Logo Search packages:      
Sourcecode: alsa-driver version File versions  Download package

emu8000.c

/*
 *  Copyright (c) by Jaroslav Kysela <perex@perex.cz>
 *     and (c) 1999 Steve Ratcliffe <steve@parabola.demon.co.uk>
 *  Copyright (C) 1999-2000 Takashi Iwai <tiwai@suse.de>
 *
 *  Routines for control of EMU8000 chip
 *
 *   This program is free software; you can redistribute it and/or modify
 *   it under the terms of the GNU General Public License as published by
 *   the Free Software Foundation; either version 2 of the License, or
 *   (at your option) any later version.
 *
 *   This program is distributed in the hope that it will be useful,
 *   but WITHOUT ANY WARRANTY; without even the implied warranty of
 *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *   GNU General Public License for more details.
 *
 *   You should have received a copy of the GNU General Public License
 *   along with this program; if not, write to the Free Software
 *   Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
 */

#include <linux/wait.h>
#include <linux/sched.h>
#include <linux/slab.h>
#include <linux/ioport.h>
#include <linux/delay.h>
#include <sound/core.h>
#include <sound/emu8000.h>
#include <sound/emu8000_reg.h>
#include <asm/io.h>
#include <asm/uaccess.h>
#include <linux/init.h>
#include <sound/control.h>
#include <sound/initval.h>

/*
 * emu8000 register controls
 */

/*
 * The following routines read and write registers on the emu8000.  They
 * should always be called via the EMU8000*READ/WRITE macros and never
 * directly.  The macros handle the port number and command word.
 */
/* Write a word */
void snd_emu8000_poke(struct snd_emu8000 *emu, unsigned int port, unsigned int reg, unsigned int val)
{
      unsigned long flags;
      spin_lock_irqsave(&emu->reg_lock, flags);
      if (reg != emu->last_reg) {
            outw((unsigned short)reg, EMU8000_PTR(emu)); /* Set register */
            emu->last_reg = reg;
      }
      outw((unsigned short)val, port); /* Send data */
      spin_unlock_irqrestore(&emu->reg_lock, flags);
}

/* Read a word */
unsigned short snd_emu8000_peek(struct snd_emu8000 *emu, unsigned int port, unsigned int reg)
{
      unsigned short res;
      unsigned long flags;
      spin_lock_irqsave(&emu->reg_lock, flags);
      if (reg != emu->last_reg) {
            outw((unsigned short)reg, EMU8000_PTR(emu)); /* Set register */
            emu->last_reg = reg;
      }
      res = inw(port);  /* Read data */
      spin_unlock_irqrestore(&emu->reg_lock, flags);
      return res;
}

/* Write a double word */
void snd_emu8000_poke_dw(struct snd_emu8000 *emu, unsigned int port, unsigned int reg, unsigned int val)
{
      unsigned long flags;
      spin_lock_irqsave(&emu->reg_lock, flags);
      if (reg != emu->last_reg) {
            outw((unsigned short)reg, EMU8000_PTR(emu)); /* Set register */
            emu->last_reg = reg;
      }
      outw((unsigned short)val, port); /* Send low word of data */
      outw((unsigned short)(val>>16), port+2); /* Send high word of data */
      spin_unlock_irqrestore(&emu->reg_lock, flags);
}

/* Read a double word */
unsigned int snd_emu8000_peek_dw(struct snd_emu8000 *emu, unsigned int port, unsigned int reg)
{
      unsigned short low;
      unsigned int res;
      unsigned long flags;
      spin_lock_irqsave(&emu->reg_lock, flags);
      if (reg != emu->last_reg) {
            outw((unsigned short)reg, EMU8000_PTR(emu)); /* Set register */
            emu->last_reg = reg;
      }
      low = inw(port);  /* Read low word of data */
      res = low + (inw(port+2) << 16);
      spin_unlock_irqrestore(&emu->reg_lock, flags);
      return res;
}

/*
 * Set up / close a channel to be used for DMA.
 */
/*exported*/ void
snd_emu8000_dma_chan(struct snd_emu8000 *emu, int ch, int mode)
{
      unsigned right_bit = (mode & EMU8000_RAM_RIGHT) ? 0x01000000 : 0;
      mode &= EMU8000_RAM_MODE_MASK;
      if (mode == EMU8000_RAM_CLOSE) {
            EMU8000_CCCA_WRITE(emu, ch, 0);
            EMU8000_DCYSUSV_WRITE(emu, ch, 0x807F);
            return;
      }
      EMU8000_DCYSUSV_WRITE(emu, ch, 0x80);
      EMU8000_VTFT_WRITE(emu, ch, 0);
      EMU8000_CVCF_WRITE(emu, ch, 0);
      EMU8000_PTRX_WRITE(emu, ch, 0x40000000);
      EMU8000_CPF_WRITE(emu, ch, 0x40000000);
      EMU8000_PSST_WRITE(emu, ch, 0);
      EMU8000_CSL_WRITE(emu, ch, 0);
      if (mode == EMU8000_RAM_WRITE) /* DMA write */
            EMU8000_CCCA_WRITE(emu, ch, 0x06000000 | right_bit);
      else     /* DMA read */
            EMU8000_CCCA_WRITE(emu, ch, 0x04000000 | right_bit);
}

/*
 */
static void __devinit
snd_emu8000_read_wait(struct snd_emu8000 *emu)
{
      while ((EMU8000_SMALR_READ(emu) & 0x80000000) != 0) {
            schedule_timeout_interruptible(1);
            if (signal_pending(current))
                  break;
      }
}

