Logo Search packages:      
Sourcecode: alsa-driver version File versions  Download package

juli.c

/*
 *   ALSA driver for ICEnsemble VT1724 (Envy24HT)
 *
 *   Lowlevel functions for ESI Juli@ cards
 *
 *    Copyright (c) 2004 Jaroslav Kysela <perex@perex.cz>
 *                  2008 Pavel Hofman <dustin@seznam.cz>
 *
 *
 *   This program is free software; you can redistribute it and/or modify
 *   it under the terms of the GNU General Public License as published by
 *   the Free Software Foundation; either version 2 of the License, or
 *   (at your option) any later version.
 *
 *   This program is distributed in the hope that it will be useful,
 *   but WITHOUT ANY WARRANTY; without even the implied warranty of
 *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *   GNU General Public License for more details.
 *
 *   You should have received a copy of the GNU General Public License
 *   along with this program; if not, write to the Free Software
 *   Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
 *
 */

#include <asm/io.h>
#include <linux/delay.h>
#include <linux/interrupt.h>
#include <linux/init.h>
#include <linux/slab.h>
#include <sound/core.h>
#include <sound/tlv.h>

#include "ice1712.h"
#include "envy24ht.h"
#include "juli.h"

struct juli_spec {
      struct ak4114 *ak4114;
      unsigned int analog:1;
};

/*
 * chip addresses on I2C bus
 */
#define AK4114_ADDR           0x20        /* S/PDIF receiver */
#define AK4358_ADDR           0x22        /* DAC */

/*
 * Juli does not use the standard ICE1724 clock scheme. Juli's ice1724 chip is
 * supplied by external clock provided by Xilinx array and MK73-1 PLL frequency
 * multiplier. Actual frequency is set by ice1724 GPIOs hooked to the Xilinx.
 *
 * The clock circuitry is supplied by the two ice1724 crystals. This
 * arrangement allows to generate independent clock signal for AK4114's input
 * rate detection circuit. As a result, Juli, unlike most other
 * ice1724+ak4114-based cards, detects spdif input rate correctly.
 * This fact is applied in the driver, allowing to modify PCM stream rate
 * parameter according to the actual input rate.
 *
 * Juli uses the remaining three stereo-channels of its DAC to optionally
 * monitor analog input, digital input, and digital output. The corresponding
 * I2S signals are routed by Xilinx, controlled by GPIOs.
 *
 * The master mute is implemented using output muting transistors (GPIO) in
 * combination with smuting the DAC.
 *
 * The card itself has no HW master volume control, implemented using the
 * vmaster control.
 *
 * TODO:
 * researching and fixing the input monitors
 */

/*
 * GPIO pins
 */
#define GPIO_FREQ_MASK        (3<<0)
#define GPIO_FREQ_32KHZ       (0<<0)
#define GPIO_FREQ_44KHZ       (1<<0)
#define GPIO_FREQ_48KHZ       (2<<0)
#define GPIO_MULTI_MASK       (3<<2)
#define GPIO_MULTI_4X         (0<<2)
#define GPIO_MULTI_2X         (1<<2)
#define GPIO_MULTI_1X         (2<<2)            /* also external */
#define GPIO_MULTI_HALF       (3<<2)
#define GPIO_INTERNAL_CLOCK   (1<<4)            /* 0 = external, 1 = internal */
#define GPIO_CLOCK_MASK       (1<<4)
#define GPIO_ANALOG_PRESENT   (1<<5)            /* RO only: 0 = present */
#define GPIO_RXMCLK_SEL       (1<<7)            /* must be 0 */
#define GPIO_AK5385A_CKS0     (1<<8)
#define GPIO_AK5385A_DFS1     (1<<9)
#define GPIO_AK5385A_DFS0     (1<<10)
#define GPIO_DIGOUT_MONITOR   (1<<11)           /* 1 = active */
#define GPIO_DIGIN_MONITOR    (1<<12)           /* 1 = active */
#define GPIO_ANAIN_MONITOR    (1<<13)           /* 1 = active */
#define GPIO_AK5385A_CKS1     (1<<14)           /* must be 0 */
#define GPIO_MUTE_CONTROL     (1<<15)           /* output mute, 1 = muted */

