ops->page;

      if (playback)
            snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &soc_pcm_ops);

      if (capture)
            snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &soc_pcm_ops);

      ret = platform->pcm_new(codec->card, codec_dai, pcm);
      if (ret < 0) {
            printk(KERN_ERR "asoc: platform pcm constructor failed\n");
            kfree(rtd);
            return ret;
      }

      pcm->private_free = platform->pcm_free;
      printk(KERN_INFO "asoc: %s <-> %s mapping ok\n", codec_dai->name,
            cpu_dai->name);
      return ret;
}

/**
 * snd_soc_codec_volatile_register: Report if a register is volatile.
 *
 * @codec: CODEC to query.
 * @reg: Register to query.
 *
 * Boolean function indiciating if a CODEC register is volatile.
 */
int snd_soc_codec_volatile_register(struct snd_soc_codec *codec, int reg)
{
      if (codec->volatile_register)
            return codec->volatile_register(reg);
      else
            return 0;
}
EXPORT_SYMBOL_GPL(snd_soc_codec_volatile_register);

/* codec register dump */
static ssize_t soc_codec_reg_show(struct snd_soc_codec *codec, char *buf)
{
      int i, step = 1, count = 0;

      if (!codec->reg_cache_size)
            return 0;

      if (codec->reg_cache_step)
            step = codec->reg_cache_step;

      count += sprintf(buf, "%s registers\n", codec->name);
      for (i = 0; i < codec->reg_cache_size; i += step) {
            if (codec->readable_register && !codec->readable_register(i))
                  continue;

            count += sprintf(buf + count, "%2x: ", i);
            if (count >= PAGE_SIZE - 1)
                  break;

            if (codec->display_register)
                  count += codec->display_register(codec, buf + count,
                                           PAGE_SIZE - count, i);
            else
                  count += snprintf(buf + count, PAGE_SIZE - count,
                                "%4x", codec->read(codec, i));

            if (count >= PAGE_SIZE - 1)
                  break;

            count += snprintf(buf + count, PAGE_SIZE - count, "\n");
            if (count >= PAGE_SIZE - 1)
                  break;
      }

      /* Truncate count; min() would cause a warning */
      if (count >= PAGE_SIZE)
            count = PAGE_SIZE - 1;

      return count;
}
static ssize_t codec_reg_show(struct device *dev,
      struct device_attribute *attr, char *buf)
{
      struct snd_soc_device *devdata = dev_get_drvdata(dev);
      return soc_codec_reg_show(devdata->card->codec, buf);
}

static DEVICE_ATTR(codec_reg, 0444, codec_reg_show, NULL);

#ifdef CONFIG_DEBUG_FS
static int codec_reg_open_file(struct inode *inode, struct file *file)
{
      file->private_data = inode->i_private;
      return 0;
}

static ssize_t codec_reg_read_file(struct file *file, char __user *user_buf,
                         size_t count, loff_t *ppos)
{
      ssize_t ret;
      struct snd_soc_codec *codec = file->private_data;
      char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
      if (!buf)
            return -ENOMEM;
      ret = soc_codec_reg_show(codec, buf);
      if (ret >= 0)
            ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
      kfree(buf);
      return ret;
}

static ssize_t codec_reg_write_file(struct file *file,
            const char __user *user_buf, size_t count, loff_t *ppos)
{
      char buf[32];
      int buf_size;
      char *start = buf;
      unsigned long reg, value;
      int step = 1;
      struct snd_soc_codec *codec = file->private_data;

      buf_size = min(count, (sizeof(buf)-1));
      if (copy_from_user(buf, user_buf, buf_size))
            return -EFAULT;
      buf[buf_size] = 0;

      if (codec->reg_cache_step)
            step = codec->reg_cache_step;

      while (*start == ' ')
            start++;
      reg = simple_strtoul(start, &start, 16);
      if ((reg >= codec->reg_cache_size) || (reg % step))
            return -EINVAL;
      while (*start == ' ')
            start++;
      if (strict_strtoul(start, 16, &value))
            return -EINVAL;
      codec->write(codec, reg, value);
      return buf_size;
}

static const struct file_operations codec_reg_fops = {
      .open = codec_reg_open_file,
      .read = codec_reg_read_file,
      .write = codec_reg_write_file,
};

static void soc_init_codec_debugfs(struct snd_soc_codec *codec)
{
      codec->debugfs_reg = debugfs_create_file("codec_reg", 0644,
                                     debugfs_root, codec,
                                     &codec_reg_fops);
      if (!codec->debugfs_reg)
            printk(KERN_WARNING
                   "ASoC: Failed to create codec register debugfs file\n");

      codec->debugfs_pop_time = debugfs_create_u32("dapm_pop_time", 0744,
                                         debugfs_root,
                                         &codec->pop_time);
      if (!codec->debugfs_pop_time)
            printk(KERN_WARNING
                   "Failed to create pop time debugfs file\n");

      codec->debugfs_dapm = debugfs_create_dir("dapm", debugfs_root);
      if (!codec->debugfs_dapm)
            printk(KERN_WARNING
                   "Failed to create DAPM debugfs directory\n");

      snd_soc_dapm_debugfs_init(codec);
}

static void soc_cleanup_codec_debugfs(struct snd_soc_codec *codec)
{
      debugfs_remove_recursive(codec->debugfs_dapm);
      debugfs_remove(codec->debugfs_pop_time);
      debugfs_remove(codec->debugfs_reg);
}

#else

static inline void soc_init_codec_debugfs(struct snd_soc_codec *codec)
{
}

static inline void soc_cleanup_codec_debugfs(struct snd_soc_codec *codec)
{
}
#endif