/*
 */
static void __devinit
snd_emu8000_write_wait(struct snd_emu8000 *emu)
{
      while ((EMU8000_SMALW_READ(emu) & 0x80000000) != 0) {
            schedule_timeout_interruptible(1);
            if (signal_pending(current))
                  break;
      }
}

/*
 * detect a card at the given port
 */
static int __devinit
snd_emu8000_detect(struct snd_emu8000 *emu)
{
      /* Initialise */
      EMU8000_HWCF1_WRITE(emu, 0x0059);
      EMU8000_HWCF2_WRITE(emu, 0x0020);
      EMU8000_HWCF3_WRITE(emu, 0x0000);
      /* Check for a recognisable emu8000 */
      /*
      if ((EMU8000_U1_READ(emu) & 0x000f) != 0x000c)
            return -ENODEV;
            */
      if ((EMU8000_HWCF1_READ(emu) & 0x007e) != 0x0058)
            return -ENODEV;
      if ((EMU8000_HWCF2_READ(emu) & 0x0003) != 0x0003)
            return -ENODEV;

      snd_printdd("EMU8000 [0x%lx]: Synth chip found\n",
                    emu->port1);
      return 0;
}


/*
 * intiailize audio channels
 */
static void __devinit
init_audio(struct snd_emu8000 *emu)
{
      int ch;

      /* turn off envelope engines */
      for (ch = 0; ch < EMU8000_CHANNELS; ch++)
            EMU8000_DCYSUSV_WRITE(emu, ch, 0x80);
  
      /* reset all other parameters to zero */
      for (ch = 0; ch < EMU8000_CHANNELS; ch++) {
            EMU8000_ENVVOL_WRITE(emu, ch, 0);
            EMU8000_ENVVAL_WRITE(emu, ch, 0);
            EMU8000_DCYSUS_WRITE(emu, ch, 0);
            EMU8000_ATKHLDV_WRITE(emu, ch, 0);
            EMU8000_LFO1VAL_WRITE(emu, ch, 0);
            EMU8000_ATKHLD_WRITE(emu, ch, 0);
            EMU8000_LFO2VAL_WRITE(emu, ch, 0);
            EMU8000_IP_WRITE(emu, ch, 0);
            EMU8000_IFATN_WRITE(emu, ch, 0);
            EMU8000_PEFE_WRITE(emu, ch, 0);
            EMU8000_FMMOD_WRITE(emu, ch, 0);
            EMU8000_TREMFRQ_WRITE(emu, ch, 0);
            EMU8000_FM2FRQ2_WRITE(emu, ch, 0);
            EMU8000_PTRX_WRITE(emu, ch, 0);
            EMU8000_VTFT_WRITE(emu, ch, 0);
            EMU8000_PSST_WRITE(emu, ch, 0);
            EMU8000_CSL_WRITE(emu, ch, 0);
            EMU8000_CCCA_WRITE(emu, ch, 0);
      }

      for (ch = 0; ch < EMU8000_CHANNELS; ch++) {
            EMU8000_CPF_WRITE(emu, ch, 0);
            EMU8000_CVCF_WRITE(emu, ch, 0);
      }
}


/*
 * initialize DMA address
 */
static void __devinit
init_dma(struct snd_emu8000 *emu)
{
      EMU8000_SMALR_WRITE(emu, 0);
      EMU8000_SMARR_WRITE(emu, 0);
      EMU8000_SMALW_WRITE(emu, 0);
      EMU8000_SMARW_WRITE(emu, 0);
}

/*
 * initialization arrays; from ADIP
 */
static unsigned short init1[128] /*__devinitdata*/ = {
      0x03ff, 0x0030,  0x07ff, 0x0130, 0x0bff, 0x0230,  0x0fff, 0x0330,
      0x13ff, 0x0430,  0x17ff, 0x0530, 0x1bff, 0x0630,  0x1fff, 0x0730,
      0x23ff, 0x0830,  0x27ff, 0x0930, 0x2bff, 0x0a30,  0x2fff, 0x0b30,
      0x33ff, 0x0c30,  0x37ff, 0x0d30, 0x3bff, 0x0e30,  0x3fff, 0x0f30,

      0x43ff, 0x0030,  0x47ff, 0x0130, 0x4bff, 0x0230,  0x4fff, 0x0330,
      0x53ff, 0x0430,  0x57ff, 0x0530, 0x5bff, 0x0630,  0x5fff, 0x0730,
      0x63ff, 0x0830,  0x67ff, 0x0930, 0x6bff, 0x0a30,  0x6fff, 0x0b30,
      0x73ff, 0x0c30,  0x77ff, 0x0d30, 0x7bff, 0x0e30,  0x7fff, 0x0f30,

      0x83ff, 0x0030,  0x87ff, 0x0130, 0x8bff, 0x0230,  0x8fff, 0x0330,
      0x93ff, 0x0430,  0x97ff, 0x0530, 0x9bff, 0x0630,  0x9fff, 0x0730,
      0xa3ff, 0x0830,  0xa7ff, 0x0930, 0xabff, 0x0a30,  0xafff, 0x0b30,
      0xb3ff, 0x0c30,  0xb7ff, 0x0d30, 0xbbff, 0x0e30,  0xbfff, 0x0f30,