#define GPIO_RATE_MASK        (GPIO_FREQ_MASK | GPIO_MULTI_MASK | \
            GPIO_CLOCK_MASK)
#define GPIO_AK5385A_MASK     (GPIO_AK5385A_CKS0 | GPIO_AK5385A_DFS0 | \
            GPIO_AK5385A_DFS1 | GPIO_AK5385A_CKS1)

#define JULI_PCM_RATE   (SNDRV_PCM_RATE_16000 | SNDRV_PCM_RATE_22050 | \
            SNDRV_PCM_RATE_32000 | SNDRV_PCM_RATE_44100 | \
            SNDRV_PCM_RATE_48000 | SNDRV_PCM_RATE_64000 | \
            SNDRV_PCM_RATE_88200 | SNDRV_PCM_RATE_96000 | \
            SNDRV_PCM_RATE_176400 | SNDRV_PCM_RATE_192000)

#define GPIO_RATE_16000       (GPIO_FREQ_32KHZ | GPIO_MULTI_HALF | \
            GPIO_INTERNAL_CLOCK)
#define GPIO_RATE_22050       (GPIO_FREQ_44KHZ | GPIO_MULTI_HALF | \
            GPIO_INTERNAL_CLOCK)
#define GPIO_RATE_24000       (GPIO_FREQ_48KHZ | GPIO_MULTI_HALF | \
            GPIO_INTERNAL_CLOCK)
#define GPIO_RATE_32000       (GPIO_FREQ_32KHZ | GPIO_MULTI_1X | \
            GPIO_INTERNAL_CLOCK)
#define GPIO_RATE_44100       (GPIO_FREQ_44KHZ | GPIO_MULTI_1X | \
            GPIO_INTERNAL_CLOCK)
#define GPIO_RATE_48000       (GPIO_FREQ_48KHZ | GPIO_MULTI_1X | \
            GPIO_INTERNAL_CLOCK)
#define GPIO_RATE_64000       (GPIO_FREQ_32KHZ | GPIO_MULTI_2X | \
            GPIO_INTERNAL_CLOCK)
#define GPIO_RATE_88200       (GPIO_FREQ_44KHZ | GPIO_MULTI_2X | \
            GPIO_INTERNAL_CLOCK)
#define GPIO_RATE_96000       (GPIO_FREQ_48KHZ | GPIO_MULTI_2X | \
            GPIO_INTERNAL_CLOCK)
#define GPIO_RATE_176400      (GPIO_FREQ_44KHZ | GPIO_MULTI_4X | \
            GPIO_INTERNAL_CLOCK)
#define GPIO_RATE_192000      (GPIO_FREQ_48KHZ | GPIO_MULTI_4X | \
            GPIO_INTERNAL_CLOCK)

/*
 * Initial setup of the conversion array GPIO <-> rate
 */
static unsigned int juli_rates[] = {
      16000, 22050, 24000, 32000,
      44100, 48000, 64000, 88200,
      96000, 176400, 192000,
};

static unsigned int gpio_vals[] = {
      GPIO_RATE_16000, GPIO_RATE_22050, GPIO_RATE_24000, GPIO_RATE_32000,
      GPIO_RATE_44100, GPIO_RATE_48000, GPIO_RATE_64000, GPIO_RATE_88200,
      GPIO_RATE_96000, GPIO_RATE_176400, GPIO_RATE_192000,
};

static struct snd_pcm_hw_constraint_list juli_rates_info = {
      .count = ARRAY_SIZE(juli_rates),
      .list = juli_rates,
      .mask = 0,
};

static int get_gpio_val(int rate)
{
      int i;
      for (i = 0; i < ARRAY_SIZE(juli_rates); i++)
            if (juli_rates[i] == rate)
                  return gpio_vals[i];
      return 0;
}

static void juli_ak4114_write(void *private_data, unsigned char reg,
                        unsigned char val)
{
      snd_vt1724_write_i2c((struct snd_ice1712 *)private_data, AK4114_ADDR,
                        reg, val);
}

static unsigned char juli_ak4114_read(void *private_data, unsigned char reg)
{
      return snd_vt1724_read_i2c((struct snd_ice1712 *)private_data,
                              AK4114_ADDR, reg);
}