/**
 * snd_soc_new_ac97_codec - initailise AC97 device
 * @codec: audio codec
 * @ops: AC97 bus operations
 * @num: AC97 codec number
 *
 * Initialises AC97 codec resources for use by ad-hoc devices only.
 */
int snd_soc_new_ac97_codec(struct snd_soc_codec *codec,
      struct snd_ac97_bus_ops *ops, int num)
{
      mutex_lock(&codec->mutex);

      codec->ac97 = kzalloc(sizeof(struct snd_ac97), GFP_KERNEL);
      if (codec->ac97 == NULL) {
            mutex_unlock(&codec->mutex);
            return -ENOMEM;
      }

      codec->ac97->bus = kzalloc(sizeof(struct snd_ac97_bus), GFP_KERNEL);
      if (codec->ac97->bus == NULL) {
            kfree(codec->ac97);
            codec->ac97 = NULL;
            mutex_unlock(&codec->mutex);
            return -ENOMEM;
      }

      codec->ac97->bus->ops = ops;
      codec->ac97->num = num;
      mutex_unlock(&codec->mutex);
      return 0;
}
EXPORT_SYMBOL_GPL(snd_soc_new_ac97_codec);

/**
 * snd_soc_free_ac97_codec - free AC97 codec device
 * @codec: audio codec
 *
 * Frees AC97 codec device resources.
 */
void snd_soc_free_ac97_codec(struct snd_soc_codec *codec)
{
      mutex_lock(&codec->mutex);
      kfree(codec->ac97->bus);
      kfree(codec->ac97);
      codec->ac97 = NULL;
      mutex_unlock(&codec->mutex);
}
EXPORT_SYMBOL_GPL(snd_soc_free_ac97_codec);

/**
 * snd_soc_update_bits - update codec register bits
 * @codec: audio codec
 * @reg: codec register
 * @mask: register mask
 * @value: new value
 *
 * Writes new register value.
 *
 * Returns 1 for change else 0.
 */
int snd_soc_update_bits(struct snd_soc_codec *codec, unsigned short reg,
                        unsigned int mask, unsigned int value)
{
      int change;
      unsigned int old, new;

      mutex_lock(&io_mutex);
      old = snd_soc_read(codec, reg);
      new = (old & ~mask) | value;
      change = old != new;
      if (change)
            snd_soc_write(codec, reg, new);

      mutex_unlock(&io_mutex);
      return change;
}
EXPORT_SYMBOL_GPL(snd_soc_update_bits);

/**
 * snd_soc_test_bits - test register for change
 * @codec: audio codec
 * @reg: codec register
 * @mask: register mask
 * @value: new value
 *
 * Tests a register with a new value and checks if the new value is
 * different from the old value.
 *
 * Returns 1 for change else 0.
 */
int snd_soc_test_bits(struct snd_soc_codec *codec, unsigned short reg,
                        unsigned int mask, unsigned int value)
{
      int change;
      unsigned int old, new;

      mutex_lock(&io_mutex);
      old = snd_soc_read(codec, reg);
      new = (old & ~mask) | value;
      change = old != new;
      mutex_unlock(&io_mutex);

      return change;
}
EXPORT_SYMBOL_GPL(snd_soc_test_bits);

/**
 * snd_soc_new_pcms - create new sound card and pcms
 * @socdev: the SoC audio device
 * @idx: ALSA card index
 * @xid: card identification
 *
 * Create a new sound card based upon the codec and interface pcms.
 *
 * Returns 0 for success, else error.
 */
int snd_soc_new_pcms(struct snd_soc_device *socdev, int idx, const char *xid)
{
      struct snd_soc_card *card = socdev->card;
      struct snd_soc_codec *codec = card->codec;
      int ret, i;

      mutex_lock(&codec->mutex);

      /* register a sound card */
      ret = snd_card_create(idx, xid, codec->owner, 0, &codec->card);
      if (ret < 0) {
            printk(KERN_ERR "asoc: can't create sound card for codec %s\n",
                  codec->name);
            mutex_unlock(&codec->mutex);
            return ret;
      }

      codec->socdev = socdev;
      codec->card->dev = socdev->dev;
      codec->card->private_data = codec;
      strncpy(codec->card->driver, codec->name, sizeof(codec->card->driver));

      /* create the pcms */
      for (i = 0; i < card->num_links; i++) {
            ret = soc_new_pcm(socdev, &card->dai_link[i], i);
            if (ret < 0) {
                  printk(KERN_ERR "asoc: can't create pcm %s\n",
                        card->dai_link[i].stream_name);
                  mutex_unlock(&codec->mutex);
                  return ret;
            }
      }

      mutex_unlock(&codec->mutex);
      return ret;
}
EXPORT_SYMBOL_GPL(snd_soc_new_pcms);

/**
 * snd_soc_init_card - register sound card
 * @socdev: the SoC audio device
 *
 * Register a SoC sound card. Also registers an AC97 device if the
 * codec is AC97 for ad hoc devices.
 *
 * Returns 0 for success, else error.
 */
int snd_soc_init_card(struct snd_soc_device *socdev)
{
      struct snd_soc_card *card = socdev->card;
      struct snd_soc_codec *codec = card->codec;
      int ret = 0, i, ac97 = 0, err = 0;

      for (i = 0; i < card->num_links; i++) {
            if (card->dai_link[i].init) {
                  err = card->dai_link[i].init(codec);
                  if (err < 0) {
                        printk(KERN_ERR "asoc: failed to init %s\n",
                              card->dai_link[i].stream_name);
                        continue;
                  }
            }
            if (card->dai_link[i].codec_dai->ac97_control) {
                  ac97 = 1;
                  snd_ac97_dev_add_pdata(codec->ac97,
                        card->dai_link[i].cpu_dai->ac97_pdata);
            }
      }
      snprintf(codec->card->shortname, sizeof(codec->card->shortname),
             "%s",  card->name);
      snprintf(codec->card->longname, sizeof(codec->card->longname),
             "%s (%s)", card->name, codec->name);