      0xc3ff, 0x0030,  0xc7ff, 0x0130, 0xcbff, 0x0230,  0xcfff, 0x0330,
      0xd3ff, 0x0430,  0xd7ff, 0x0530, 0xdbff, 0x0630,  0xdfff, 0x0730,
      0xe3ff, 0x0830,  0xe7ff, 0x0930, 0xebff, 0x0a30,  0xefff, 0x0b30,
      0xf3ff, 0x0c30,  0xf7ff, 0x0d30, 0xfbff, 0x0e30,  0xffff, 0x0f30,
};

static unsigned short init2[128] /*__devinitdata*/ = {
      0x03ff, 0x8030, 0x07ff, 0x8130, 0x0bff, 0x8230, 0x0fff, 0x8330,
      0x13ff, 0x8430, 0x17ff, 0x8530, 0x1bff, 0x8630, 0x1fff, 0x8730,
      0x23ff, 0x8830, 0x27ff, 0x8930, 0x2bff, 0x8a30, 0x2fff, 0x8b30,
      0x33ff, 0x8c30, 0x37ff, 0x8d30, 0x3bff, 0x8e30, 0x3fff, 0x8f30,

      0x43ff, 0x8030, 0x47ff, 0x8130, 0x4bff, 0x8230, 0x4fff, 0x8330,
      0x53ff, 0x8430, 0x57ff, 0x8530, 0x5bff, 0x8630, 0x5fff, 0x8730,
      0x63ff, 0x8830, 0x67ff, 0x8930, 0x6bff, 0x8a30, 0x6fff, 0x8b30,
      0x73ff, 0x8c30, 0x77ff, 0x8d30, 0x7bff, 0x8e30, 0x7fff, 0x8f30,

      0x83ff, 0x8030, 0x87ff, 0x8130, 0x8bff, 0x8230, 0x8fff, 0x8330,
      0x93ff, 0x8430, 0x97ff, 0x8530, 0x9bff, 0x8630, 0x9fff, 0x8730,
      0xa3ff, 0x8830, 0xa7ff, 0x8930, 0xabff, 0x8a30, 0xafff, 0x8b30,
      0xb3ff, 0x8c30, 0xb7ff, 0x8d30, 0xbbff, 0x8e30, 0xbfff, 0x8f30,

      0xc3ff, 0x8030, 0xc7ff, 0x8130, 0xcbff, 0x8230, 0xcfff, 0x8330,
      0xd3ff, 0x8430, 0xd7ff, 0x8530, 0xdbff, 0x8630, 0xdfff, 0x8730,
      0xe3ff, 0x8830, 0xe7ff, 0x8930, 0xebff, 0x8a30, 0xefff, 0x8b30,
      0xf3ff, 0x8c30, 0xf7ff, 0x8d30, 0xfbff, 0x8e30, 0xffff, 0x8f30,
};

static unsigned short init3[128] /*__devinitdata*/ = {
      0x0C10, 0x8470, 0x14FE, 0xB488, 0x167F, 0xA470, 0x18E7, 0x84B5,
      0x1B6E, 0x842A, 0x1F1D, 0x852A, 0x0DA3, 0x8F7C, 0x167E, 0xF254,
      0x0000, 0x842A, 0x0001, 0x852A, 0x18E6, 0x8BAA, 0x1B6D, 0xF234,
      0x229F, 0x8429, 0x2746, 0x8529, 0x1F1C, 0x86E7, 0x229E, 0xF224,

      0x0DA4, 0x8429, 0x2C29, 0x8529, 0x2745, 0x87F6, 0x2C28, 0xF254,
      0x383B, 0x8428, 0x320F, 0x8528, 0x320E, 0x8F02, 0x1341, 0xF264,
      0x3EB6, 0x8428, 0x3EB9, 0x8528, 0x383A, 0x8FA9, 0x3EB5, 0xF294,
      0x3EB7, 0x8474, 0x3EBA, 0x8575, 0x3EB8, 0xC4C3, 0x3EBB, 0xC5C3,

      0x0000, 0xA404, 0x0001, 0xA504, 0x141F, 0x8671, 0x14FD, 0x8287,
      0x3EBC, 0xE610, 0x3EC8, 0x8C7B, 0x031A, 0x87E6, 0x3EC8, 0x86F7,
      0x3EC0, 0x821E, 0x3EBE, 0xD208, 0x3EBD, 0x821F, 0x3ECA, 0x8386,
      0x3EC1, 0x8C03, 0x3EC9, 0x831E, 0x3ECA, 0x8C4C, 0x3EBF, 0x8C55,

      0x3EC9, 0xC208, 0x3EC4, 0xBC84, 0x3EC8, 0x8EAD, 0x3EC8, 0xD308,
      0x3EC2, 0x8F7E, 0x3ECB, 0x8219, 0x3ECB, 0xD26E, 0x3EC5, 0x831F,
      0x3EC6, 0xC308, 0x3EC3, 0xB2FF, 0x3EC9, 0x8265, 0x3EC9, 0x8319,
      0x1342, 0xD36E, 0x3EC7, 0xB3FF, 0x0000, 0x8365, 0x1420, 0x9570,
};

static unsigned short init4[128] /*__devinitdata*/ = {
      0x0C10, 0x8470, 0x14FE, 0xB488, 0x167F, 0xA470, 0x18E7, 0x84B5,
      0x1B6E, 0x842A, 0x1F1D, 0x852A, 0x0DA3, 0x0F7C, 0x167E, 0x7254,
      0x0000, 0x842A, 0x0001, 0x852A, 0x18E6, 0x0BAA, 0x1B6D, 0x7234,
      0x229F, 0x8429, 0x2746, 0x8529, 0x1F1C, 0x06E7, 0x229E, 0x7224,