/*
 * If SPDIF capture and slaved to SPDIF-IN, setting runtime rate
 * to the external rate
 */
static void juli_spdif_in_open(struct snd_ice1712 *ice,
                        struct snd_pcm_substream *substream)
{
      struct juli_spec *spec = ice->spec;
      struct snd_pcm_runtime *runtime = substream->runtime;
      int rate;

      if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK ||
                  !ice->is_spdif_master(ice))
            return;
      rate = snd_ak4114_external_rate(spec->ak4114);
      if (rate >= runtime->hw.rate_min && rate <= runtime->hw.rate_max) {
            runtime->hw.rate_min = rate;
            runtime->hw.rate_max = rate;
      }
}

/*
 * AK4358 section
 */

static void juli_akm_lock(struct snd_akm4xxx *ak, int chip)
{
}

static void juli_akm_unlock(struct snd_akm4xxx *ak, int chip)
{
}

static void juli_akm_write(struct snd_akm4xxx *ak, int chip,
                     unsigned char addr, unsigned char data)
{
      struct snd_ice1712 *ice = ak->private_data[0];
       
      if (snd_BUG_ON(chip))
            return;
      snd_vt1724_write_i2c(ice, AK4358_ADDR, addr, data);
}

/*
 * change the rate of envy24HT, AK4358, AK5385
 */
static void juli_akm_set_rate_val(struct snd_akm4xxx *ak, unsigned int rate)
{
      unsigned char old, tmp, ak4358_dfs;
      unsigned int ak5385_pins, old_gpio, new_gpio;
      struct snd_ice1712 *ice = ak->private_data[0];
      struct juli_spec *spec = ice->spec;

      if (rate == 0)  /* no hint - S/PDIF input is master or the new spdif
                     input rate undetected, simply return */
            return;

      /* adjust DFS on codecs */
      if (rate > 96000)  {
            ak4358_dfs = 2;
            ak5385_pins = GPIO_AK5385A_DFS1 | GPIO_AK5385A_CKS0;
      } else if (rate > 48000) {
            ak4358_dfs = 1;
            ak5385_pins = GPIO_AK5385A_DFS0;
      } else {
            ak4358_dfs = 0;
            ak5385_pins = 0;
      }
      /* AK5385 first, since it requires cold reset affecting both codecs */
      old_gpio = ice->gpio.get_data(ice);
      new_gpio =  (old_gpio & ~GPIO_AK5385A_MASK) | ak5385_pins;
      /* printk(KERN_DEBUG "JULI - ak5385 set_rate_val: new gpio 0x%x\n",
            new_gpio); */
      ice->gpio.set_data(ice, new_gpio);

      /* cold reset */
      old = inb(ICEMT1724(ice, AC97_CMD));
      outb(old | VT1724_AC97_COLD, ICEMT1724(ice, AC97_CMD));
      udelay(1);
      outb(old & ~VT1724_AC97_COLD, ICEMT1724(ice, AC97_CMD));

      /* AK4358 */
      /* set new value, reset DFS */
      tmp = snd_akm4xxx_get(ak, 0, 2);
      snd_akm4xxx_reset(ak, 1);
      tmp = snd_akm4xxx_get(ak, 0, 2);
      tmp &= ~(0x03 << 4);
      tmp |= ak4358_dfs << 4;
      snd_akm4xxx_set(ak, 0, 2, tmp);
      snd_akm4xxx_reset(ak, 0);