      /* Make sure all DAPM widgets are instantiated */
      snd_soc_dapm_new_widgets(codec);

      ret = snd_card_register(codec->card);
      if (ret < 0) {
            printk(KERN_ERR "asoc: failed to register soundcard for %s\n",
                        codec->name);
            goto out;
      }

      mutex_lock(&codec->mutex);
#ifdef CONFIG_SND_SOC_AC97_BUS
      /* Only instantiate AC97 if not already done by the adaptor
       * for the generic AC97 subsystem.
       */
      if (ac97 && strcmp(codec->name, "AC97") != 0) {
            ret = soc_ac97_dev_register(codec);
            if (ret < 0) {
                  printk(KERN_ERR "asoc: AC97 device register failed\n");
                  snd_card_free(codec->card);
                  mutex_unlock(&codec->mutex);
                  goto out;
            }
      }
#endif

      err = snd_soc_dapm_sys_add(socdev->dev);
      if (err < 0)
            printk(KERN_WARNING "asoc: failed to add dapm sysfs entries\n");

      err = device_create_file(socdev->dev, &dev_attr_codec_reg);
      if (err < 0)
            printk(KERN_WARNING "asoc: failed to add codec sysfs files\n");

      soc_init_codec_debugfs(codec);
      mutex_unlock(&codec->mutex);

out:
      return ret;
}
EXPORT_SYMBOL_GPL(snd_soc_init_card);

/**
 * snd_soc_free_pcms - free sound card and pcms
 * @socdev: the SoC audio device
 *
 * Frees sound card and pcms associated with the socdev.
 * Also unregister the codec if it is an AC97 device.
 */
void snd_soc_free_pcms(struct snd_soc_device *socdev)
{
      struct snd_soc_codec *codec = socdev->card->codec;
#ifdef CONFIG_SND_SOC_AC97_BUS
      struct snd_soc_dai *codec_dai;
      int i;
#endif

      mutex_lock(&codec->mutex);
      soc_cleanup_codec_debugfs(codec);
#ifdef CONFIG_SND_SOC_AC97_BUS
      for (i = 0; i < codec->num_dai; i++) {
            codec_dai = &codec->dai[i];
            if (codec_dai->ac97_control && codec->ac97 &&
                strcmp(codec->name, "AC97") != 0) {
                  soc_ac97_dev_unregister(codec);
                  goto free_card;
            }
      }
free_card:
#endif

      if (codec->card)
            snd_card_free(codec->card);
      device_remove_file(socdev->dev, &dev_attr_codec_reg);
      mutex_unlock(&codec->mutex);
}
EXPORT_SYMBOL_GPL(snd_soc_free_pcms);

/**
 * snd_soc_set_runtime_hwparams - set the runtime hardware parameters
 * @substream: the pcm substream
 * @hw: the hardware parameters
 *
 * Sets the substream runtime hardware parameters.
 */
int snd_soc_set_runtime_hwparams(struct snd_pcm_substream *substream,
      const struct snd_pcm_hardware *hw)
{
      struct snd_pcm_runtime *runtime = substream->runtime;
      runtime->hw.info = hw->info;
      runtime->hw.formats = hw->formats;
      runtime->hw.period_bytes_min = hw->period_bytes_min;
      runtime->hw.period_bytes_max = hw->period_bytes_max;
      runtime->hw.periods_min = hw->periods_min;
      runtime->hw.periods_max = hw->periods_max;
      runtime->hw.buffer_bytes_max = hw->buffer_bytes_max;
      runtime->hw.fifo_size = hw->fifo_size;
      return 0;
}
EXPORT_SYMBOL_GPL(snd_soc_set_runtime_hwparams);

/**
 * snd_soc_cnew - create new control
 * @_template: control template
 * @data: control private data
 * @long_name: control long name
 *
 * Create a new mixer control from a template control.
 *
 * Returns 0 for success, else error.
 */
struct snd_kcontrol *snd_soc_cnew(const struct snd_kcontrol_new *_template,
      void *data, char *long_name)
{
      struct snd_kcontrol_new template;

      memcpy(&template, _template, sizeof(template));
      if (long_name)
            template.name = long_name;
      template.index = 0;

      return snd_ctl_new1(&template, data);
}
EXPORT_SYMBOL_GPL(snd_soc_cnew);

/**
 * snd_soc_add_controls - add an array of controls to a codec.
 * Convienience function to add a list of controls. Many codecs were
 * duplicating this code.
 *
 * @codec: codec to add controls to
 * @controls: array of controls to add
 * @num_controls: number of elements in the array
 *
 * Return 0 for success, else error.
 */
int snd_soc_add_controls(struct snd_soc_codec *codec,
      const struct snd_kcontrol_new *controls, int num_controls)
{
      struct snd_card *card = codec->card;
      int err, i;

      for (i = 0; i < num_controls; i++) {
            const struct snd_kcontrol_new *control = &controls[i];
            err = snd_ctl_add(card, snd_soc_cnew(control, codec, NULL));
            if (err < 0) {
                  dev_err(codec->dev, "%s: Failed to add %s\n",
                        codec->name, control->name);
                  return err;
            }
      }

      return 0;
}
EXPORT_SYMBOL_GPL(snd_soc_add_controls);

/**
 * snd_soc_info_enum_double - enumerated double mixer info callback
 * @kcontrol: mixer control
 * @uinfo: control element information
 *
 * Callback to provide information about a double enumerated
 * mixer control.
 *
 * Returns 0 for success.
 */
int snd_soc_info_enum_double(struct snd_kcontrol *kcontrol,
      struct snd_ctl_elem_info *uinfo)
{
      struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;

      uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
      uinfo->count = e->shift_l == e->shift_r ? 1 : 2;
      uinfo->value.enumerated.items = e->max;

      if (uinfo->value.enumerated.item > e->max - 1)
            uinfo->value.enumerated.item = e->max - 1;
      strcpy(uinfo->value.enumerated.name,
            e->texts[uinfo->value.enumerated.item]);
      return 0;
}
EXPORT_SYMBOL_GPL(snd_soc_info_enum_double);

