Logo Search packages:      
Sourcecode: alsa-driver version File versions  Download package

emu10k1x.c

/*
 *  Copyright (c) by Francisco Moraes <fmoraes@nc.rr.com>
 *  Driver EMU10K1X chips
 *
 *  Parts of this code were adapted from audigyls.c driver which is
 *  Copyright (c) by James Courtier-Dutton <James@superbug.demon.co.uk>
 *
 *  BUGS:
 *    --
 *
 *  TODO:
 *
 *  Chips (SB0200 model):
 *    - EMU10K1X-DBQ
 *    - STAC 9708T
 *
 *   This program is free software; you can redistribute it and/or modify
 *   it under the terms of the GNU General Public License as published by
 *   the Free Software Foundation; either version 2 of the License, or
 *   (at your option) any later version.
 *
 *   This program is distributed in the hope that it will be useful,
 *   but WITHOUT ANY WARRANTY; without even the implied warranty of
 *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *   GNU General Public License for more details.
 *
 *   You should have received a copy of the GNU General Public License
 *   along with this program; if not, write to the Free Software
 *   Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
 *
 */
#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/pci.h>
#include <linux/dma-mapping.h>
#include <linux/slab.h>
#include <linux/moduleparam.h>
#include <sound/core.h>
#include <sound/initval.h>
#include <sound/pcm.h>
#include <sound/ac97_codec.h>
#include <sound/info.h>
#include <sound/rawmidi.h>

MODULE_AUTHOR("Francisco Moraes <fmoraes@nc.rr.com>");
MODULE_DESCRIPTION("EMU10K1X");
MODULE_LICENSE("GPL");
MODULE_SUPPORTED_DEVICE("{{Dell Creative Labs,SB Live!}");

// module parameters (see "Module Parameters")
static int index[SNDRV_CARDS] = SNDRV_DEFAULT_IDX;
static char *id[SNDRV_CARDS] = SNDRV_DEFAULT_STR;
static int enable[SNDRV_CARDS] = SNDRV_DEFAULT_ENABLE_PNP;

module_param_array(index, int, NULL, 0444);
MODULE_PARM_DESC(index, "Index value for the EMU10K1X soundcard.");
module_param_array(id, charp, NULL, 0444);
MODULE_PARM_DESC(id, "ID string for the EMU10K1X soundcard.");
module_param_array(enable, bool, NULL, 0444);
MODULE_PARM_DESC(enable, "Enable the EMU10K1X soundcard.");


// some definitions were borrowed from emu10k1 driver as they seem to be the same
/************************************************************************************************/
/* PCI function 0 registers, address = <val> + PCIBASE0                                   */
/************************************************************************************************/

#define PTR             0x00        /* Indexed register set pointer register  */
                                    /* NOTE: The CHANNELNUM and ADDRESS words can   */
                                    /* be modified independently of each other.     */

#define DATA                  0x04        /* Indexed register set data register           */

#define IPR             0x08        /* Global interrupt pending register            */
                                    /* Clear pending interrupts by writing a 1 to   */
                                    /* the relevant bits and zero to the other bits */
#define IPR_MIDITRANSBUFEMPTY   0x00000001      /* MIDI UART transmit buffer empty        */
#define IPR_MIDIRECVBUFEMPTY    0x00000002      /* MIDI UART receive buffer empty         */
#define IPR_CH_0_LOOP           0x00000800      /* Channel 0 loop                               */
#define IPR_CH_0_HALF_LOOP      0x00000100      /* Channel 0 half loop                          */
#define IPR_CAP_0_LOOP          0x00080000      /* Channel capture loop                         */
#define IPR_CAP_0_HALF_LOOP     0x00010000      /* Channel capture half loop                    */

#define INTE                  0x0c        /* Interrupt enable register              */
#define INTE_MIDITXENABLE       0x00000001      /* Enable MIDI transmit-buffer-empty interrupts */
#define INTE_MIDIRXENABLE       0x00000002      /* Enable MIDI receive-buffer-empty interrupts  */
#define INTE_CH_0_LOOP          0x00000800      /* Channel 0 loop                               */
#define INTE_CH_0_HALF_LOOP     0x00000100      /* Channel 0 half loop                          */
#define INTE_CAP_0_LOOP         0x00080000      /* Channel capture loop                         */
#define INTE_CAP_0_HALF_LOOP    0x00010000      /* Channel capture half loop                    */

#define HCFG                  0x14        /* Hardware config register               */

#define HCFG_LOCKSOUNDCACHE   0x00000008  /* 1 = Cancel bustmaster accesses to soundcache */
                                    /* NOTE: This should generally never be used.   */
#define HCFG_AUDIOENABLE      0x00000001  /* 0 = CODECs transmit zero-valued samples      */
                                    /* Should be set to 1 when the EMU10K1 is */
                                    /* completely initialized.                */
#define GPIO                  0x18        /* Defaults: 00001080-Analog, 00001000-SPDIF.   */


#define AC97DATA        0x1c        /* AC97 register set data register (16 bit)     */

#define AC97ADDRESS           0x1e        /* AC97 register set address register (8 bit)   */

/********************************************************************************************************/
/* Emu10k1x pointer-offset register set, accessed through the PTR and DATA registers                  */
/********************************************************************************************************/
#define PLAYBACK_LIST_ADDR    0x00        /* Base DMA address of a list of pointers to each period/size */
                                    /* One list entry: 4 bytes for DMA address, 
                                     * 4 bytes for period_size << 16.
                                     * One list entry is 8 bytes long.
                                     * One list entry for each period in the buffer.
                                     */
#define PLAYBACK_LIST_SIZE    0x01        /* Size of list in bytes << 16. E.g. 8 periods -> 0x00380000  */
#define PLAYBACK_LIST_PTR     0x02        /* Pointer to the current period being played */
#define PLAYBACK_DMA_ADDR     0x04        /* Playback DMA addresss */
#define PLAYBACK_PERIOD_SIZE  0x05        /* Playback period size */
#define PLAYBACK_POINTER      0x06        /* Playback period pointer. Sample currently in DAC */
#define PLAYBACK_UNKNOWN1       0x07
#define PLAYBACK_UNKNOWN2       0x08

/* Only one capture channel supported */
#define CAPTURE_DMA_ADDR      0x10        /* Capture DMA address */
#define CAPTURE_BUFFER_SIZE   0x11        /* Capture buffer size */
#define CAPTURE_POINTER       0x12        /* Capture buffer pointer. Sample currently in ADC */
#define CAPTURE_UNKNOWN         0x13

/* From 0x20 - 0x3f, last samples played on each channel */

#define TRIGGER_CHANNEL         0x40            /* Trigger channel playback                     */
#define TRIGGER_CHANNEL_0       0x00000001      /* Trigger channel 0                            */
#define TRIGGER_CHANNEL_1       0x00000002      /* Trigger channel 1                            */
#define TRIGGER_CHANNEL_2       0x00000004      /* Trigger channel 2                            */
#define TRIGGER_CAPTURE         0x00000100      /* Trigger capture channel                      */

#define ROUTING                 0x41            /* Setup sound routing ?                        */
#define ROUTING_FRONT_LEFT      0x00000001
#define ROUTING_FRONT_RIGHT     0x00000002
#define ROUTING_REAR_LEFT       0x00000004
#define ROUTING_REAR_RIGHT      0x00000008
#define ROUTING_CENTER_LFE      0x00010000

#define SPCS0                 0x42        /* SPDIF output Channel Status 0 register */

#define SPCS1                 0x43        /* SPDIF output Channel Status 1 register */

#define SPCS2                 0x44        /* SPDIF output Channel Status 2 register */