      /* reinit ak4114 */
      snd_ak4114_reinit(spec->ak4114);
}

#define AK_DAC(xname, xch)    { .name = xname, .num_channels = xch }
#define PCM_VOLUME            "PCM Playback Volume"
#define MONITOR_AN_IN_VOLUME  "Monitor Analog In Volume"
#define MONITOR_DIG_IN_VOLUME "Monitor Digital In Volume"
#define MONITOR_DIG_OUT_VOLUME      "Monitor Digital Out Volume"

static const struct snd_akm4xxx_dac_channel juli_dac[] = {
      AK_DAC(PCM_VOLUME, 2),
      AK_DAC(MONITOR_AN_IN_VOLUME, 2),
      AK_DAC(MONITOR_DIG_OUT_VOLUME, 2),
      AK_DAC(MONITOR_DIG_IN_VOLUME, 2),
};


static struct snd_akm4xxx akm_juli_dac __devinitdata = {
      .type = SND_AK4358,
      .num_dacs = 8,    /* DAC1 - analog out
                     DAC2 - analog in monitor
                     DAC3 - digital out monitor
                     DAC4 - digital in monitor
                   */
      .ops = {
            .lock = juli_akm_lock,
            .unlock = juli_akm_unlock,
            .write = juli_akm_write,
            .set_rate_val = juli_akm_set_rate_val
      },
      .dac_info = juli_dac,
};

#define juli_mute_info        snd_ctl_boolean_mono_info

static int juli_mute_get(struct snd_kcontrol *kcontrol,
            struct snd_ctl_elem_value *ucontrol)
{
      struct snd_ice1712 *ice = snd_kcontrol_chip(kcontrol);
      unsigned int val;
      val = ice->gpio.get_data(ice) & (unsigned int) kcontrol->private_value;
      if (kcontrol->private_value == GPIO_MUTE_CONTROL)
            /* val 0 = signal on */
            ucontrol->value.integer.value[0] = (val) ? 0 : 1;
      else
            /* val 1 = signal on */
            ucontrol->value.integer.value[0] = (val) ? 1 : 0;
      return 0;
}

static int juli_mute_put(struct snd_kcontrol *kcontrol,
            struct snd_ctl_elem_value *ucontrol)
{
      struct snd_ice1712 *ice = snd_kcontrol_chip(kcontrol);
      unsigned int old_gpio, new_gpio;
      old_gpio = ice->gpio.get_data(ice);
      if (ucontrol->value.integer.value[0]) {
            /* unmute */
            if (kcontrol->private_value == GPIO_MUTE_CONTROL) {
                  /* 0 = signal on */
                  new_gpio = old_gpio & ~GPIO_MUTE_CONTROL;
                  /* un-smuting DAC */
                  snd_akm4xxx_write(ice->akm, 0, 0x01, 0x01);
            } else
                  /* 1 = signal on */
                  new_gpio =  old_gpio |
                        (unsigned int) kcontrol->private_value;
      } else {
            /* mute */
            if (kcontrol->private_value == GPIO_MUTE_CONTROL) {
                  /* 1 = signal off */
                  new_gpio = old_gpio | GPIO_MUTE_CONTROL;
                  /* smuting DAC */
                  snd_akm4xxx_write(ice->akm, 0, 0x01, 0x03);
            } else
                  /* 0 = signal off */
                  new_gpio =  old_gpio &
                        ~((unsigned int) kcontrol->private_value);
      }
      /* printk("JULI - mute/unmute: control_value: 0x%x, old_gpio: 0x%x, \
            new_gpio 0x%x\n",
            (unsigned int)ucontrol->value.integer.value[0], old_gpio,
            new_gpio); */
      if (old_gpio != new_gpio) {
            ice->gpio.set_data(ice, new_gpio);
            return 1;
      }
      /* no change */
      return 0;
}