/**
 * snd_soc_get_enum_double - enumerated double mixer get callback
 * @kcontrol: mixer control
 * @ucontrol: control element information
 *
 * Callback to get the value of a double enumerated mixer.
 *
 * Returns 0 for success.
 */
int snd_soc_get_enum_double(struct snd_kcontrol *kcontrol,
      struct snd_ctl_elem_value *ucontrol)
{
      struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
      struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
      unsigned int val, bitmask;

      for (bitmask = 1; bitmask < e->max; bitmask <<= 1)
            ;
      val = snd_soc_read(codec, e->reg);
      ucontrol->value.enumerated.item[0]
            = (val >> e->shift_l) & (bitmask - 1);
      if (e->shift_l != e->shift_r)
            ucontrol->value.enumerated.item[1] =
                  (val >> e->shift_r) & (bitmask - 1);

      return 0;
}
EXPORT_SYMBOL_GPL(snd_soc_get_enum_double);

/**
 * snd_soc_put_enum_double - enumerated double mixer put callback
 * @kcontrol: mixer control
 * @ucontrol: control element information
 *
 * Callback to set the value of a double enumerated mixer.
 *
 * Returns 0 for success.
 */
int snd_soc_put_enum_double(struct snd_kcontrol *kcontrol,
      struct snd_ctl_elem_value *ucontrol)
{
      struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
      struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
      unsigned int val;
      unsigned int mask, bitmask;

      for (bitmask = 1; bitmask < e->max; bitmask <<= 1)
            ;
      if (ucontrol->value.enumerated.item[0] > e->max - 1)
            return -EINVAL;
      val = ucontrol->value.enumerated.item[0] << e->shift_l;
      mask = (bitmask - 1) << e->shift_l;
      if (e->shift_l != e->shift_r) {
            if (ucontrol->value.enumerated.item[1] > e->max - 1)
                  return -EINVAL;
            val |= ucontrol->value.enumerated.item[1] << e->shift_r;
            mask |= (bitmask - 1) << e->shift_r;
      }

      return snd_soc_update_bits(codec, e->reg, mask, val);
}
EXPORT_SYMBOL_GPL(snd_soc_put_enum_double);

/**
 * snd_soc_get_value_enum_double - semi enumerated double mixer get callback
 * @kcontrol: mixer control
 * @ucontrol: control element information
 *
 * Callback to get the value of a double semi enumerated mixer.
 *
 * Semi enumerated mixer: the enumerated items are referred as values. Can be
 * used for handling bitfield coded enumeration for example.
 *
 * Returns 0 for success.
 */
int snd_soc_get_value_enum_double(struct snd_kcontrol *kcontrol,
      struct snd_ctl_elem_value *ucontrol)
{
      struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
      struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
      unsigned int reg_val, val, mux;

      reg_val = snd_soc_read(codec, e->reg);
      val = (reg_val >> e->shift_l) & e->mask;
      for (mux = 0; mux < e->max; mux++) {
            if (val == e->values[mux])
                  break;
      }
      ucontrol->value.enumerated.item[0] = mux;
      if (e->shift_l != e->shift_r) {
            val = (reg_val >> e->shift_r) & e->mask;
            for (mux = 0; mux < e->max; mux++) {
                  if (val == e->values[mux])
                        break;
            }
            ucontrol->value.enumerated.item[1] = mux;
      }

      return 0;
}
EXPORT_SYMBOL_GPL(snd_soc_get_value_enum_double);

/**
 * snd_soc_put_value_enum_double - semi enumerated double mixer put callback
 * @kcontrol: mixer control
 * @ucontrol: control element information
 *
 * Callback to set the value of a double semi enumerated mixer.
 *
 * Semi enumerated mixer: the enumerated items are referred as values. Can be
 * used for handling bitfield coded enumeration for example.
 *
 * Returns 0 for success.
 */
int snd_soc_put_value_enum_double(struct snd_kcontrol *kcontrol,
      struct snd_ctl_elem_value *ucontrol)
{
      struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
      struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
      unsigned int val;
      unsigned int mask;

      if (ucontrol->value.enumerated.item[0] > e->max - 1)
            return -EINVAL;
      val = e->values[ucontrol->value.enumerated.item[0]] << e->shift_l;
      mask = e->mask << e->shift_l;
      if (e->shift_l != e->shift_r) {
            if (ucontrol->value.enumerated.item[1] > e->max - 1)
                  return -EINVAL;
            val |= e->values[ucontrol->value.enumerated.item[1]] << e->shift_r;
            mask |= e->mask << e->shift_r;
      }

      return snd_soc_update_bits(codec, e->reg, mask, val);
}
EXPORT_SYMBOL_GPL(snd_soc_put_value_enum_double);

/**
 * snd_soc_info_enum_ext - external enumerated single mixer info callback
 * @kcontrol: mixer control
 * @uinfo: control element information
 *
 * Callback to provide information about an external enumerated
 * single mixer.
 *
 * Returns 0 for success.
 */
int snd_soc_info_enum_ext(struct snd_kcontrol *kcontrol,
      struct snd_ctl_elem_info *uinfo)
{
      struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;

      uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
      uinfo->count = 1;
      uinfo->value.enumerated.items = e->max;

      if (uinfo->value.enumerated.item > e->max - 1)
            uinfo->value.enumerated.item = e->max - 1;
      strcpy(uinfo->value.enumerated.name,
            e->texts[uinfo->value.enumerated.item]);
      return 0;
}
EXPORT_SYMBOL_GPL(snd_soc_info_enum_ext);

/**
 * snd_soc_info_volsw_ext - external single mixer info callback
 * @kcontrol: mixer control
 * @uinfo: control element information
 *
 * Callback to provide information about a single external mixer control.
 *
 * Returns 0 for success.
 */
int snd_soc_info_volsw_ext(struct snd_kcontrol *kcontrol,
      struct snd_ctl_elem_info *uinfo)
{
      int max = kcontrol->private_value;

      if (max == 1 && !strstr(kcontrol->id.name, " Volume"))
            uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
      else
            uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;

      uinfo->count = 1;
      uinfo->value.integer.min = 0;
      uinfo->value.integer.max = max;
      return 0;
}
EXPORT_SYMBOL_GPL(snd_soc_info_volsw_ext);