#define SPCS_CLKACCYMASK      0x30000000  /* Clock accuracy                   */
#define SPCS_CLKACCY_1000PPM  0x00000000  /* 1000 parts per million                 */
#define SPCS_CLKACCY_50PPM    0x10000000  /* 50 parts per million                   */
#define SPCS_CLKACCY_VARIABLE 0x20000000  /* Variable accuracy                      */
#define SPCS_SAMPLERATEMASK   0x0f000000  /* Sample rate                            */
#define SPCS_SAMPLERATE_44    0x00000000  /* 44.1kHz sample rate                    */
#define SPCS_SAMPLERATE_48    0x02000000  /* 48kHz sample rate                      */
#define SPCS_SAMPLERATE_32    0x03000000  /* 32kHz sample rate                      */
#define SPCS_CHANNELNUMMASK   0x00f00000  /* Channel number                   */
#define SPCS_CHANNELNUM_UNSPEC      0x00000000  /* Unspecified channel number             */
#define SPCS_CHANNELNUM_LEFT  0x00100000  /* Left channel                           */
#define SPCS_CHANNELNUM_RIGHT 0x00200000  /* Right channel                    */
#define SPCS_SOURCENUMMASK    0x000f0000  /* Source number                    */
#define SPCS_SOURCENUM_UNSPEC 0x00000000  /* Unspecified source number              */
#define SPCS_GENERATIONSTATUS 0x00008000  /* Originality flag (see IEC-958 spec)          */
#define SPCS_CATEGORYCODEMASK 0x00007f00  /* Category code (see IEC-958 spec)       */
#define SPCS_MODEMASK         0x000000c0  /* Mode (see IEC-958 spec)                */
#define SPCS_EMPHASISMASK     0x00000038  /* Emphasis                         */
#define SPCS_EMPHASIS_NONE    0x00000000  /* No emphasis                            */
#define SPCS_EMPHASIS_50_15   0x00000008  /* 50/15 usec 2 channel                   */
#define SPCS_COPYRIGHT        0x00000004  /* Copyright asserted flag -- do not modify     */
#define SPCS_NOTAUDIODATA     0x00000002  /* 0 = Digital audio, 1 = not audio       */
#define SPCS_PROFESSIONAL     0x00000001  /* 0 = Consumer (IEC-958), 1 = pro (AES3-1992)  */

#define SPDIF_SELECT          0x45        /* Enables SPDIF or Analogue outputs 0-Analogue, 0x700-SPDIF */

/* This is the MPU port on the card                                                 */
#define MUDATA          0x47
#define MUCMD           0x48
#define MUSTAT          MUCMD

/* From 0x50 - 0x5f, last samples captured */

/**
 * The hardware has 3 channels for playback and 1 for capture.
 *  - channel 0 is the front channel
 *  - channel 1 is the rear channel
 *  - channel 2 is the center/lfe chanel
 * Volume is controlled by the AC97 for the front and rear channels by
 * the PCM Playback Volume, Sigmatel Surround Playback Volume and 
 * Surround Playback Volume. The Sigmatel 4-Speaker Stereo switch affects
 * the front/rear channel mixing in the REAR OUT jack. When using the
 * 4-Speaker Stereo, both front and rear channels will be mixed in the
 * REAR OUT.
 * The center/lfe channel has no volume control and cannot be muted during
 * playback.
 */

00198 struct emu10k1x_voice {
      struct emu10k1x *emu;
      int number;
      int use;
  
      struct emu10k1x_pcm *epcm;
};

struct emu10k1x_pcm {
      struct emu10k1x *emu;
      struct snd_pcm_substream *substream;
      struct emu10k1x_voice *voice;
      unsigned short running;
};

struct emu10k1x_midi {
      struct emu10k1x *emu;
      struct snd_rawmidi *rmidi;
      struct snd_rawmidi_substream *substream_input;
      struct snd_rawmidi_substream *substream_output;
      unsigned int midi_mode;
      spinlock_t input_lock;
      spinlock_t output_lock;
      spinlock_t open_lock;
      int tx_enable, rx_enable;
      int port;
      int ipr_tx, ipr_rx;
      void (*interrupt)(struct emu10k1x *emu, unsigned int status);
};

// definition of the chip-specific record
struct emu10k1x {
      struct snd_card *card;
      struct pci_dev *pci;

      unsigned long port;
      struct resource *res_port;
      int irq;

      unsigned char revision;       /* chip revision */
      unsigned int serial;            /* serial number */
      unsigned short model;         /* subsystem id */

      spinlock_t emu_lock;
      spinlock_t voice_lock;

      struct snd_ac97 *ac97;
      struct snd_pcm *pcm;

      struct emu10k1x_voice voices[3];
      struct emu10k1x_voice capture_voice;
      u32 spdif_bits[3]; // SPDIF out setup

      struct snd_dma_buffer dma_buffer;

      struct emu10k1x_midi midi;
};

/* hardware definition */
static struct snd_pcm_hardware snd_emu10k1x_playback_hw = {
      .info =                 (SNDRV_PCM_INFO_MMAP | 
                         SNDRV_PCM_INFO_INTERLEAVED |
                         SNDRV_PCM_INFO_BLOCK_TRANSFER |
                         SNDRV_PCM_INFO_MMAP_VALID),
      .formats =        SNDRV_PCM_FMTBIT_S16_LE,
      .rates =          SNDRV_PCM_RATE_48000,
      .rate_min =       48000,
      .rate_max =       48000,
      .channels_min =         2,
      .channels_max =         2,
      .buffer_bytes_max =     (32*1024),
      .period_bytes_min =     64,
      .period_bytes_max =     (16*1024),
      .periods_min =          2,
      .periods_max =          8,
      .fifo_size =            0,
};

static struct snd_pcm_hardware snd_emu10k1x_capture_hw = {
      .info =                 (SNDRV_PCM_INFO_MMAP | 
                         SNDRV_PCM_INFO_INTERLEAVED |
                         SNDRV_PCM_INFO_BLOCK_TRANSFER |
                         SNDRV_PCM_INFO_MMAP_VALID),
      .formats =        SNDRV_PCM_FMTBIT_S16_LE,
      .rates =          SNDRV_PCM_RATE_48000,
      .rate_min =       48000,
      .rate_max =       48000,
      .channels_min =         2,
      .channels_max =         2,
      .buffer_bytes_max =     (32*1024),
      .period_bytes_min =     64,
      .period_bytes_max =     (16*1024),
      .periods_min =          2,
      .periods_max =          2,
      .fifo_size =            0,
};

static unsigned int snd_emu10k1x_ptr_read(struct emu10k1x * emu, 
                                unsigned int reg, 
                                unsigned int chn)
{
      unsigned long flags;
      unsigned int regptr, val;
  
      regptr = (reg << 16) | chn;

      spin_lock_irqsave(&emu->emu_lock, flags);
      outl(regptr, emu->port + PTR);
      val = inl(emu->port + DATA);
      spin_unlock_irqrestore(&emu->emu_lock, flags);
      return val;
}

static void snd_emu10k1x_ptr_write(struct emu10k1x *emu, 
                           unsigned int reg, 
                           unsigned int chn, 
                           unsigned int data)
{
      unsigned int regptr;
      unsigned long flags;

      regptr = (reg << 16) | chn;

      spin_lock_irqsave(&emu->emu_lock, flags);
      outl(regptr, emu->port + PTR);
      outl(data, emu->port + DATA);
      spin_unlock_irqrestore(&emu->emu_lock, flags);
}

static void snd_emu10k1x_intr_enable(struct emu10k1x *emu, unsigned int intrenb)
{
      unsigned long flags;
      unsigned int intr_enable;

      spin_lock_irqsave(&emu->emu_lock, flags);
      intr_enable = inl(emu->port + INTE) | intrenb;
      outl(intr_enable, emu->port + INTE);
      spin_unlock_irqrestore(&emu->emu_lock, flags);
}

static void snd_emu10k1x_intr_disable(struct emu10k1x *emu, unsigned int intrenb)
{
      unsigned long flags;
      unsigned int intr_enable;

      spin_lock_irqsave(&emu->emu_lock, flags);
      intr_enable = inl(emu->port + INTE) & ~intrenb;
      outl(intr_enable, emu->port + INTE);
      spin_unlock_irqrestore(&emu->emu_lock, flags);
}

static void snd_emu10k1x_gpio_write(struct emu10k1x *emu, unsigned int value)
{
      unsigned long flags;

      spin_lock_irqsave(&emu->emu_lock, flags);
      outl(value, emu->port + GPIO);
      spin_unlock_irqrestore(&emu->emu_lock, flags);
}

static void snd_emu10k1x_pcm_free_substream(struct snd_pcm_runtime *runtime)
{
      kfree(runtime->private_data);
}

static void snd_emu10k1x_pcm_interrupt(struct emu10k1x *emu, struct emu10k1x_voice *voice)
{
      struct emu10k1x_pcm *epcm;

      if ((epcm = voice->epcm) == NULL)
            return;
      if (epcm->substream == NULL)
            return;
#if 0
      snd_printk(KERN_INFO "IRQ: position = 0x%x, period = 0x%x, size = 0x%x\n",
               epcm->substream->ops->pointer(epcm->substream),
               snd_pcm_lib_period_bytes(epcm->substream),
               snd_pcm_lib_buffer_bytes(epcm->substream));
#endif
      snd_pcm_period_elapsed(epcm->substream);
}