static struct snd_kcontrol_new juli_mute_controls[] __devinitdata = {
      {
            .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
            .name = "Master Playback Switch",
            .info = juli_mute_info,
            .get = juli_mute_get,
            .put = juli_mute_put,
            .private_value = GPIO_MUTE_CONTROL,
      },
      /* Although the following functionality respects the succint NDA'd
       * documentation from the card manufacturer, and the same way of
       * operation is coded in OSS Juli driver, only Digital Out monitor
       * seems to work. Surprisingly, Analog input monitor outputs Digital
       * output data. The two are independent, as enabling both doubles
       * volume of the monitor sound.
       *
       * Checking traces on the board suggests the functionality described
       * by the manufacturer is correct - I2S from ADC and AK4114
       * go to ICE as well as to Xilinx, I2S inputs of DAC2,3,4 (the monitor
       * inputs) are fed from Xilinx.
       *
       * I even checked traces on board and coded a support in driver for
       * an alternative possiblity - the unused I2S ICE output channels
       * switched to HW-IN/SPDIF-IN and providing the monitoring signal to
       * the DAC - to no avail. The I2S outputs seem to be unconnected.
       *
       * The windows driver supports the monitoring correctly.
       */
      {
            .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
            .name = "Monitor Analog In Switch",
            .info = juli_mute_info,
            .get = juli_mute_get,
            .put = juli_mute_put,
            .private_value = GPIO_ANAIN_MONITOR,
      },
      {
            .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
            .name = "Monitor Digital Out Switch",
            .info = juli_mute_info,
            .get = juli_mute_get,
            .put = juli_mute_put,
            .private_value = GPIO_DIGOUT_MONITOR,
      },
      {
            .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
            .name = "Monitor Digital In Switch",
            .info = juli_mute_info,
            .get = juli_mute_get,
            .put = juli_mute_put,
            .private_value = GPIO_DIGIN_MONITOR,
      },
};


static void ak4358_proc_regs_read(struct snd_info_entry *entry,
            struct snd_info_buffer *buffer)
{
      struct snd_ice1712 *ice = (struct snd_ice1712 *)entry->private_data;
      int reg, val;
      for (reg = 0; reg <= 0xf; reg++) {
            val =  snd_akm4xxx_get(ice->akm, 0, reg);
            snd_iprintf(buffer, "0x%02x = 0x%02x\n", reg, val);
      }
}

static void ak4358_proc_init(struct snd_ice1712 *ice)
{
      struct snd_info_entry *entry;
      if (!snd_card_proc_new(ice->card, "ak4358_codec", &entry))
            snd_info_set_text_ops(entry, ice, ak4358_proc_regs_read);
}

static char *slave_vols[] __devinitdata = {
      PCM_VOLUME,
      MONITOR_AN_IN_VOLUME,
      MONITOR_DIG_IN_VOLUME,
      MONITOR_DIG_OUT_VOLUME,
      NULL
};

static __devinitdata
DECLARE_TLV_DB_SCALE(juli_master_db_scale, -6350, 50, 1);

static struct snd_kcontrol __devinit *ctl_find(struct snd_card *card,
            const char *name)
{
      struct snd_ctl_elem_id sid;
      memset(&sid, 0, sizeof(sid));
      /* FIXME: strcpy is bad. */
      strcpy(sid.name, name);
      sid.iface = SNDRV_CTL_ELEM_IFACE_MIXER;
      return snd_ctl_find_id(card, &sid);
}

static void __devinit add_slaves(struct snd_card *card,
                         struct snd_kcontrol *master, char **list)
{
      for (; *list; list++) {
            struct snd_kcontrol *slave = ctl_find(card, *list);
            /* printk(KERN_DEBUG "add_slaves - %s\n", *list); */
            if (slave) {
                  /* printk(KERN_DEBUG "slave %s found\n", *list); */
                  snd_ctl_add_slave(master, slave);
            }
      }
}

static int __devinit juli_add_controls(struct snd_ice1712 *ice)
{
      struct juli_spec *spec = ice->spec;
      int err;
      unsigned int i;
      struct snd_kcontrol *vmaster;

      err = snd_ice1712_akm4xxx_build_controls(ice);
      if (err < 0)
            return err;

      for (i = 0; i < ARRAY_SIZE(juli_mute_controls); i++) {
            err = snd_ctl_add(ice->card,
                        snd_ctl_new1(&juli_mute_controls[i], ice));
            if (err < 0)
                  return err;
      }
      /* Create virtual master control */
      vmaster = snd_ctl_make_virtual_master("Master Playback Volume",
                                    juli_master_db_scale);
      if (!vmaster)
            return -ENOMEM;
      add_slaves(ice->card, vmaster, slave_vols);
      err = snd_ctl_add(ice->card, vmaster);
      if (err < 0)
            return err;