/**
 * snd_soc_info_volsw - single mixer info callback
 * @kcontrol: mixer control
 * @uinfo: control element information
 *
 * Callback to provide information about a single mixer control.
 *
 * Returns 0 for success.
 */
int snd_soc_info_volsw(struct snd_kcontrol *kcontrol,
      struct snd_ctl_elem_info *uinfo)
{
      struct soc_mixer_control *mc =
            (struct soc_mixer_control *)kcontrol->private_value;
      int max = mc->max;
      unsigned int shift = mc->shift;
      unsigned int rshift = mc->rshift;

      if (max == 1 && !strstr(kcontrol->id.name, " Volume"))
            uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
      else
            uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;

      uinfo->count = shift == rshift ? 1 : 2;
      uinfo->value.integer.min = 0;
      uinfo->value.integer.max = max;
      return 0;
}
EXPORT_SYMBOL_GPL(snd_soc_info_volsw);

/**
 * snd_soc_get_volsw - single mixer get callback
 * @kcontrol: mixer control
 * @ucontrol: control element information
 *
 * Callback to get the value of a single mixer control.
 *
 * Returns 0 for success.
 */
int snd_soc_get_volsw(struct snd_kcontrol *kcontrol,
      struct snd_ctl_elem_value *ucontrol)
{
      struct soc_mixer_control *mc =
            (struct soc_mixer_control *)kcontrol->private_value;
      struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
      unsigned int reg = mc->reg;
      unsigned int shift = mc->shift;
      unsigned int rshift = mc->rshift;
      int max = mc->max;
      unsigned int mask = (1 << fls(max)) - 1;
      unsigned int invert = mc->invert;

      ucontrol->value.integer.value[0] =
            (snd_soc_read(codec, reg) >> shift) & mask;
      if (shift != rshift)
            ucontrol->value.integer.value[1] =
                  (snd_soc_read(codec, reg) >> rshift) & mask;
      if (invert) {
            ucontrol->value.integer.value[0] =
                  max - ucontrol->value.integer.value[0];
            if (shift != rshift)
                  ucontrol->value.integer.value[1] =
                        max - ucontrol->value.integer.value[1];
      }

      return 0;
}
EXPORT_SYMBOL_GPL(snd_soc_get_volsw);

/**
 * snd_soc_put_volsw - single mixer put callback
 * @kcontrol: mixer control
 * @ucontrol: control element information
 *
 * Callback to set the value of a single mixer control.
 *
 * Returns 0 for success.
 */
int snd_soc_put_volsw(struct snd_kcontrol *kcontrol,
      struct snd_ctl_elem_value *ucontrol)
{
      struct soc_mixer_control *mc =
            (struct soc_mixer_control *)kcontrol->private_value;
      struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
      unsigned int reg = mc->reg;
      unsigned int shift = mc->shift;
      unsigned int rshift = mc->rshift;
      int max = mc->max;
      unsigned int mask = (1 << fls(max)) - 1;
      unsigned int invert = mc->invert;
      unsigned int val, val2, val_mask;

      val = (ucontrol->value.integer.value[0] & mask);
      if (invert)
            val = max - val;
      val_mask = mask << shift;
      val = val << shift;
      if (shift != rshift) {
            val2 = (ucontrol->value.integer.value[1] & mask);
            if (invert)
                  val2 = max - val2;
            val_mask |= mask << rshift;
            val |= val2 << rshift;
      }
      return snd_soc_update_bits(codec, reg, val_mask, val);
}
EXPORT_SYMBOL_GPL(snd_soc_put_volsw);

/**
 * snd_soc_info_volsw_2r - double mixer info callback
 * @kcontrol: mixer control
 * @uinfo: control element information
 *
 * Callback to provide information about a double mixer control that
 * spans 2 codec registers.
 *
 * Returns 0 for success.
 */
int snd_soc_info_volsw_2r(struct snd_kcontrol *kcontrol,
      struct snd_ctl_elem_info *uinfo)
{
      struct soc_mixer_control *mc =
            (struct soc_mixer_control *)kcontrol->private_value;
      int max = mc->max;

      if (max == 1 && !strstr(kcontrol->id.name, " Volume"))
            uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
      else
            uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;

      uinfo->count = 2;
      uinfo->value.integer.min = 0;
      uinfo->value.integer.max = max;
      return 0;
}
EXPORT_SYMBOL_GPL(snd_soc_info_volsw_2r);

/**
 * snd_soc_get_volsw_2r - double mixer get callback
 * @kcontrol: mixer control
 * @ucontrol: control element information
 *
 * Callback to get the value of a double mixer control that spans 2 registers.
 *
 * Returns 0 for success.
 */
int snd_soc_get_volsw_2r(struct snd_kcontrol *kcontrol,
      struct snd_ctl_elem_value *ucontrol)
{
      struct soc_mixer_control *mc =
            (struct soc_mixer_control *)kcontrol->private_value;
      struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
      unsigned int reg = mc->reg;
      unsigned int reg2 = mc->rreg;
      unsigned int shift = mc->shift;
      int max = mc->max;
      unsigned int mask = (1 << fls(max)) - 1;
      unsigned int invert = mc->invert;

      ucontrol->value.integer.value[0] =
            (snd_soc_read(codec, reg) >> shift) & mask;
      ucontrol->value.integer.value[1] =
            (snd_soc_read(codec, reg2) >> shift) & mask;
      if (invert) {
            ucontrol->value.integer.value[0] =
                  max - ucontrol->value.integer.value[0];
            ucontrol->value.integer.value[1] =
                  max - ucontrol->value.integer.value[1];
      }

      return 0;
}
EXPORT_SYMBOL_GPL(snd_soc_get_volsw_2r);