      0x0DA4, 0x8429, 0x2C29, 0x8529, 0x2745, 0x07F6, 0x2C28, 0x7254,
      0x383B, 0x8428, 0x320F, 0x8528, 0x320E, 0x0F02, 0x1341, 0x7264,
      0x3EB6, 0x8428, 0x3EB9, 0x8528, 0x383A, 0x0FA9, 0x3EB5, 0x7294,
      0x3EB7, 0x8474, 0x3EBA, 0x8575, 0x3EB8, 0x44C3, 0x3EBB, 0x45C3,

      0x0000, 0xA404, 0x0001, 0xA504, 0x141F, 0x0671, 0x14FD, 0x0287,
      0x3EBC, 0xE610, 0x3EC8, 0x0C7B, 0x031A, 0x07E6, 0x3EC8, 0x86F7,
      0x3EC0, 0x821E, 0x3EBE, 0xD208, 0x3EBD, 0x021F, 0x3ECA, 0x0386,
      0x3EC1, 0x0C03, 0x3EC9, 0x031E, 0x3ECA, 0x8C4C, 0x3EBF, 0x0C55,

      0x3EC9, 0xC208, 0x3EC4, 0xBC84, 0x3EC8, 0x0EAD, 0x3EC8, 0xD308,
      0x3EC2, 0x8F7E, 0x3ECB, 0x0219, 0x3ECB, 0xD26E, 0x3EC5, 0x031F,
      0x3EC6, 0xC308, 0x3EC3, 0x32FF, 0x3EC9, 0x0265, 0x3EC9, 0x8319,
      0x1342, 0xD36E, 0x3EC7, 0x33FF, 0x0000, 0x8365, 0x1420, 0x9570,
};

/* send an initialization array
 * Taken from the oss driver, not obvious from the doc how this
 * is meant to work
 */
static void __devinit
send_array(struct snd_emu8000 *emu, unsigned short *data, int size)
{
      int i;
      unsigned short *p;

      p = data;
      for (i = 0; i < size; i++, p++)
            EMU8000_INIT1_WRITE(emu, i, *p);
      for (i = 0; i < size; i++, p++)
            EMU8000_INIT2_WRITE(emu, i, *p);
      for (i = 0; i < size; i++, p++)
            EMU8000_INIT3_WRITE(emu, i, *p);
      for (i = 0; i < size; i++, p++)
            EMU8000_INIT4_WRITE(emu, i, *p);
}


/*
 * Send initialization arrays to start up, this just follows the
 * initialisation sequence in the adip.
 */
static void __devinit
init_arrays(struct snd_emu8000 *emu)
{
      send_array(emu, init1, ARRAY_SIZE(init1)/4);

      msleep((1024 * 1000) / 44100); /* wait for 1024 clocks */
      send_array(emu, init2, ARRAY_SIZE(init2)/4);
      send_array(emu, init3, ARRAY_SIZE(init3)/4);

      EMU8000_HWCF4_WRITE(emu, 0);
      EMU8000_HWCF5_WRITE(emu, 0x83);
      EMU8000_HWCF6_WRITE(emu, 0x8000);

      send_array(emu, init4, ARRAY_SIZE(init4)/4);
}


#define UNIQUE_ID1      0xa5b9
#define UNIQUE_ID2      0x9d53

/*
 * Size the onboard memory.
 * This is written so as not to need arbitary delays after the write. It
 * seems that the only way to do this is to use the one channel and keep
 * reallocating between read and write.
 */
static void __devinit
size_dram(struct snd_emu8000 *emu)
{
      int i, size;

      if (emu->dram_checked)
            return;

      size = 0;

      /* write out a magic number */
      snd_emu8000_dma_chan(emu, 0, EMU8000_RAM_WRITE);
      snd_emu8000_dma_chan(emu, 1, EMU8000_RAM_READ);
      EMU8000_SMALW_WRITE(emu, EMU8000_DRAM_OFFSET);
      EMU8000_SMLD_WRITE(emu, UNIQUE_ID1);
      snd_emu8000_init_fm(emu); /* This must really be here and not 2 lines back even */

      while (size < EMU8000_MAX_DRAM) {

            size += 512 * 1024;  /* increment 512kbytes */

            /* Write a unique data on the test address.
             * if the address is out of range, the data is written on
             * 0x200000(=EMU8000_DRAM_OFFSET).  Then the id word is
             * changed by this data.
             */
            /*snd_emu8000_dma_chan(emu, 0, EMU8000_RAM_WRITE);*/
            EMU8000_SMALW_WRITE(emu, EMU8000_DRAM_OFFSET + (size>>1));
            EMU8000_SMLD_WRITE(emu, UNIQUE_ID2);
            snd_emu8000_write_wait(emu);

            /*
             * read the data on the just written DRAM address
             * if not the same then we have reached the end of ram.
             */
            /*snd_emu8000_dma_chan(emu, 0, EMU8000_RAM_READ);*/
            EMU8000_SMALR_WRITE(emu, EMU8000_DRAM_OFFSET + (size>>1));
            /*snd_emu8000_read_wait(emu);*/
            EMU8000_SMLD_READ(emu); /* discard stale data  */
            if (EMU8000_SMLD_READ(emu) != UNIQUE_ID2)
                  break; /* we must have wrapped around */

            snd_emu8000_read_wait(emu);