      /* only capture SPDIF over AK4114 */
      err = snd_ak4114_build(spec->ak4114, NULL,
                  ice->pcm->streams[SNDRV_PCM_STREAM_CAPTURE].substream);

      ak4358_proc_init(ice);
      if (err < 0)
            return err;
      return 0;
}

/*
 * initialize the chip
 */

static inline int juli_is_spdif_master(struct snd_ice1712 *ice)
{
      return (ice->gpio.get_data(ice) & GPIO_INTERNAL_CLOCK) ? 0 : 1;
}

static unsigned int juli_get_rate(struct snd_ice1712 *ice)
{
      int i;
      unsigned char result;

      result =  ice->gpio.get_data(ice) & GPIO_RATE_MASK;
      for (i = 0; i < ARRAY_SIZE(gpio_vals); i++)
            if (gpio_vals[i] == result)
                  return juli_rates[i];
      return 0;
}

/* setting new rate */
static void juli_set_rate(struct snd_ice1712 *ice, unsigned int rate)
{
      unsigned int old, new;
      unsigned char val;

      old = ice->gpio.get_data(ice);
      new =  (old & ~GPIO_RATE_MASK) | get_gpio_val(rate);
      /* printk(KERN_DEBUG "JULI - set_rate: old %x, new %x\n",
                  old & GPIO_RATE_MASK,
                  new & GPIO_RATE_MASK); */

      ice->gpio.set_data(ice, new);
      /* switching to external clock - supplied by external circuits */
      val = inb(ICEMT1724(ice, RATE));
      outb(val | VT1724_SPDIF_MASTER, ICEMT1724(ice, RATE));
}

static inline unsigned char juli_set_mclk(struct snd_ice1712 *ice,
                                unsigned int rate)
{
      /* no change in master clock */
      return 0;
}

/* setting clock to external - SPDIF */
static void juli_set_spdif_clock(struct snd_ice1712 *ice)
{
      unsigned int old;
      old = ice->gpio.get_data(ice);
      /* external clock (= 0), multiply 1x, 48kHz */
      ice->gpio.set_data(ice, (old & ~GPIO_RATE_MASK) | GPIO_MULTI_1X |
                  GPIO_FREQ_48KHZ);
}

/* Called when ak4114 detects change in the input SPDIF stream */
static void juli_ak4114_change(struct ak4114 *ak4114, unsigned char c0,
                         unsigned char c1)
{
      struct snd_ice1712 *ice = ak4114->change_callback_private;
      int rate;
      if (ice->is_spdif_master(ice) && c1) {
            /* only for SPDIF master mode, rate was changed */
            rate = snd_ak4114_external_rate(ak4114);
            /* printk(KERN_DEBUG "ak4114 - input rate changed to %d\n",
                        rate); */
            juli_akm_set_rate_val(ice->akm, rate);
      }
}

static int __devinit juli_init(struct snd_ice1712 *ice)
{
      static const unsigned char ak4114_init_vals[] = {
            /* AK4117_REG_PWRDN */  AK4114_RST | AK4114_PWN |
                              AK4114_OCKS0 | AK4114_OCKS1,
            /* AK4114_REQ_FORMAT */ AK4114_DIF_I24I2S,
            /* AK4114_REG_IO0 */    AK4114_TX1E,
            /* AK4114_REG_IO1 */    AK4114_EFH_1024 | AK4114_DIT |
                              AK4114_IPS(1),
            /* AK4114_REG_INT0_MASK */ 0,
            /* AK4114_REG_INT1_MASK */ 0
      };
      static const unsigned char ak4114_init_txcsb[] = {
            0x41, 0x02, 0x2c, 0x00, 0x00
      };
      int err;
      struct juli_spec *spec;
      struct snd_akm4xxx *ak;

      spec = kzalloc(sizeof(*spec), GFP_KERNEL);
      if (!spec)
            return -ENOMEM;
      ice->spec = spec;

      err = snd_ak4114_create(ice->card,
                        juli_ak4114_read,
                        juli_ak4114_write,
                        ak4114_init_vals, ak4114_init_txcsb,
                        ice, &spec->ak4114);
      if (err < 0)
            return err;
      /* callback for codecs rate setting */
      spec->ak4114->change_callback = juli_ak4114_change;
      spec->ak4114->change_callback_private = ice;
      /* AK4114 in Juli can detect external rate correctly */
      spec->ak4114->check_flags = 0;