/* open callback */
static int snd_emu10k1x_playback_open(struct snd_pcm_substream *substream)
{
      struct emu10k1x *chip = snd_pcm_substream_chip(substream);
      struct emu10k1x_pcm *epcm;
      struct snd_pcm_runtime *runtime = substream->runtime;
      int err;

      if ((err = snd_pcm_hw_constraint_integer(runtime, SNDRV_PCM_HW_PARAM_PERIODS)) < 0) {
            return err;
      }
      if ((err = snd_pcm_hw_constraint_step(runtime, 0, SNDRV_PCM_HW_PARAM_PERIOD_BYTES, 64)) < 0)
                return err;

      epcm = kzalloc(sizeof(*epcm), GFP_KERNEL);
      if (epcm == NULL)
            return -ENOMEM;
      epcm->emu = chip;
      epcm->substream = substream;
  
      runtime->private_data = epcm;
      runtime->private_free = snd_emu10k1x_pcm_free_substream;
  
      runtime->hw = snd_emu10k1x_playback_hw;

      return 0;
}

/* close callback */
static int snd_emu10k1x_playback_close(struct snd_pcm_substream *substream)
{
      return 0;
}

/* hw_params callback */
static int snd_emu10k1x_pcm_hw_params(struct snd_pcm_substream *substream,
                              struct snd_pcm_hw_params *hw_params)
{
      struct snd_pcm_runtime *runtime = substream->runtime;
      struct emu10k1x_pcm *epcm = runtime->private_data;

      if (! epcm->voice) {
            epcm->voice = &epcm->emu->voices[substream->pcm->device];
            epcm->voice->use = 1;
            epcm->voice->epcm = epcm;
      }

      return snd_pcm_lib_malloc_pages(substream,
                              params_buffer_bytes(hw_params));
}

/* hw_free callback */
static int snd_emu10k1x_pcm_hw_free(struct snd_pcm_substream *substream)
{
      struct snd_pcm_runtime *runtime = substream->runtime;
      struct emu10k1x_pcm *epcm;

      if (runtime->private_data == NULL)
            return 0;
      
      epcm = runtime->private_data;

      if (epcm->voice) {
            epcm->voice->use = 0;
            epcm->voice->epcm = NULL;
            epcm->voice = NULL;
      }

      return snd_pcm_lib_free_pages(substream);
}

/* prepare callback */
static int snd_emu10k1x_pcm_prepare(struct snd_pcm_substream *substream)
{
      struct emu10k1x *emu = snd_pcm_substream_chip(substream);
      struct snd_pcm_runtime *runtime = substream->runtime;
      struct emu10k1x_pcm *epcm = runtime->private_data;
      int voice = epcm->voice->number;
      u32 *table_base = (u32 *)(emu->dma_buffer.area+1024*voice);
      u32 period_size_bytes = frames_to_bytes(runtime, runtime->period_size);
      int i;
      
      for(i = 0; i < runtime->periods; i++) {
            *table_base++=runtime->dma_addr+(i*period_size_bytes);
            *table_base++=period_size_bytes<<16;
      }

      snd_emu10k1x_ptr_write(emu, PLAYBACK_LIST_ADDR, voice, emu->dma_buffer.addr+1024*voice);
      snd_emu10k1x_ptr_write(emu, PLAYBACK_LIST_SIZE, voice, (runtime->periods - 1) << 19);
      snd_emu10k1x_ptr_write(emu, PLAYBACK_LIST_PTR, voice, 0);
      snd_emu10k1x_ptr_write(emu, PLAYBACK_POINTER, voice, 0);
      snd_emu10k1x_ptr_write(emu, PLAYBACK_UNKNOWN1, voice, 0);
      snd_emu10k1x_ptr_write(emu, PLAYBACK_UNKNOWN2, voice, 0);
      snd_emu10k1x_ptr_write(emu, PLAYBACK_DMA_ADDR, voice, runtime->dma_addr);

      snd_emu10k1x_ptr_write(emu, PLAYBACK_PERIOD_SIZE, voice, frames_to_bytes(runtime, runtime->period_size)<<16);

      return 0;
}

/* trigger callback */
static int snd_emu10k1x_pcm_trigger(struct snd_pcm_substream *substream,
                            int cmd)
{
      struct emu10k1x *emu = snd_pcm_substream_chip(substream);
      struct snd_pcm_runtime *runtime = substream->runtime;
      struct emu10k1x_pcm *epcm = runtime->private_data;
      int channel = epcm->voice->number;
      int result = 0;

//    snd_printk(KERN_INFO "trigger - emu10k1x = 0x%x, cmd = %i, pointer = %d\n", (int)emu, cmd, (int)substream->ops->pointer(substream));

      switch (cmd) {
      case SNDRV_PCM_TRIGGER_START:
            if(runtime->periods == 2)
                  snd_emu10k1x_intr_enable(emu, (INTE_CH_0_LOOP | INTE_CH_0_HALF_LOOP) << channel);
            else
                  snd_emu10k1x_intr_enable(emu, INTE_CH_0_LOOP << channel);
            epcm->running = 1;
            snd_emu10k1x_ptr_write(emu, TRIGGER_CHANNEL, 0, snd_emu10k1x_ptr_read(emu, TRIGGER_CHANNEL, 0)|(TRIGGER_CHANNEL_0<<channel));
            break;
      case SNDRV_PCM_TRIGGER_STOP:
            epcm->running = 0;
            snd_emu10k1x_intr_disable(emu, (INTE_CH_0_LOOP | INTE_CH_0_HALF_LOOP) << channel);
            snd_emu10k1x_ptr_write(emu, TRIGGER_CHANNEL, 0, snd_emu10k1x_ptr_read(emu, TRIGGER_CHANNEL, 0) & ~(TRIGGER_CHANNEL_0<<channel));
            break;
      default:
            result = -EINVAL;
            break;
      }
      return result;
}

/* pointer callback */
static snd_pcm_uframes_t
snd_emu10k1x_pcm_pointer(struct snd_pcm_substream *substream)
{
      struct emu10k1x *emu = snd_pcm_substream_chip(substream);
      struct snd_pcm_runtime *runtime = substream->runtime;
      struct emu10k1x_pcm *epcm = runtime->private_data;
      int channel = epcm->voice->number;
      snd_pcm_uframes_t ptr = 0, ptr1 = 0, ptr2= 0,ptr3 = 0,ptr4 = 0;

      if (!epcm->running)
            return 0;

      ptr3 = snd_emu10k1x_ptr_read(emu, PLAYBACK_LIST_PTR, channel);
      ptr1 = snd_emu10k1x_ptr_read(emu, PLAYBACK_POINTER, channel);
      ptr4 = snd_emu10k1x_ptr_read(emu, PLAYBACK_LIST_PTR, channel);

      if(ptr4 == 0 && ptr1 == frames_to_bytes(runtime, runtime->buffer_size))
            return 0;
      
      if (ptr3 != ptr4) 
            ptr1 = snd_emu10k1x_ptr_read(emu, PLAYBACK_POINTER, channel);
      ptr2 = bytes_to_frames(runtime, ptr1);
      ptr2 += (ptr4 >> 3) * runtime->period_size;
      ptr = ptr2;

      if (ptr >= runtime->buffer_size)
            ptr -= runtime->buffer_size;

      return ptr;
}

/* operators */
static struct snd_pcm_ops snd_emu10k1x_playback_ops = {
      .open =        snd_emu10k1x_playback_open,
      .close =       snd_emu10k1x_playback_close,
      .ioctl =       snd_pcm_lib_ioctl,
      .hw_params =   snd_emu10k1x_pcm_hw_params,
      .hw_free =     snd_emu10k1x_pcm_hw_free,
      .prepare =     snd_emu10k1x_pcm_prepare,
      .trigger =     snd_emu10k1x_pcm_trigger,
      .pointer =     snd_emu10k1x_pcm_pointer,
};