            /*
             * If it is the same it could be that the address just
             * wraps back to the beginning; so check to see if the
             * initial value has been overwritten.
             */
            EMU8000_SMALR_WRITE(emu, EMU8000_DRAM_OFFSET);
            EMU8000_SMLD_READ(emu); /* discard stale data  */
            if (EMU8000_SMLD_READ(emu) != UNIQUE_ID1)
                  break; /* we must have wrapped around */
            snd_emu8000_read_wait(emu);
      }

      /* wait until FULL bit in SMAxW register is false */
      for (i = 0; i < 10000; i++) {
            if ((EMU8000_SMALW_READ(emu) & 0x80000000) == 0)
                  break;
            schedule_timeout_interruptible(1);
            if (signal_pending(current))
                  break;
      }
      snd_emu8000_dma_chan(emu, 0, EMU8000_RAM_CLOSE);
      snd_emu8000_dma_chan(emu, 1, EMU8000_RAM_CLOSE);

      snd_printdd("EMU8000 [0x%lx]: %d Kb on-board memory detected\n",
                emu->port1, size/1024);

      emu->mem_size = size;
      emu->dram_checked = 1;
}


/*
 * Initiailise the FM section.  You have to do this to use sample RAM
 * and therefore lose 2 voices.
 */
/*exported*/ void
snd_emu8000_init_fm(struct snd_emu8000 *emu)
{
      unsigned long flags;

      /* Initialize the last two channels for DRAM refresh and producing
         the reverb and chorus effects for Yamaha OPL-3 synthesizer */

      /* 31: FM left channel, 0xffffe0-0xffffe8 */
      EMU8000_DCYSUSV_WRITE(emu, 30, 0x80);
      EMU8000_PSST_WRITE(emu, 30, 0xFFFFFFE0); /* full left */
      EMU8000_CSL_WRITE(emu, 30, 0x00FFFFE8 | (emu->fm_chorus_depth << 24));
      EMU8000_PTRX_WRITE(emu, 30, (emu->fm_reverb_depth << 8));
      EMU8000_CPF_WRITE(emu, 30, 0);
      EMU8000_CCCA_WRITE(emu, 30, 0x00FFFFE3);

      /* 32: FM right channel, 0xfffff0-0xfffff8 */
      EMU8000_DCYSUSV_WRITE(emu, 31, 0x80);
      EMU8000_PSST_WRITE(emu, 31, 0x00FFFFF0); /* full right */
      EMU8000_CSL_WRITE(emu, 31, 0x00FFFFF8 | (emu->fm_chorus_depth << 24));
      EMU8000_PTRX_WRITE(emu, 31, (emu->fm_reverb_depth << 8));
      EMU8000_CPF_WRITE(emu, 31, 0x8000);
      EMU8000_CCCA_WRITE(emu, 31, 0x00FFFFF3);

      snd_emu8000_poke((emu), EMU8000_DATA0(emu), EMU8000_CMD(1, (30)), 0);

      spin_lock_irqsave(&emu->reg_lock, flags);
      while (!(inw(EMU8000_PTR(emu)) & 0x1000))
            ;
      while ((inw(EMU8000_PTR(emu)) & 0x1000))
            ;
      spin_unlock_irqrestore(&emu->reg_lock, flags);
      snd_emu8000_poke((emu), EMU8000_DATA0(emu), EMU8000_CMD(1, (30)), 0x4828);
      /* this is really odd part.. */
      outb(0x3C, EMU8000_PTR(emu));
      outb(0, EMU8000_DATA1(emu));

      /* skew volume & cutoff */
      EMU8000_VTFT_WRITE(emu, 30, 0x8000FFFF);
      EMU8000_VTFT_WRITE(emu, 31, 0x8000FFFF);
}


/*
 * The main initialization routine.
 */
static void __devinit
snd_emu8000_init_hw(struct snd_emu8000 *emu)
{
      int i;

      emu->last_reg = 0xffff; /* reset the last register index */

      /* initialize hardware configuration */
      EMU8000_HWCF1_WRITE(emu, 0x0059);
      EMU8000_HWCF2_WRITE(emu, 0x0020);

      /* disable audio; this seems to reduce a clicking noise a bit.. */
      EMU8000_HWCF3_WRITE(emu, 0);

      /* initialize audio channels */
      init_audio(emu);

      /* initialize DMA */
      init_dma(emu);

      /* initialize init arrays */
      init_arrays(emu);

      /*
       * Initialize the FM section of the AWE32, this is needed
       * for DRAM refresh as well
       */
      snd_emu8000_init_fm(emu);

      /* terminate all voices */
      for (i = 0; i < EMU8000_DRAM_VOICES; i++)
            EMU8000_DCYSUSV_WRITE(emu, 0, 0x807F);
      
      /* check DRAM memory size */
      size_dram(emu);

      /* enable audio */
      EMU8000_HWCF3_WRITE(emu, 0x4);

      /* set equzlier, chorus and reverb modes */
      snd_emu8000_update_equalizer(emu);
      snd_emu8000_update_chorus_mode(emu);
      snd_emu8000_update_reverb_mode(emu);
}