/**
 * snd_soc_put_volsw_2r - double mixer set callback
 * @kcontrol: mixer control
 * @ucontrol: control element information
 *
 * Callback to set the value of a double mixer control that spans 2 registers.
 *
 * Returns 0 for success.
 */
int snd_soc_put_volsw_2r(struct snd_kcontrol *kcontrol,
      struct snd_ctl_elem_value *ucontrol)
{
      struct soc_mixer_control *mc =
            (struct soc_mixer_control *)kcontrol->private_value;
      struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
      unsigned int reg = mc->reg;
      unsigned int reg2 = mc->rreg;
      unsigned int shift = mc->shift;
      int max = mc->max;
      unsigned int mask = (1 << fls(max)) - 1;
      unsigned int invert = mc->invert;
      int err;
      unsigned int val, val2, val_mask;

      val_mask = mask << shift;
      val = (ucontrol->value.integer.value[0] & mask);
      val2 = (ucontrol->value.integer.value[1] & mask);

      if (invert) {
            val = max - val;
            val2 = max - val2;
      }

      val = val << shift;
      val2 = val2 << shift;

      err = snd_soc_update_bits(codec, reg, val_mask, val);
      if (err < 0)
            return err;

      err = snd_soc_update_bits(codec, reg2, val_mask, val2);
      return err;
}
EXPORT_SYMBOL_GPL(snd_soc_put_volsw_2r);

/**
 * snd_soc_info_volsw_s8 - signed mixer info callback
 * @kcontrol: mixer control
 * @uinfo: control element information
 *
 * Callback to provide information about a signed mixer control.
 *
 * Returns 0 for success.
 */
int snd_soc_info_volsw_s8(struct snd_kcontrol *kcontrol,
      struct snd_ctl_elem_info *uinfo)
{
      struct soc_mixer_control *mc =
            (struct soc_mixer_control *)kcontrol->private_value;
      int max = mc->max;
      int min = mc->min;

      uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
      uinfo->count = 2;
      uinfo->value.integer.min = 0;
      uinfo->value.integer.max = max-min;
      return 0;
}
EXPORT_SYMBOL_GPL(snd_soc_info_volsw_s8);

/**
 * snd_soc_get_volsw_s8 - signed mixer get callback
 * @kcontrol: mixer control
 * @ucontrol: control element information
 *
 * Callback to get the value of a signed mixer control.
 *
 * Returns 0 for success.
 */
int snd_soc_get_volsw_s8(struct snd_kcontrol *kcontrol,
      struct snd_ctl_elem_value *ucontrol)
{
      struct soc_mixer_control *mc =
            (struct soc_mixer_control *)kcontrol->private_value;
      struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
      unsigned int reg = mc->reg;
      int min = mc->min;
      int val = snd_soc_read(codec, reg);

      ucontrol->value.integer.value[0] =
            ((signed char)(val & 0xff))-min;
      ucontrol->value.integer.value[1] =
            ((signed char)((val >> 8) & 0xff))-min;
      return 0;
}
EXPORT_SYMBOL_GPL(snd_soc_get_volsw_s8);

/**
 * snd_soc_put_volsw_sgn - signed mixer put callback
 * @kcontrol: mixer control
 * @ucontrol: control element information
 *
 * Callback to set the value of a signed mixer control.
 *
 * Returns 0 for success.
 */
int snd_soc_put_volsw_s8(struct snd_kcontrol *kcontrol,
      struct snd_ctl_elem_value *ucontrol)
{
      struct soc_mixer_control *mc =
            (struct soc_mixer_control *)kcontrol->private_value;
      struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
      unsigned int reg = mc->reg;
      int min = mc->min;
      unsigned int val;

      val = (ucontrol->value.integer.value[0]+min) & 0xff;
      val |= ((ucontrol->value.integer.value[1]+min) & 0xff) << 8;

      return snd_soc_update_bits(codec, reg, 0xffff, val);
}
EXPORT_SYMBOL_GPL(snd_soc_put_volsw_s8);

/**
 * snd_soc_dai_set_sysclk - configure DAI system or master clock.
 * @dai: DAI
 * @clk_id: DAI specific clock ID
 * @freq: new clock frequency in Hz
 * @dir: new clock direction - input/output.
 *
 * Configures the DAI master (MCLK) or system (SYSCLK) clocking.
 */
int snd_soc_dai_set_sysclk(struct snd_soc_dai *dai, int clk_id,
      unsigned int freq, int dir)
{
      if (dai->ops && dai->ops->set_sysclk)
            return dai->ops->set_sysclk(dai, clk_id, freq, dir);
      else
            return -EINVAL;
}
EXPORT_SYMBOL_GPL(snd_soc_dai_set_sysclk);

/**
 * snd_soc_dai_set_clkdiv - configure DAI clock dividers.
 * @dai: DAI
 * @div_id: DAI specific clock divider ID
 * @div: new clock divisor.
 *
 * Configures the clock dividers. This is used to derive the best DAI bit and
 * frame clocks from the system or master clock. It's best to set the DAI bit
 * and frame clocks as low as possible to save system power.
 */
int snd_soc_dai_set_clkdiv(struct snd_soc_dai *dai,
      int div_id, int div)
{
      if (dai->ops && dai->ops->set_clkdiv)
            return dai->ops->set_clkdiv(dai, div_id, div);
      else
            return -EINVAL;
}
EXPORT_SYMBOL_GPL(snd_soc_dai_set_clkdiv);

/**
 * snd_soc_dai_set_pll - configure DAI PLL.
 * @dai: DAI
 * @pll_id: DAI specific PLL ID
 * @freq_in: PLL input clock frequency in Hz
 * @freq_out: requested PLL output clock frequency in Hz
 *
 * Configures and enables PLL to generate output clock based on input clock.
 */
int snd_soc_dai_set_pll(struct snd_soc_dai *dai,
      int pll_id, unsigned int freq_in, unsigned int freq_out)
{
      if (dai->ops && dai->ops->set_pll)
            return dai->ops->set_pll(dai, pll_id, freq_in, freq_out);
      else
            return -EINVAL;
}
EXPORT_SYMBOL_GPL(snd_soc_dai_set_pll);