/* open_capture callback */
static int snd_emu10k1x_pcm_open_capture(struct snd_pcm_substream *substream)
{
      struct emu10k1x *chip = snd_pcm_substream_chip(substream);
      struct emu10k1x_pcm *epcm;
      struct snd_pcm_runtime *runtime = substream->runtime;
      int err;

      if ((err = snd_pcm_hw_constraint_integer(runtime, SNDRV_PCM_HW_PARAM_PERIODS)) < 0)
                return err;
      if ((err = snd_pcm_hw_constraint_step(runtime, 0, SNDRV_PCM_HW_PARAM_PERIOD_BYTES, 64)) < 0)
                return err;

      epcm = kzalloc(sizeof(*epcm), GFP_KERNEL);
      if (epcm == NULL)
            return -ENOMEM;

      epcm->emu = chip;
      epcm->substream = substream;

      runtime->private_data = epcm;
      runtime->private_free = snd_emu10k1x_pcm_free_substream;

      runtime->hw = snd_emu10k1x_capture_hw;

      return 0;
}

/* close callback */
static int snd_emu10k1x_pcm_close_capture(struct snd_pcm_substream *substream)
{
      return 0;
}

/* hw_params callback */
static int snd_emu10k1x_pcm_hw_params_capture(struct snd_pcm_substream *substream,
                                    struct snd_pcm_hw_params *hw_params)
{
      struct snd_pcm_runtime *runtime = substream->runtime;
      struct emu10k1x_pcm *epcm = runtime->private_data;

      if (! epcm->voice) {
            if (epcm->emu->capture_voice.use)
                  return -EBUSY;
            epcm->voice = &epcm->emu->capture_voice;
            epcm->voice->epcm = epcm;
            epcm->voice->use = 1;
      }

      return snd_pcm_lib_malloc_pages(substream,
                              params_buffer_bytes(hw_params));
}

/* hw_free callback */
static int snd_emu10k1x_pcm_hw_free_capture(struct snd_pcm_substream *substream)
{
      struct snd_pcm_runtime *runtime = substream->runtime;

      struct emu10k1x_pcm *epcm;

      if (runtime->private_data == NULL)
            return 0;
      epcm = runtime->private_data;

      if (epcm->voice) {
            epcm->voice->use = 0;
            epcm->voice->epcm = NULL;
            epcm->voice = NULL;
      }

      return snd_pcm_lib_free_pages(substream);
}

/* prepare capture callback */
static int snd_emu10k1x_pcm_prepare_capture(struct snd_pcm_substream *substream)
{
      struct emu10k1x *emu = snd_pcm_substream_chip(substream);
      struct snd_pcm_runtime *runtime = substream->runtime;

      snd_emu10k1x_ptr_write(emu, CAPTURE_DMA_ADDR, 0, runtime->dma_addr);
      snd_emu10k1x_ptr_write(emu, CAPTURE_BUFFER_SIZE, 0, frames_to_bytes(runtime, runtime->buffer_size)<<16); // buffer size in bytes
      snd_emu10k1x_ptr_write(emu, CAPTURE_POINTER, 0, 0);
      snd_emu10k1x_ptr_write(emu, CAPTURE_UNKNOWN, 0, 0);

      return 0;
}

/* trigger_capture callback */
static int snd_emu10k1x_pcm_trigger_capture(struct snd_pcm_substream *substream,
                                  int cmd)
{
      struct emu10k1x *emu = snd_pcm_substream_chip(substream);
      struct snd_pcm_runtime *runtime = substream->runtime;
      struct emu10k1x_pcm *epcm = runtime->private_data;
      int result = 0;

      switch (cmd) {
      case SNDRV_PCM_TRIGGER_START:
            snd_emu10k1x_intr_enable(emu, INTE_CAP_0_LOOP | 
                               INTE_CAP_0_HALF_LOOP);
            snd_emu10k1x_ptr_write(emu, TRIGGER_CHANNEL, 0, snd_emu10k1x_ptr_read(emu, TRIGGER_CHANNEL, 0)|TRIGGER_CAPTURE);
            epcm->running = 1;
            break;
      case SNDRV_PCM_TRIGGER_STOP:
            epcm->running = 0;
            snd_emu10k1x_intr_disable(emu, INTE_CAP_0_LOOP | 
                                INTE_CAP_0_HALF_LOOP);
            snd_emu10k1x_ptr_write(emu, TRIGGER_CHANNEL, 0, snd_emu10k1x_ptr_read(emu, TRIGGER_CHANNEL, 0) & ~(TRIGGER_CAPTURE));
            break;
      default:
            result = -EINVAL;
            break;
      }
      return result;
}

/* pointer_capture callback */
static snd_pcm_uframes_t
snd_emu10k1x_pcm_pointer_capture(struct snd_pcm_substream *substream)
{
      struct emu10k1x *emu = snd_pcm_substream_chip(substream);
      struct snd_pcm_runtime *runtime = substream->runtime;
      struct emu10k1x_pcm *epcm = runtime->private_data;
      snd_pcm_uframes_t ptr;

      if (!epcm->running)
            return 0;

      ptr = bytes_to_frames(runtime, snd_emu10k1x_ptr_read(emu, CAPTURE_POINTER, 0));
      if (ptr >= runtime->buffer_size)
            ptr -= runtime->buffer_size;

      return ptr;
}

static struct snd_pcm_ops snd_emu10k1x_capture_ops = {
      .open =        snd_emu10k1x_pcm_open_capture,
      .close =       snd_emu10k1x_pcm_close_capture,
      .ioctl =       snd_pcm_lib_ioctl,
      .hw_params =   snd_emu10k1x_pcm_hw_params_capture,
      .hw_free =     snd_emu10k1x_pcm_hw_free_capture,
      .prepare =     snd_emu10k1x_pcm_prepare_capture,
      .trigger =     snd_emu10k1x_pcm_trigger_capture,
      .pointer =     snd_emu10k1x_pcm_pointer_capture,
};

static unsigned short snd_emu10k1x_ac97_read(struct snd_ac97 *ac97,
                                   unsigned short reg)
{
      struct emu10k1x *emu = ac97->private_data;
      unsigned long flags;
      unsigned short val;
  
      spin_lock_irqsave(&emu->emu_lock, flags);
      outb(reg, emu->port + AC97ADDRESS);
      val = inw(emu->port + AC97DATA);
      spin_unlock_irqrestore(&emu->emu_lock, flags);
      return val;
}

static void snd_emu10k1x_ac97_write(struct snd_ac97 *ac97,
                            unsigned short reg, unsigned short val)
{
      struct emu10k1x *emu = ac97->private_data;
      unsigned long flags;
  
      spin_lock_irqsave(&emu->emu_lock, flags);
      outb(reg, emu->port + AC97ADDRESS);
      outw(val, emu->port + AC97DATA);
      spin_unlock_irqrestore(&emu->emu_lock, flags);
}

static int snd_emu10k1x_ac97(struct emu10k1x *chip)
{
      struct snd_ac97_bus *pbus;
      struct snd_ac97_template ac97;
      int err;
      static struct snd_ac97_bus_ops ops = {
            .write = snd_emu10k1x_ac97_write,
            .read = snd_emu10k1x_ac97_read,
      };
  
      if ((err = snd_ac97_bus(chip->card, 0, &ops, NULL, &pbus)) < 0)
            return err;
      pbus->no_vra = 1; /* we don't need VRA */

      memset(&ac97, 0, sizeof(ac97));
      ac97.private_data = chip;
      ac97.scaps = AC97_SCAP_NO_SPDIF;
      return snd_ac97_mixer(pbus, &ac97, &chip->ac97);
}

static int snd_emu10k1x_free(struct emu10k1x *chip)
{
      snd_emu10k1x_ptr_write(chip, TRIGGER_CHANNEL, 0, 0);
      // disable interrupts
      outl(0, chip->port + INTE);
      // disable audio
      outl(HCFG_LOCKSOUNDCACHE, chip->port + HCFG);

      /* release the irq */
      if (chip->irq >= 0)
            free_irq(chip->irq, chip);

      // release the i/o port
      release_and_free_resource(chip->res_port);

      // release the DMA
      if (chip->dma_buffer.area) {
            snd_dma_free_pages(&chip->dma_buffer);
      }

      pci_disable_device(chip->pci);