/*----------------------------------------------------------------
 * Bass/Treble Equalizer
 *----------------------------------------------------------------*/

static unsigned short bass_parm[12][3] = {
      {0xD26A, 0xD36A, 0x0000}, /* -12 dB */
      {0xD25B, 0xD35B, 0x0000}, /*  -8 */
      {0xD24C, 0xD34C, 0x0000}, /*  -6 */
      {0xD23D, 0xD33D, 0x0000}, /*  -4 */
      {0xD21F, 0xD31F, 0x0000}, /*  -2 */
      {0xC208, 0xC308, 0x0001}, /*   0 (HW default) */
      {0xC219, 0xC319, 0x0001}, /*  +2 */
      {0xC22A, 0xC32A, 0x0001}, /*  +4 */
      {0xC24C, 0xC34C, 0x0001}, /*  +6 */
      {0xC26E, 0xC36E, 0x0001}, /*  +8 */
      {0xC248, 0xC384, 0x0002}, /* +10 */
      {0xC26A, 0xC36A, 0x0002}, /* +12 dB */
};

static unsigned short treble_parm[12][9] = {
      {0x821E, 0xC26A, 0x031E, 0xC36A, 0x021E, 0xD208, 0x831E, 0xD308, 0x0001}, /* -12 dB */
      {0x821E, 0xC25B, 0x031E, 0xC35B, 0x021E, 0xD208, 0x831E, 0xD308, 0x0001},
      {0x821E, 0xC24C, 0x031E, 0xC34C, 0x021E, 0xD208, 0x831E, 0xD308, 0x0001},
      {0x821E, 0xC23D, 0x031E, 0xC33D, 0x021E, 0xD208, 0x831E, 0xD308, 0x0001},
      {0x821E, 0xC21F, 0x031E, 0xC31F, 0x021E, 0xD208, 0x831E, 0xD308, 0x0001},
      {0x821E, 0xD208, 0x031E, 0xD308, 0x021E, 0xD208, 0x831E, 0xD308, 0x0002},
      {0x821E, 0xD208, 0x031E, 0xD308, 0x021D, 0xD219, 0x831D, 0xD319, 0x0002},
      {0x821E, 0xD208, 0x031E, 0xD308, 0x021C, 0xD22A, 0x831C, 0xD32A, 0x0002},
      {0x821E, 0xD208, 0x031E, 0xD308, 0x021A, 0xD24C, 0x831A, 0xD34C, 0x0002},
      {0x821E, 0xD208, 0x031E, 0xD308, 0x0219, 0xD26E, 0x8319, 0xD36E, 0x0002}, /* +8 (HW default) */
      {0x821D, 0xD219, 0x031D, 0xD319, 0x0219, 0xD26E, 0x8319, 0xD36E, 0x0002},
      {0x821C, 0xD22A, 0x031C, 0xD32A, 0x0219, 0xD26E, 0x8319, 0xD36E, 0x0002}  /* +12 dB */
};


/*
 * set Emu8000 digital equalizer; from 0 to 11 [-12dB - 12dB]
 */
/*exported*/ void
snd_emu8000_update_equalizer(struct snd_emu8000 *emu)
{
      unsigned short w;
      int bass = emu->bass_level;
      int treble = emu->treble_level;

      if (bass < 0 || bass > 11 || treble < 0 || treble > 11)
            return;
      EMU8000_INIT4_WRITE(emu, 0x01, bass_parm[bass][0]);
      EMU8000_INIT4_WRITE(emu, 0x11, bass_parm[bass][1]);
      EMU8000_INIT3_WRITE(emu, 0x11, treble_parm[treble][0]);
      EMU8000_INIT3_WRITE(emu, 0x13, treble_parm[treble][1]);
      EMU8000_INIT3_WRITE(emu, 0x1b, treble_parm[treble][2]);
      EMU8000_INIT4_WRITE(emu, 0x07, treble_parm[treble][3]);
      EMU8000_INIT4_WRITE(emu, 0x0b, treble_parm[treble][4]);
      EMU8000_INIT4_WRITE(emu, 0x0d, treble_parm[treble][5]);
      EMU8000_INIT4_WRITE(emu, 0x17, treble_parm[treble][6]);
      EMU8000_INIT4_WRITE(emu, 0x19, treble_parm[treble][7]);
      w = bass_parm[bass][2] + treble_parm[treble][8];
      EMU8000_INIT4_WRITE(emu, 0x15, (unsigned short)(w + 0x0262));
      EMU8000_INIT4_WRITE(emu, 0x1d, (unsigned short)(w + 0x8362));
}


/*----------------------------------------------------------------
 * Chorus mode control
 *----------------------------------------------------------------*/

/*
 * chorus mode parameters
 */
#define SNDRV_EMU8000_CHORUS_1            0
#define     SNDRV_EMU8000_CHORUS_2        1
#define     SNDRV_EMU8000_CHORUS_3        2
#define     SNDRV_EMU8000_CHORUS_4        3
#define     SNDRV_EMU8000_CHORUS_FEEDBACK 4
#define     SNDRV_EMU8000_CHORUS_FLANGER  5
#define     SNDRV_EMU8000_CHORUS_SHORTDELAY     6
#define     SNDRV_EMU8000_CHORUS_SHORTDELAY2    7
#define SNDRV_EMU8000_CHORUS_PREDEFINED   8
/* user can define chorus modes up to 32 */
#define SNDRV_EMU8000_CHORUS_NUMBERS      32

struct soundfont_chorus_fx {
      unsigned short feedback;      /* feedback level (0xE600-0xE6FF) */
      unsigned short delay_offset;  /* delay (0-0x0DA3) [1/44100 sec] */
      unsigned short lfo_depth;     /* LFO depth (0xBC00-0xBCFF) */
      unsigned int delay;     /* right delay (0-0xFFFFFFFF) [1/256/44100 sec] */
      unsigned int lfo_freq;        /* LFO freq LFO freq (0-0xFFFFFFFF) */
};