/**
 * snd_soc_dai_set_fmt - configure DAI hardware audio format.
 * @dai: DAI
 * @fmt: SND_SOC_DAIFMT_ format value.
 *
 * Configures the DAI hardware format and clocking.
 */
int snd_soc_dai_set_fmt(struct snd_soc_dai *dai, unsigned int fmt)
{
      if (dai->ops && dai->ops->set_fmt)
            return dai->ops->set_fmt(dai, fmt);
      else
            return -EINVAL;
}
EXPORT_SYMBOL_GPL(snd_soc_dai_set_fmt);

/**
 * snd_soc_dai_set_tdm_slot - configure DAI TDM.
 * @dai: DAI
 * @tx_mask: bitmask representing active TX slots.
 * @rx_mask: bitmask representing active RX slots.
 * @slots: Number of slots in use.
 * @slot_width: Width in bits for each slot.
 *
 * Configures a DAI for TDM operation. Both mask and slots are codec and DAI
 * specific.
 */
int snd_soc_dai_set_tdm_slot(struct snd_soc_dai *dai,
      unsigned int tx_mask, unsigned int rx_mask, int slots, int slot_width)
{
      if (dai->ops && dai->ops->set_tdm_slot)
            return dai->ops->set_tdm_slot(dai, tx_mask, rx_mask,
                        slots, slot_width);
      else
            return -EINVAL;
}
EXPORT_SYMBOL_GPL(snd_soc_dai_set_tdm_slot);

/**
 * snd_soc_dai_set_tristate - configure DAI system or master clock.
 * @dai: DAI
 * @tristate: tristate enable
 *
 * Tristates the DAI so that others can use it.
 */
int snd_soc_dai_set_tristate(struct snd_soc_dai *dai, int tristate)
{
      if (dai->ops && dai->ops->set_tristate)
            return dai->ops->set_tristate(dai, tristate);
      else
            return -EINVAL;
}
EXPORT_SYMBOL_GPL(snd_soc_dai_set_tristate);

/**
 * snd_soc_dai_digital_mute - configure DAI system or master clock.
 * @dai: DAI
 * @mute: mute enable
 *
 * Mutes the DAI DAC.
 */
int snd_soc_dai_digital_mute(struct snd_soc_dai *dai, int mute)
{
      if (dai->ops && dai->ops->digital_mute)
            return dai->ops->digital_mute(dai, mute);
      else
            return -EINVAL;
}
EXPORT_SYMBOL_GPL(snd_soc_dai_digital_mute);

/**
 * snd_soc_register_card - Register a card with the ASoC core
 *
 * @card: Card to register
 *
 * Note that currently this is an internal only function: it will be
 * exposed to machine drivers after further backporting of ASoC v2
 * registration APIs.
 */
static int snd_soc_register_card(struct snd_soc_card *card)
{
      if (!card->name || !card->dev)
            return -EINVAL;

      INIT_LIST_HEAD(&card->list);
      card->instantiated = 0;

      mutex_lock(&client_mutex);
      list_add(&card->list, &card_list);
      snd_soc_instantiate_cards();
      mutex_unlock(&client_mutex);

      dev_dbg(card->dev, "Registered card '%s'\n", card->name);

      return 0;
}

/**
 * snd_soc_unregister_card - Unregister a card with the ASoC core
 *
 * @card: Card to unregister
 *
 * Note that currently this is an internal only function: it will be
 * exposed to machine drivers after further backporting of ASoC v2
 * registration APIs.
 */
static int snd_soc_unregister_card(struct snd_soc_card *card)
{
      mutex_lock(&client_mutex);
      list_del(&card->list);
      mutex_unlock(&client_mutex);

      dev_dbg(card->dev, "Unregistered card '%s'\n", card->name);

      return 0;
}

static struct snd_soc_dai_ops null_dai_ops = {
};

/**
 * snd_soc_register_dai - Register a DAI with the ASoC core
 *
 * @dai: DAI to register
 */
int snd_soc_register_dai(struct snd_soc_dai *dai)
{
      if (!dai->name)
            return -EINVAL;

      /* The device should become mandatory over time */
      if (!dai->dev)
            printk(KERN_WARNING "No device for DAI %s\n", dai->name);

      if (!dai->ops)
            dai->ops = &null_dai_ops;

      INIT_LIST_HEAD(&dai->list);

      mutex_lock(&client_mutex);
      list_add(&dai->list, &dai_list);
      snd_soc_instantiate_cards();
      mutex_unlock(&client_mutex);

      pr_debug("Registered DAI '%s'\n", dai->name);

      return 0;
}
EXPORT_SYMBOL_GPL(snd_soc_register_dai);

/**
 * snd_soc_unregister_dai - Unregister a DAI from the ASoC core
 *
 * @dai: DAI to unregister
 */
void snd_soc_unregister_dai(struct snd_soc_dai *dai)
{
      mutex_lock(&client_mutex);
      list_del(&dai->list);
      mutex_unlock(&client_mutex);

      pr_debug("Unregistered DAI '%s'\n", dai->name);
}
EXPORT_SYMBOL_GPL(snd_soc_unregister_dai);

/**
 * snd_soc_register_dais - Register multiple DAIs with the ASoC core
 *
 * @dai: Array of DAIs to register
 * @count: Number of DAIs
 */
int snd_soc_register_dais(struct snd_soc_dai *dai, size_t count)
{
      int i, ret;

      for (i = 0; i < count; i++) {
            ret = snd_soc_register_dai(&dai[i]);
            if (ret != 0)
                  goto err;
      }

      return 0;

err:
      for (i--; i >= 0; i--)
            snd_soc_unregister_dai(&dai[i]);

      return ret;
}
EXPORT_SYMBOL_GPL(snd_soc_register_dais);

/**
 * snd_soc_unregister_dais - Unregister multiple DAIs from the ASoC core
 *
 * @dai: Array of DAIs to unregister
 * @count: Number of DAIs
 */
void snd_soc_unregister_dais(struct snd_soc_dai *dai, size_t count)
{
      int i;

      for (i = 0; i < count; i++)
            snd_soc_unregister_dai(&dai[i]);
}
EXPORT_SYMBOL_GPL(snd_soc_unregister_dais);