      // release the data
      kfree(chip);
      return 0;
}

static int snd_emu10k1x_dev_free(struct snd_device *device)
{
      struct emu10k1x *chip = device->device_data;
      return snd_emu10k1x_free(chip);
}

static irqreturn_t snd_emu10k1x_interrupt(int irq, void *dev_id)
{
      unsigned int status;

      struct emu10k1x *chip = dev_id;
      struct emu10k1x_voice *pvoice = chip->voices;
      int i;
      int mask;

      status = inl(chip->port + IPR);

      if (! status)
            return IRQ_NONE;

      // capture interrupt
      if (status & (IPR_CAP_0_LOOP | IPR_CAP_0_HALF_LOOP)) {
            struct emu10k1x_voice *cap_voice = &chip->capture_voice;
            if (cap_voice->use)
                  snd_emu10k1x_pcm_interrupt(chip, cap_voice);
            else
                  snd_emu10k1x_intr_disable(chip, 
                                      INTE_CAP_0_LOOP |
                                      INTE_CAP_0_HALF_LOOP);
      }
            
      mask = IPR_CH_0_LOOP|IPR_CH_0_HALF_LOOP;
      for (i = 0; i < 3; i++) {
            if (status & mask) {
                  if (pvoice->use)
                        snd_emu10k1x_pcm_interrupt(chip, pvoice);
                  else 
                        snd_emu10k1x_intr_disable(chip, mask);
            }
            pvoice++;
            mask <<= 1;
      }
            
      if (status & (IPR_MIDITRANSBUFEMPTY|IPR_MIDIRECVBUFEMPTY)) {
            if (chip->midi.interrupt)
                  chip->midi.interrupt(chip, status);
            else
                  snd_emu10k1x_intr_disable(chip, INTE_MIDITXENABLE|INTE_MIDIRXENABLE);
      }
            
      // acknowledge the interrupt if necessary
      outl(status, chip->port + IPR);

      // snd_printk(KERN_INFO "interrupt %08x\n", status);
      return IRQ_HANDLED;
}

static int __devinit snd_emu10k1x_pcm(struct emu10k1x *emu, int device, struct snd_pcm **rpcm)
{
      struct snd_pcm *pcm;
      int err;
      int capture = 0;
  
      if (rpcm)
            *rpcm = NULL;
      if (device == 0)
            capture = 1;
      
      if ((err = snd_pcm_new(emu->card, "emu10k1x", device, 1, capture, &pcm)) < 0)
            return err;
  
      pcm->private_data = emu;
      
      switch(device) {
      case 0:
            snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_emu10k1x_playback_ops);
            snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &snd_emu10k1x_capture_ops);
            break;
      case 1:
      case 2:
            snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_emu10k1x_playback_ops);
            break;
      }

      pcm->info_flags = 0;
      pcm->dev_subclass = SNDRV_PCM_SUBCLASS_GENERIC_MIX;
      switch(device) {
      case 0:
            strcpy(pcm->name, "EMU10K1X Front");
            break;
      case 1:
            strcpy(pcm->name, "EMU10K1X Rear");
            break;
      case 2:
            strcpy(pcm->name, "EMU10K1X Center/LFE");
            break;
      }
      emu->pcm = pcm;

      snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_DEV,
                                    snd_dma_pci_data(emu->pci), 
                                    32*1024, 32*1024);
  
      if (rpcm)
            *rpcm = pcm;
  
      return 0;
}

static int __devinit snd_emu10k1x_create(struct snd_card *card,
                               struct pci_dev *pci,
                               struct emu10k1x **rchip)
{
      struct emu10k1x *chip;
      int err;
      int ch;
      static struct snd_device_ops ops = {
            .dev_free = snd_emu10k1x_dev_free,
      };

      *rchip = NULL;

      if ((err = pci_enable_device(pci)) < 0)
            return err;
      if (pci_set_dma_mask(pci, DMA_BIT_MASK(28)) < 0 ||
          pci_set_consistent_dma_mask(pci, DMA_BIT_MASK(28)) < 0) {
            snd_printk(KERN_ERR "error to set 28bit mask DMA\n");
            pci_disable_device(pci);
            return -ENXIO;
      }

      chip = kzalloc(sizeof(*chip), GFP_KERNEL);
      if (chip == NULL) {
            pci_disable_device(pci);
            return -ENOMEM;
      }

      chip->card = card;
      chip->pci = pci;
      chip->irq = -1;

      spin_lock_init(&chip->emu_lock);
      spin_lock_init(&chip->voice_lock);
  
      chip->port = pci_resource_start(pci, 0);
      if ((chip->res_port = request_region(chip->port, 8,
                                   "EMU10K1X")) == NULL) { 
            snd_printk(KERN_ERR "emu10k1x: cannot allocate the port 0x%lx\n", chip->port);
            snd_emu10k1x_free(chip);
            return -EBUSY;
      }

      if (request_irq(pci->irq, snd_emu10k1x_interrupt,
                  IRQF_SHARED, "EMU10K1X", chip)) {
            snd_printk(KERN_ERR "emu10k1x: cannot grab irq %d\n", pci->irq);
            snd_emu10k1x_free(chip);
            return -EBUSY;
      }
      chip->irq = pci->irq;
  
      if(snd_dma_alloc_pages(SNDRV_DMA_TYPE_DEV, snd_dma_pci_data(pci),
                         4 * 1024, &chip->dma_buffer) < 0) {
            snd_emu10k1x_free(chip);
            return -ENOMEM;
      }

      pci_set_master(pci);
      /* read revision & serial */
      chip->revision = pci->revision;
      pci_read_config_dword(pci, PCI_SUBSYSTEM_VENDOR_ID, &chip->serial);
      pci_read_config_word(pci, PCI_SUBSYSTEM_ID, &chip->model);
      snd_printk(KERN_INFO "Model %04x Rev %08x Serial %08x\n", chip->model,
               chip->revision, chip->serial);

      outl(0, chip->port + INTE);   

      for(ch = 0; ch < 3; ch++) {
            chip->voices[ch].emu = chip;
            chip->voices[ch].number = ch;
      }

      /*
       *  Init to 0x02109204 :
       *  Clock accuracy    = 0     (1000ppm)
       *  Sample Rate       = 2     (48kHz)
       *  Audio Channel     = 1     (Left of 2)
       *  Source Number     = 0     (Unspecified)
       *  Generation Status = 1     (Original for Cat Code 12)
       *  Cat Code          = 12    (Digital Signal Mixer)
       *  Mode              = 0     (Mode 0)
       *  Emphasis          = 0     (None)
       *  CP                = 1     (Copyright unasserted)
       *  AN                = 0     (Audio data)
       *  P                 = 0     (Consumer)
       */
      snd_emu10k1x_ptr_write(chip, SPCS0, 0,
                         chip->spdif_bits[0] = 
                         SPCS_CLKACCY_1000PPM | SPCS_SAMPLERATE_48 |
                         SPCS_CHANNELNUM_LEFT | SPCS_SOURCENUM_UNSPEC |
                         SPCS_GENERATIONSTATUS | 0x00001200 |
                         0x00000000 | SPCS_EMPHASIS_NONE | SPCS_COPYRIGHT);
      snd_emu10k1x_ptr_write(chip, SPCS1, 0,
                         chip->spdif_bits[1] = 
                         SPCS_CLKACCY_1000PPM | SPCS_SAMPLERATE_48 |
                         SPCS_CHANNELNUM_LEFT | SPCS_SOURCENUM_UNSPEC |
                         SPCS_GENERATIONSTATUS | 0x00001200 |
                         0x00000000 | SPCS_EMPHASIS_NONE | SPCS_COPYRIGHT);
      snd_emu10k1x_ptr_write(chip, SPCS2, 0,
                         chip->spdif_bits[2] = 
                         SPCS_CLKACCY_1000PPM | SPCS_SAMPLERATE_48 |
                         SPCS_CHANNELNUM_LEFT | SPCS_SOURCENUM_UNSPEC |
                         SPCS_GENERATIONSTATUS | 0x00001200 |
                         0x00000000 | SPCS_EMPHASIS_NONE | SPCS_COPYRIGHT);