/* 5 parameters for each chorus mode; 3 x 16bit, 2 x 32bit */
static char chorus_defined[SNDRV_EMU8000_CHORUS_NUMBERS];
static struct soundfont_chorus_fx chorus_parm[SNDRV_EMU8000_CHORUS_NUMBERS] = {
      {0xE600, 0x03F6, 0xBC2C ,0x00000000, 0x0000006D}, /* chorus 1 */
      {0xE608, 0x031A, 0xBC6E, 0x00000000, 0x0000017C}, /* chorus 2 */
      {0xE610, 0x031A, 0xBC84, 0x00000000, 0x00000083}, /* chorus 3 */
      {0xE620, 0x0269, 0xBC6E, 0x00000000, 0x0000017C}, /* chorus 4 */
      {0xE680, 0x04D3, 0xBCA6, 0x00000000, 0x0000005B}, /* feedback */
      {0xE6E0, 0x044E, 0xBC37, 0x00000000, 0x00000026}, /* flanger */
      {0xE600, 0x0B06, 0xBC00, 0x0006E000, 0x00000083}, /* short delay */
      {0xE6C0, 0x0B06, 0xBC00, 0x0006E000, 0x00000083}, /* short delay + feedback */
};

/*exported*/ int
snd_emu8000_load_chorus_fx(struct snd_emu8000 *emu, int mode, const void __user *buf, long len)
{
      struct soundfont_chorus_fx rec;
      if (mode < SNDRV_EMU8000_CHORUS_PREDEFINED || mode >= SNDRV_EMU8000_CHORUS_NUMBERS) {
            snd_printk(KERN_WARNING "invalid chorus mode %d for uploading\n", mode);
            return -EINVAL;
      }
      if (len < (long)sizeof(rec) || copy_from_user(&rec, buf, sizeof(rec)))
            return -EFAULT;
      chorus_parm[mode] = rec;
      chorus_defined[mode] = 1;
      return 0;
}

/*exported*/ void
snd_emu8000_update_chorus_mode(struct snd_emu8000 *emu)
{
      int effect = emu->chorus_mode;
      if (effect < 0 || effect >= SNDRV_EMU8000_CHORUS_NUMBERS ||
          (effect >= SNDRV_EMU8000_CHORUS_PREDEFINED && !chorus_defined[effect]))
            return;
      EMU8000_INIT3_WRITE(emu, 0x09, chorus_parm[effect].feedback);
      EMU8000_INIT3_WRITE(emu, 0x0c, chorus_parm[effect].delay_offset);
      EMU8000_INIT4_WRITE(emu, 0x03, chorus_parm[effect].lfo_depth);
      EMU8000_HWCF4_WRITE(emu, chorus_parm[effect].delay);
      EMU8000_HWCF5_WRITE(emu, chorus_parm[effect].lfo_freq);
      EMU8000_HWCF6_WRITE(emu, 0x8000);
      EMU8000_HWCF7_WRITE(emu, 0x0000);
}

/*----------------------------------------------------------------
 * Reverb mode control
 *----------------------------------------------------------------*/

/*
 * reverb mode parameters
 */
#define     SNDRV_EMU8000_REVERB_ROOM1    0
#define SNDRV_EMU8000_REVERB_ROOM2  1
#define     SNDRV_EMU8000_REVERB_ROOM3    2
#define     SNDRV_EMU8000_REVERB_HALL1    3
#define     SNDRV_EMU8000_REVERB_HALL2    4
#define     SNDRV_EMU8000_REVERB_PLATE    5
#define     SNDRV_EMU8000_REVERB_DELAY    6
#define     SNDRV_EMU8000_REVERB_PANNINGDELAY 7
#define SNDRV_EMU8000_REVERB_PREDEFINED   8
/* user can define reverb modes up to 32 */
#define SNDRV_EMU8000_REVERB_NUMBERS      32

struct soundfont_reverb_fx {
      unsigned short parms[28];
};