/**
 * snd_soc_register_platform - Register a platform with the ASoC core
 *
 * @platform: platform to register
 */
int snd_soc_register_platform(struct snd_soc_platform *platform)
{
      if (!platform->name)
            return -EINVAL;

      INIT_LIST_HEAD(&platform->list);

      mutex_lock(&client_mutex);
      list_add(&platform->list, &platform_list);
      snd_soc_instantiate_cards();
      mutex_unlock(&client_mutex);

      pr_debug("Registered platform '%s'\n", platform->name);

      return 0;
}
EXPORT_SYMBOL_GPL(snd_soc_register_platform);

/**
 * snd_soc_unregister_platform - Unregister a platform from the ASoC core
 *
 * @platform: platform to unregister
 */
void snd_soc_unregister_platform(struct snd_soc_platform *platform)
{
      mutex_lock(&client_mutex);
      list_del(&platform->list);
      mutex_unlock(&client_mutex);

      pr_debug("Unregistered platform '%s'\n", platform->name);
}
EXPORT_SYMBOL_GPL(snd_soc_unregister_platform);

static u64 codec_format_map[] = {
      SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_S16_BE,
      SNDRV_PCM_FMTBIT_U16_LE | SNDRV_PCM_FMTBIT_U16_BE,
      SNDRV_PCM_FMTBIT_S24_LE | SNDRV_PCM_FMTBIT_S24_BE,
      SNDRV_PCM_FMTBIT_U24_LE | SNDRV_PCM_FMTBIT_U24_BE,
      SNDRV_PCM_FMTBIT_S32_LE | SNDRV_PCM_FMTBIT_S32_BE,
      SNDRV_PCM_FMTBIT_U32_LE | SNDRV_PCM_FMTBIT_U32_BE,
      SNDRV_PCM_FMTBIT_S24_3LE | SNDRV_PCM_FMTBIT_U24_3BE,
      SNDRV_PCM_FMTBIT_U24_3LE | SNDRV_PCM_FMTBIT_U24_3BE,
      SNDRV_PCM_FMTBIT_S20_3LE | SNDRV_PCM_FMTBIT_S20_3BE,
      SNDRV_PCM_FMTBIT_U20_3LE | SNDRV_PCM_FMTBIT_U20_3BE,
      SNDRV_PCM_FMTBIT_S18_3LE | SNDRV_PCM_FMTBIT_S18_3BE,
      SNDRV_PCM_FMTBIT_U18_3LE | SNDRV_PCM_FMTBIT_U18_3BE,
      SNDRV_PCM_FMTBIT_FLOAT_LE | SNDRV_PCM_FMTBIT_FLOAT_BE,
      SNDRV_PCM_FMTBIT_FLOAT64_LE | SNDRV_PCM_FMTBIT_FLOAT64_BE,
      SNDRV_PCM_FMTBIT_IEC958_SUBFRAME_LE
      | SNDRV_PCM_FMTBIT_IEC958_SUBFRAME_BE,
};

/* Fix up the DAI formats for endianness: codecs don't actually see
 * the endianness of the data but we're using the CPU format
 * definitions which do need to include endianness so we ensure that
 * codec DAIs always have both big and little endian variants set.
 */
static void fixup_codec_formats(struct snd_soc_pcm_stream *stream)
{
      int i;

      for (i = 0; i < ARRAY_SIZE(codec_format_map); i++)
            if (stream->formats & codec_format_map[i])
                  stream->formats |= codec_format_map[i];
}

/**
 * snd_soc_register_codec - Register a codec with the ASoC core
 *
 * @codec: codec to register
 */
int snd_soc_register_codec(struct snd_soc_codec *codec)
{
      int i;

      if (!codec->name)
            return -EINVAL;

      /* The device should become mandatory over time */
      if (!codec->dev)
            printk(KERN_WARNING "No device for codec %s\n", codec->name);

      INIT_LIST_HEAD(&codec->list);

      for (i = 0; i < codec->num_dai; i++) {
            fixup_codec_formats(&codec->dai[i].playback);
            fixup_codec_formats(&codec->dai[i].capture);
      }

      mutex_lock(&client_mutex);
      list_add(&codec->list, &codec_list);
      snd_soc_instantiate_cards();
      mutex_unlock(&client_mutex);

      pr_debug("Registered codec '%s'\n", codec->name);

      return 0;
}
EXPORT_SYMBOL_GPL(snd_soc_register_codec);

/**
 * snd_soc_unregister_codec - Unregister a codec from the ASoC core
 *
 * @codec: codec to unregister
 */
void snd_soc_unregister_codec(struct snd_soc_codec *codec)
{
      mutex_lock(&client_mutex);
      list_del(&codec->list);
      mutex_unlock(&client_mutex);

      pr_debug("Unregistered codec '%s'\n", codec->name);
}
EXPORT_SYMBOL_GPL(snd_soc_unregister_codec);

static int __init snd_soc_init(void)
{
#ifdef CONFIG_DEBUG_FS
      debugfs_root = debugfs_create_dir("asoc", NULL);
      if (IS_ERR(debugfs_root) || !debugfs_root) {
            printk(KERN_WARNING
                   "ASoC: Failed to create debugfs directory\n");
            debugfs_root = NULL;
      }
#endif

      return platform_driver_register(&soc_driver);
}

static void __exit snd_soc_exit(void)
{
#ifdef CONFIG_DEBUG_FS
      debugfs_remove_recursive(debugfs_root);
#endif
      platform_driver_unregister(&soc_driver);
}

module_init(snd_soc_init);
module_exit(snd_soc_exit);

/* Module information */
MODULE_AUTHOR("Liam Girdwood, lrg@slimlogic.co.uk");
MODULE_DESCRIPTION("ALSA SoC Core");
MODULE_LICENSE("GPL");
MODULE_ALIAS("platform:soc-audio");

Generated by  Doxygen 1.6.0   Back to index