      snd_emu10k1x_ptr_write(chip, SPDIF_SELECT, 0, 0x700); // disable SPDIF
      snd_emu10k1x_ptr_write(chip, ROUTING, 0, 0x1003F); // routing
      snd_emu10k1x_gpio_write(chip, 0x1080); // analog mode

      outl(HCFG_LOCKSOUNDCACHE|HCFG_AUDIOENABLE, chip->port+HCFG);

      if ((err = snd_device_new(card, SNDRV_DEV_LOWLEVEL,
                          chip, &ops)) < 0) {
            snd_emu10k1x_free(chip);
            return err;
      }
      *rchip = chip;
      return 0;
}

static void snd_emu10k1x_proc_reg_read(struct snd_info_entry *entry, 
                               struct snd_info_buffer *buffer)
{
      struct emu10k1x *emu = entry->private_data;
      unsigned long value,value1,value2;
      unsigned long flags;
      int i;

      snd_iprintf(buffer, "Registers:\n\n");
      for(i = 0; i < 0x20; i+=4) {
            spin_lock_irqsave(&emu->emu_lock, flags);
            value = inl(emu->port + i);
            spin_unlock_irqrestore(&emu->emu_lock, flags);
            snd_iprintf(buffer, "Register %02X: %08lX\n", i, value);
      }
      snd_iprintf(buffer, "\nRegisters\n\n");
      for(i = 0; i <= 0x48; i++) {
            value = snd_emu10k1x_ptr_read(emu, i, 0);
            if(i < 0x10 || (i >= 0x20 && i < 0x40)) {
                  value1 = snd_emu10k1x_ptr_read(emu, i, 1);
                  value2 = snd_emu10k1x_ptr_read(emu, i, 2);
                  snd_iprintf(buffer, "%02X: %08lX %08lX %08lX\n", i, value, value1, value2);
            } else {
                  snd_iprintf(buffer, "%02X: %08lX\n", i, value);
            }
      }
}

static void snd_emu10k1x_proc_reg_write(struct snd_info_entry *entry, 
                              struct snd_info_buffer *buffer)
{
      struct emu10k1x *emu = entry->private_data;
      char line[64];
      unsigned int reg, channel_id , val;

      while (!snd_info_get_line(buffer, line, sizeof(line))) {
            if (sscanf(line, "%x %x %x", &reg, &channel_id, &val) != 3)
                  continue;

            if ((reg < 0x49) && (reg >= 0) && (val <= 0xffffffff) 
                && (channel_id >= 0) && (channel_id <= 2) )
                  snd_emu10k1x_ptr_write(emu, reg, channel_id, val);
      }
}

static int __devinit snd_emu10k1x_proc_init(struct emu10k1x * emu)
{
      struct snd_info_entry *entry;
      
      if(! snd_card_proc_new(emu->card, "emu10k1x_regs", &entry)) {
            snd_info_set_text_ops(entry, emu, snd_emu10k1x_proc_reg_read);
            entry->c.text.write = snd_emu10k1x_proc_reg_write;
            entry->mode |= S_IWUSR;
            entry->private_data = emu;
      }
      
      return 0;
}

#define snd_emu10k1x_shared_spdif_info    snd_ctl_boolean_mono_info

static int snd_emu10k1x_shared_spdif_get(struct snd_kcontrol *kcontrol,
                               struct snd_ctl_elem_value *ucontrol)
{
      struct emu10k1x *emu = snd_kcontrol_chip(kcontrol);

      ucontrol->value.integer.value[0] = (snd_emu10k1x_ptr_read(emu, SPDIF_SELECT, 0) == 0x700) ? 0 : 1;

      return 0;
}

static int snd_emu10k1x_shared_spdif_put(struct snd_kcontrol *kcontrol,
                               struct snd_ctl_elem_value *ucontrol)
{
      struct emu10k1x *emu = snd_kcontrol_chip(kcontrol);
      unsigned int val;
      int change = 0;

      val = ucontrol->value.integer.value[0] ;

      if (val) {
            // enable spdif output
            snd_emu10k1x_ptr_write(emu, SPDIF_SELECT, 0, 0x000);
            snd_emu10k1x_ptr_write(emu, ROUTING, 0, 0x700);
            snd_emu10k1x_gpio_write(emu, 0x1000);
      } else {
            // disable spdif output
            snd_emu10k1x_ptr_write(emu, SPDIF_SELECT, 0, 0x700);
            snd_emu10k1x_ptr_write(emu, ROUTING, 0, 0x1003F);
            snd_emu10k1x_gpio_write(emu, 0x1080);
      }
      return change;
}

static struct snd_kcontrol_new snd_emu10k1x_shared_spdif __devinitdata =
{
      .iface =    SNDRV_CTL_ELEM_IFACE_MIXER,
      .name =           "Analog/Digital Output Jack",
      .info =           snd_emu10k1x_shared_spdif_info,
      .get =            snd_emu10k1x_shared_spdif_get,
      .put =            snd_emu10k1x_shared_spdif_put
};

static int snd_emu10k1x_spdif_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo)
{
      uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
      uinfo->count = 1;
      return 0;
}

static int snd_emu10k1x_spdif_get(struct snd_kcontrol *kcontrol,
                          struct snd_ctl_elem_value *ucontrol)
{
      struct emu10k1x *emu = snd_kcontrol_chip(kcontrol);
      unsigned int idx = snd_ctl_get_ioffidx(kcontrol, &ucontrol->id);

      ucontrol->value.iec958.status[0] = (emu->spdif_bits[idx] >> 0) & 0xff;
      ucontrol->value.iec958.status[1] = (emu->spdif_bits[idx] >> 8) & 0xff;
      ucontrol->value.iec958.status[2] = (emu->spdif_bits[idx] >> 16) & 0xff;
      ucontrol->value.iec958.status[3] = (emu->spdif_bits[idx] >> 24) & 0xff;
      return 0;
}

static int snd_emu10k1x_spdif_get_mask(struct snd_kcontrol *kcontrol,
                               struct snd_ctl_elem_value *ucontrol)
{
      ucontrol->value.iec958.status[0] = 0xff;
      ucontrol->value.iec958.status[1] = 0xff;
      ucontrol->value.iec958.status[2] = 0xff;
      ucontrol->value.iec958.status[3] = 0xff;
      return 0;
}

static int snd_emu10k1x_spdif_put(struct snd_kcontrol *kcontrol,
                          struct snd_ctl_elem_value *ucontrol)
{
      struct emu10k1x *emu = snd_kcontrol_chip(kcontrol);
      unsigned int idx = snd_ctl_get_ioffidx(kcontrol, &ucontrol->id);
      int change;
      unsigned int val;

      val = (ucontrol->value.iec958.status[0] << 0) |
            (ucontrol->value.iec958.status[1] << 8) |
            (ucontrol->value.iec958.status[2] << 16) |
            (ucontrol->value.iec958.status[3] << 24);
      change = val != emu->spdif_bits[idx];
      if (change) {
            snd_emu10k1x_ptr_write(emu, SPCS0 + idx, 0, val);
            emu->spdif_bits[idx] = val;
      }
      return change;
}

static struct snd_kcontrol_new snd_emu10k1x_spdif_mask_control =
{
      .access =   SNDRV_CTL_ELEM_ACCESS_READ,
      .iface =        SNDRV_CTL_ELEM_IFACE_PCM,
      .name =         SNDRV_CTL_NAME_IEC958("",PLAYBACK,MASK),
      .count =    3,
      .info =         snd_emu10k1x_spdif_info,
      .get =          snd_emu10k1x_spdif_get_mask
};

static struct snd_kcontrol_new snd_emu10k1x_spdif_control =
{
      .iface =    SNDRV_CTL_ELEM_IFACE_PCM,
      .name =         SNDRV_CTL_NAME_IEC958("",PLAYBACK,DEFAULT),
      .count =    3,
      .info =         snd_emu10k1x_spdif_info,
      .get =          snd_emu10k1x_spdif_get,
      .put =          snd_emu10k1x_spdif_put
};

static int __devinit snd_emu10k1x_mixer(struct emu10k1x *emu)
{
      int err;
      struct snd_kcontrol *kctl;
      struct snd_card *card = emu->card;

      if ((kctl = snd_ctl_new1(&snd_emu10k1x_spdif_mask_control, emu)) == NULL)
            return -ENOMEM;
      if ((err = snd_ctl_add(card, kctl)))
            return err;
      if ((kctl = snd_ctl_new1(&snd_emu10k1x_shared_spdif, emu)) == NULL)
            return -ENOMEM;
      if ((err = snd_ctl_add(card, kctl)))
            return err;
      if ((kctl = snd_ctl_new1(&snd_emu10k1x_spdif_control, emu)) == NULL)
            return -ENOMEM;
      if ((err = snd_ctl_add(card, kctl)))
            return err;

      return 0;
}

#define EMU10K1X_MIDI_MODE_INPUT    (1<<0)
#define EMU10K1X_MIDI_MODE_OUTPUT   (1<<1)

static inline unsigned char mpu401_read(struct emu10k1x *emu, struct emu10k1x_midi *mpu, int idx)
{
      return (unsigned char)snd_emu10k1x_ptr_read(emu, mpu->port + idx, 0);
}

static inline void mpu401_write(struct emu10k1x *emu, struct emu10k1x_midi *mpu, int data, int idx)
{
      snd_emu10k1x_ptr_write(emu, mpu->port + idx, 0, data);
}