#if 0
/*
 * it seems that the analog doughter board detection does not work reliably, so
 * force the analog flag; it should be very rare (if ever) to come at Juli@
 * used without the analog daughter board
 */
      spec->analog = (ice->gpio.get_data(ice) & GPIO_ANALOG_PRESENT) ? 0 : 1;
#else
      spec->analog = 1;
#endif

      if (spec->analog) {
            printk(KERN_INFO "juli@: analog I/O detected\n");
            ice->num_total_dacs = 2;
            ice->num_total_adcs = 2;

            ice->akm = kzalloc(sizeof(struct snd_akm4xxx), GFP_KERNEL);
            ak = ice->akm;
            if (!ak)
                  return -ENOMEM;
            ice->akm_codecs = 1;
            err = snd_ice1712_akm4xxx_init(ak, &akm_juli_dac, NULL, ice);
            if (err < 0)
                  return err;
      }

      /* juli is clocked by Xilinx array */
      ice->hw_rates = &juli_rates_info;
      ice->is_spdif_master = juli_is_spdif_master;
      ice->get_rate = juli_get_rate;
      ice->set_rate = juli_set_rate;
      ice->set_mclk = juli_set_mclk;
      ice->set_spdif_clock = juli_set_spdif_clock;

      ice->spdif.ops.open = juli_spdif_in_open;
      return 0;
}


/*
 * Juli@ boards don't provide the EEPROM data except for the vendor IDs.
 * hence the driver needs to sets up it properly.
 */

static unsigned char juli_eeprom[] __devinitdata = {
      [ICE_EEP2_SYSCONF]     = 0x2b,      /* clock 512, mpu401, 1xADC, 1xDACs,
                                 SPDIF in */
      [ICE_EEP2_ACLINK]      = 0x80,      /* I2S */
      [ICE_EEP2_I2S]         = 0xf8,      /* vol, 96k, 24bit, 192k */
      [ICE_EEP2_SPDIF]       = 0xc3,      /* out-en, out-int, spdif-in */
      [ICE_EEP2_GPIO_DIR]    = 0x9f,      /* 5, 6:inputs; 7, 4-0 outputs*/
      [ICE_EEP2_GPIO_DIR1]   = 0xff,
      [ICE_EEP2_GPIO_DIR2]   = 0x7f,
      [ICE_EEP2_GPIO_MASK]   = 0x60,      /* 5, 6: locked; 7, 4-0 writable */
      [ICE_EEP2_GPIO_MASK1]  = 0x00,  /* 0-7 writable */
      [ICE_EEP2_GPIO_MASK2]  = 0x7f,
      [ICE_EEP2_GPIO_STATE]  = GPIO_FREQ_48KHZ | GPIO_MULTI_1X |
             GPIO_INTERNAL_CLOCK,   /* internal clock, multiple 1x, 48kHz*/
      [ICE_EEP2_GPIO_STATE1] = 0x00,      /* unmuted */
      [ICE_EEP2_GPIO_STATE2] = 0x00,
};

/* entry point */
struct snd_ice1712_card_info snd_vt1724_juli_cards[] __devinitdata = {
      {
            .subvendor = VT1724_SUBDEVICE_JULI,
            .name = "ESI Juli@",
            .model = "juli",
            .chip_init = juli_init,
            .build_controls = juli_add_controls,
            .eeprom_size = sizeof(juli_eeprom),
            .eeprom_data = juli_eeprom,
      },
      { } /* terminator */
};

Generated by  Doxygen 1.6.0   Back to index