#define mpu401_write_data(emu, mpu, data) mpu401_write(emu, mpu, data, 0)
#define mpu401_write_cmd(emu, mpu, data)  mpu401_write(emu, mpu, data, 1)
#define mpu401_read_data(emu, mpu)        mpu401_read(emu, mpu, 0)
#define mpu401_read_stat(emu, mpu)        mpu401_read(emu, mpu, 1)

#define mpu401_input_avail(emu,mpu) (!(mpu401_read_stat(emu,mpu) & 0x80))
#define mpu401_output_ready(emu,mpu)      (!(mpu401_read_stat(emu,mpu) & 0x40))

#define MPU401_RESET          0xff
#define MPU401_ENTER_UART     0x3f
#define MPU401_ACK            0xfe

static void mpu401_clear_rx(struct emu10k1x *emu, struct emu10k1x_midi *mpu)
{
      int timeout = 100000;
      for (; timeout > 0 && mpu401_input_avail(emu, mpu); timeout--)
            mpu401_read_data(emu, mpu);
#ifdef CONFIG_SND_DEBUG
      if (timeout <= 0)
            snd_printk(KERN_ERR "cmd: clear rx timeout (status = 0x%x)\n", mpu401_read_stat(emu, mpu));
#endif
}

/*

 */

static void do_emu10k1x_midi_interrupt(struct emu10k1x *emu,
                               struct emu10k1x_midi *midi, unsigned int status)
{
      unsigned char byte;

      if (midi->rmidi == NULL) {
            snd_emu10k1x_intr_disable(emu, midi->tx_enable | midi->rx_enable);
            return;
      }

      spin_lock(&midi->input_lock);
      if ((status & midi->ipr_rx) && mpu401_input_avail(emu, midi)) {
            if (!(midi->midi_mode & EMU10K1X_MIDI_MODE_INPUT)) {
                  mpu401_clear_rx(emu, midi);
            } else {
                  byte = mpu401_read_data(emu, midi);
                  if (midi->substream_input)
                        snd_rawmidi_receive(midi->substream_input, &byte, 1);
            }
      }
      spin_unlock(&midi->input_lock);

      spin_lock(&midi->output_lock);
      if ((status & midi->ipr_tx) && mpu401_output_ready(emu, midi)) {
            if (midi->substream_output &&
                snd_rawmidi_transmit(midi->substream_output, &byte, 1) == 1) {
                  mpu401_write_data(emu, midi, byte);
            } else {
                  snd_emu10k1x_intr_disable(emu, midi->tx_enable);
            }
      }
      spin_unlock(&midi->output_lock);
}

static void snd_emu10k1x_midi_interrupt(struct emu10k1x *emu, unsigned int status)
{
      do_emu10k1x_midi_interrupt(emu, &emu->midi, status);
}

static int snd_emu10k1x_midi_cmd(struct emu10k1x * emu,
                          struct emu10k1x_midi *midi, unsigned char cmd, int ack)
{
      unsigned long flags;
      int timeout, ok;

      spin_lock_irqsave(&midi->input_lock, flags);
      mpu401_write_data(emu, midi, 0x00);
      /* mpu401_clear_rx(emu, midi); */

      mpu401_write_cmd(emu, midi, cmd);
      if (ack) {
            ok = 0;
            timeout = 10000;
            while (!ok && timeout-- > 0) {
                  if (mpu401_input_avail(emu, midi)) {
                        if (mpu401_read_data(emu, midi) == MPU401_ACK)
                              ok = 1;
                  }
            }
            if (!ok && mpu401_read_data(emu, midi) == MPU401_ACK)
                  ok = 1;
      } else {
            ok = 1;
      }
      spin_unlock_irqrestore(&midi->input_lock, flags);
      if (!ok) {
            snd_printk(KERN_ERR "midi_cmd: 0x%x failed at 0x%lx (status = 0x%x, data = 0x%x)!!!\n",
                     cmd, emu->port,
                     mpu401_read_stat(emu, midi),
                     mpu401_read_data(emu, midi));
            return 1;
      }
      return 0;
}

static int snd_emu10k1x_midi_input_open(struct snd_rawmidi_substream *substream)
{
      struct emu10k1x *emu;
      struct emu10k1x_midi *midi = substream->rmidi->private_data;
      unsigned long flags;
      
      emu = midi->emu;
      if (snd_BUG_ON(!emu))
            return -ENXIO;
      spin_lock_irqsave(&midi->open_lock, flags);
      midi->midi_mode |= EMU10K1X_MIDI_MODE_INPUT;
      midi->substream_input = substream;
      if (!(midi->midi_mode & EMU10K1X_MIDI_MODE_OUTPUT)) {
            spin_unlock_irqrestore(&midi->open_lock, flags);
            if (snd_emu10k1x_midi_cmd(emu, midi, MPU401_RESET, 1))
                  goto error_out;
            if (snd_emu10k1x_midi_cmd(emu, midi, MPU401_ENTER_UART, 1))
                  goto error_out;
      } else {
            spin_unlock_irqrestore(&midi->open_lock, flags);
      }
      return 0;

error_out:
      return -EIO;
}

static int snd_emu10k1x_midi_output_open(struct snd_rawmidi_substream *substream)
{
      struct emu10k1x *emu;
      struct emu10k1x_midi *midi = substream->rmidi->private_data;
      unsigned long flags;

      emu = midi->emu;
      if (snd_BUG_ON(!emu))
            return -ENXIO;
      spin_lock_irqsave(&midi->open_lock, flags);
      midi->midi_mode |= EMU10K1X_MIDI_MODE_OUTPUT;
      midi->substream_output = substream;
      if (!(midi->midi_mode & EMU10K1X_MIDI_MODE_INPUT)) {
            spin_unlock_irqrestore(&midi->open_lock, flags);
            if (snd_emu10k1x_midi_cmd(emu, midi, MPU401_RESET, 1))
                  goto error_out;
            if (snd_emu10k1x_midi_cmd(emu, midi, MPU401_ENTER_UART, 1))
                  goto error_out;
      } else {
            spin_unlock_irqrestore(&midi->open_lock, flags);
      }
      return 0;

error_out:
      return -EIO;
}

static int snd_emu10k1x_midi_input_close(struct snd_rawmidi_substream *substream)
{
      struct emu10k1x *emu;
      struct emu10k1x_midi *midi = substream->rmidi->private_data;
      unsigned long flags;
      int err = 0;

      emu = midi->emu;
      if (snd_BUG_ON(!emu))
            return -ENXIO;
      spin_lock_irqsave(&midi->open_lock, flags);
      snd_emu10k1x_intr_disable(emu, midi->rx_enable);
      midi->midi_mode &= ~EMU10K1X_MIDI_MODE_INPUT;
      midi->substream_input = NULL;
      if (!(midi->midi_mode & EMU10K1X_MIDI_MODE_OUTPUT)) {
            spin_unlock_irqrestore(&midi->open_lock, flags);
            err = snd_emu10k1x_midi_cmd(emu, midi, MPU401_RESET, 0);
      } else {
            spin_unlock_irqrestore(&midi->open_lock, flags);
      }
      return err;
}

static int snd_emu10k1x_midi_output_close(struct snd_rawmidi_substream *substream)
{
      struct emu10k1x *emu;
      struct emu10k1x_midi *midi = substream->rmidi->private_data;
      unsigned long flags;
      int err = 0;

      emu = midi->emu;
      if (snd_BUG_ON(!emu))
            return -ENXIO;
      spin_lock_irqsave(&midi->open_lock, flags);
      snd_emu10k1x_intr_disable(emu, midi->tx_enable);
      midi->midi_mode &= ~EMU10K1X_MIDI_MODE_OUTPUT;
      midi->substream_output = NULL;
      if (!(midi->midi_mode & EMU10K1X_MIDI_MODE_INPUT)) {
            spin_unlock_irqrestore(&midi->open_lock, flags);
            err = snd_emu10k1x_midi_cmd(emu, midi, MPU401_RESET, 0);
      } else {
            spin_unlock_irqrestore(&midi->open_lock, flags);
      }
      return err;
}

static void snd_emu10k1x_midi_input_trigger(struct snd_rawmidi_substream *substream, int up)
{
      struct emu10k1x *emu;
      struct emu10k1x_midi *midi = substream->rmidi->private_data;
      emu = midi->emu;
      if (snd_BUG_ON(!emu))
            return;

      if (up)
            snd_emu10k1x_intr_enable(emu, midi->rx_enable);
      else
            snd_emu10k1x_intr_disable(emu, midi->rx_enable);
}

static void snd_emu10k1x_midi_output_trigger(struct snd_rawmidi_substream *substream, int up)
{
      struct emu10k1x *emu;
      struct emu10k1x_midi *midi = substream->rmidi->private_data;
      unsigned long flags;

      emu = midi->emu;
      if (snd_BUG_ON(!emu))
            return;

      if (up) {
            int max = 4;
            unsigned char byte;
      
            /* try to send some amount of bytes here before interrupts */
            spin_lock_irqsave(&midi->output_lock, flags);
            while (max > 0) {
                  if (mpu401_output_ready(emu, midi)) {
                        if (!(midi->midi_mode & EMU10K1X_MIDI_MODE_OUTPUT) ||
                            snd_rawmidi_transmit(substream, &byte, 1) != 1) {
                              /* no more data */
                              spin_unlock_irqrestore(&midi->output_lock, flags);
                              return;
                        }
                        mpu401_write_data(emu, midi, byte);
                        max--;
                  } else {
                        break;
                  }
            }
            spin_unlock_irqrestore(&midi->output_lock, flags);
            snd_emu10k1x_intr_enable(emu, midi->tx_enable);
      } else {
            snd_emu10k1x_intr_disable(emu, midi->tx_enable);
      }
}

/*

 */

static struct snd_rawmidi_ops snd_emu10k1x_midi_output =
{
      .open =           snd_emu10k1x_midi_output_open,
      .close =    snd_emu10k1x_midi_output_close,
      .trigger =  snd_emu10k1x_midi_output_trigger,
};

static struct snd_rawmidi_ops snd_emu10k1x_midi_input =
{
      .open =           snd_emu10k1x_midi_input_open,
      .close =    snd_emu10k1x_midi_input_close,
      .trigger =  snd_emu10k1x_midi_input_trigger,
};

static void snd_emu10k1x_midi_free(struct snd_rawmidi *rmidi)
{
      struct emu10k1x_midi *midi = rmidi->private_data;
      midi->interrupt = NULL;
      midi->rmidi = NULL;
}

static int __devinit emu10k1x_midi_init(struct emu10k1x *emu,
                              struct emu10k1x_midi *midi, int device, char *name)
{
      struct snd_rawmidi *rmidi;
      int err;

      if ((err = snd_rawmidi_new(emu->card, name, device, 1, 1, &rmidi)) < 0)
            return err;
      midi->emu = emu;
      spin_lock_init(&midi->open_lock);
      spin_lock_init(&midi->input_lock);
      spin_lock_init(&midi->output_lock);
      strcpy(rmidi->name, name);
      snd_rawmidi_set_ops(rmidi, SNDRV_RAWMIDI_STREAM_OUTPUT, &snd_emu10k1x_midi_output);
      snd_rawmidi_set_ops(rmidi, SNDRV_RAWMIDI_STREAM_INPUT, &snd_emu10k1x_midi_input);
      rmidi->info_flags |= SNDRV_RAWMIDI_INFO_OUTPUT |
                           SNDRV_RAWMIDI_INFO_INPUT |
                           SNDRV_RAWMIDI_INFO_DUPLEX;
      rmidi->private_data = midi;
      rmidi->private_free = snd_emu10k1x_midi_free;
      midi->rmidi = rmidi;
      return 0;
}

static int __devinit snd_emu10k1x_midi(struct emu10k1x *emu)
{
      struct emu10k1x_midi *midi = &emu->midi;
      int err;

      if ((err = emu10k1x_midi_init(emu, midi, 0, "EMU10K1X MPU-401 (UART)")) < 0)
            return err;

      midi->tx_enable = INTE_MIDITXENABLE;
      midi->rx_enable = INTE_MIDIRXENABLE;
      midi->port = MUDATA;
      midi->ipr_tx = IPR_MIDITRANSBUFEMPTY;
      midi->ipr_rx = IPR_MIDIRECVBUFEMPTY;
      midi->interrupt = snd_emu10k1x_midi_interrupt;
      return 0;
}

static int __devinit snd_emu10k1x_probe(struct pci_dev *pci,
                              const struct pci_device_id *pci_id)
{
      static int dev;
      struct snd_card *card;
      struct emu10k1x *chip;
      int err;

      if (dev >= SNDRV_CARDS)
            return -ENODEV;
      if (!enable[dev]) {
            dev++;
            return -ENOENT;
      }

      err = snd_card_create(index[dev], id[dev], THIS_MODULE, 0, &card);
      if (err < 0)
            return err;

      if ((err = snd_emu10k1x_create(card, pci, &chip)) < 0) {
            snd_card_free(card);
            return err;
      }

      if ((err = snd_emu10k1x_pcm(chip, 0, NULL)) < 0) {
            snd_card_free(card);
            return err;
      }
      if ((err = snd_emu10k1x_pcm(chip, 1, NULL)) < 0) {
            snd_card_free(card);
            return err;
      }
      if ((err = snd_emu10k1x_pcm(chip, 2, NULL)) < 0) {
            snd_card_free(card);
            return err;
      }

      if ((err = snd_emu10k1x_ac97(chip)) < 0) {
            snd_card_free(card);
            return err;
      }

      if ((err = snd_emu10k1x_mixer(chip)) < 0) {
            snd_card_free(card);
            return err;
      }
      
      if ((err = snd_emu10k1x_midi(chip)) < 0) {
            snd_card_free(card);
            return err;
      }

      snd_emu10k1x_proc_init(chip);

      strcpy(card->driver, "EMU10K1X");
      strcpy(card->shortname, "Dell Sound Blaster Live!");
      sprintf(card->longname, "%s at 0x%lx irq %i",
            card->shortname, chip->port, chip->irq);

      snd_card_set_dev(card, &pci->dev);

      if ((err = snd_card_register(card)) < 0) {
            snd_card_free(card);
            return err;
      }

      pci_set_drvdata(pci, card);
      dev++;
      return 0;
}

static void __devexit snd_emu10k1x_remove(struct pci_dev *pci)
{
      snd_card_free(pci_get_drvdata(pci));
      pci_set_drvdata(pci, NULL);
}

// PCI IDs
static struct pci_device_id snd_emu10k1x_ids[] = {
      { 0x1102, 0x0006, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0 },  /* Dell OEM version (EMU10K1) */
      { 0, }
};
MODULE_DEVICE_TABLE(pci, snd_emu10k1x_ids);

// pci_driver definition
static struct pci_driver driver = {
      .name = "EMU10K1X",
      .id_table = snd_emu10k1x_ids,
      .probe = snd_emu10k1x_probe,
      .remove = __devexit_p(snd_emu10k1x_remove),
};

// initialization of the module
static int __init alsa_card_emu10k1x_init(void)
{
      return pci_register_driver(&driver);
}

// clean up the module
static void __exit alsa_card_emu10k1x_exit(void)
{
      pci_unregister_driver(&driver);
}

module_init(alsa_card_emu10k1x_init)
module_exit(alsa_card_emu10k1x_exit)

Generated by  Doxygen 1.6.0   Back to index