/* reverb mode settings; write the following 28 data of 16 bit length
 *   on the corresponding ports in the reverb_cmds array
 */
static char reverb_defined[SNDRV_EMU8000_CHORUS_NUMBERS];
static struct soundfont_reverb_fx reverb_parm[SNDRV_EMU8000_REVERB_NUMBERS] = {
{{  /* room 1 */
      0xB488, 0xA450, 0x9550, 0x84B5, 0x383A, 0x3EB5, 0x72F4,
      0x72A4, 0x7254, 0x7204, 0x7204, 0x7204, 0x4416, 0x4516,
      0xA490, 0xA590, 0x842A, 0x852A, 0x842A, 0x852A, 0x8429,
      0x8529, 0x8429, 0x8529, 0x8428, 0x8528, 0x8428, 0x8528,
}},
{{  /* room 2 */
      0xB488, 0xA458, 0x9558, 0x84B5, 0x383A, 0x3EB5, 0x7284,
      0x7254, 0x7224, 0x7224, 0x7254, 0x7284, 0x4448, 0x4548,
      0xA440, 0xA540, 0x842A, 0x852A, 0x842A, 0x852A, 0x8429,
      0x8529, 0x8429, 0x8529, 0x8428, 0x8528, 0x8428, 0x8528,
}},
{{  /* room 3 */
      0xB488, 0xA460, 0x9560, 0x84B5, 0x383A, 0x3EB5, 0x7284,
      0x7254, 0x7224, 0x7224, 0x7254, 0x7284, 0x4416, 0x4516,
      0xA490, 0xA590, 0x842C, 0x852C, 0x842C, 0x852C, 0x842B,
      0x852B, 0x842B, 0x852B, 0x842A, 0x852A, 0x842A, 0x852A,
}},
{{  /* hall 1 */
      0xB488, 0xA470, 0x9570, 0x84B5, 0x383A, 0x3EB5, 0x7284,
      0x7254, 0x7224, 0x7224, 0x7254, 0x7284, 0x4448, 0x4548,
      0xA440, 0xA540, 0x842B, 0x852B, 0x842B, 0x852B, 0x842A,
      0x852A, 0x842A, 0x852A, 0x8429, 0x8529, 0x8429, 0x8529,
}},
{{  /* hall 2 */
      0xB488, 0xA470, 0x9570, 0x84B5, 0x383A, 0x3EB5, 0x7254,
      0x7234, 0x7224, 0x7254, 0x7264, 0x7294, 0x44C3, 0x45C3,
      0xA404, 0xA504, 0x842A, 0x852A, 0x842A, 0x852A, 0x8429,
      0x8529, 0x8429, 0x8529, 0x8428, 0x8528, 0x8428, 0x8528,
}},
{{  /* plate */
      0xB4FF, 0xA470, 0x9570, 0x84B5, 0x383A, 0x3EB5, 0x7234,
      0x7234, 0x7234, 0x7234, 0x7234, 0x7234, 0x4448, 0x4548,
      0xA440, 0xA540, 0x842A, 0x852A, 0x842A, 0x852A, 0x8429,
      0x8529, 0x8429, 0x8529, 0x8428, 0x8528, 0x8428, 0x8528,
}},
{{  /* delay */
      0xB4FF, 0xA470, 0x9500, 0x84B5, 0x333A, 0x39B5, 0x7204,
      0x7204, 0x7204, 0x7204, 0x7204, 0x72F4, 0x4400, 0x4500,
      0xA4FF, 0xA5FF, 0x8420, 0x8520, 0x8420, 0x8520, 0x8420,
      0x8520, 0x8420, 0x8520, 0x8420, 0x8520, 0x8420, 0x8520,
}},
{{  /* panning delay */
      0xB4FF, 0xA490, 0x9590, 0x8474, 0x333A, 0x39B5, 0x7204,
      0x7204, 0x7204, 0x7204, 0x7204, 0x72F4, 0x4400, 0x4500,
      0xA4FF, 0xA5FF, 0x8420, 0x8520, 0x8420, 0x8520, 0x8420,
      0x8520, 0x8420, 0x8520, 0x8420, 0x8520, 0x8420, 0x8520,
}},
};

enum { DATA1, DATA2 };
#define AWE_INIT1(c)    EMU8000_CMD(2,c), DATA1
#define AWE_INIT2(c)    EMU8000_CMD(2,c), DATA2
#define AWE_INIT3(c)    EMU8000_CMD(3,c), DATA1
#define AWE_INIT4(c)    EMU8000_CMD(3,c), DATA2

static struct reverb_cmd_pair {
      unsigned short cmd, port;
} reverb_cmds[28] = {
  {AWE_INIT1(0x03)}, {AWE_INIT1(0x05)}, {AWE_INIT4(0x1F)}, {AWE_INIT1(0x07)},
  {AWE_INIT2(0x14)}, {AWE_INIT2(0x16)}, {AWE_INIT1(0x0F)}, {AWE_INIT1(0x17)},
  {AWE_INIT1(0x1F)}, {AWE_INIT2(0x07)}, {AWE_INIT2(0x0F)}, {AWE_INIT2(0x17)},
  {AWE_INIT2(0x1D)}, {AWE_INIT2(0x1F)}, {AWE_INIT3(0x01)}, {AWE_INIT3(0x03)},
  {AWE_INIT1(0x09)}, {AWE_INIT1(0x0B)}, {AWE_INIT1(0x11)}, {AWE_INIT1(0x13)},
  {AWE_INIT1(0x19)}, {AWE_INIT1(0x1B)}, {AWE_INIT2(0x01)}, {AWE_INIT2(0x03)},
  {AWE_INIT2(0x09)}, {AWE_INIT2(0x0B)}, {AWE_INIT2(0x11)}, {AWE_INIT2(0x13)},
};

/*exported*/ int
snd_emu8000_load_reverb_fx(struct snd_emu8000 *emu, int mode, const void __user *buf, long len)
{
      struct soundfont_reverb_fx rec;

      if (mode < SNDRV_EMU8000_REVERB_PREDEFINED || mode >= SNDRV_EMU8000_REVERB_NUMBERS) {
            snd_printk(KERN_WARNING "invalid reverb mode %d for uploading\n", mode);
            return -EINVAL;
      }
      if (len < (long)sizeof(rec) || copy_from_user(&rec, buf, sizeof(rec)))
            return -EFAULT;
      reverb_parm[mode] = rec;
      reverb_defined[mode] = 1;
      return 0;
}

/*exported*/ void
snd_emu8000_update_reverb_mode(struct snd_emu8000 *emu)
{
      int effect = emu->reverb_mode;
      int i;

      if (effect < 0 || effect >= SNDRV_EMU8000_REVERB_NUMBERS ||
          (effect >= SNDRV_EMU8000_REVERB_PREDEFINED && !reverb_defined[effect]))
            return;
      for (i = 0; i < 28; i++) {
            int port;
            if (reverb_cmds[i].port == DATA1)
                  port = EMU8000_DATA1(emu);
            else
                  port = EMU8000_DATA2(emu);
            snd_emu8000_poke(emu, port, reverb_cmds[i].cmd, reverb_parm[effect].parms[i]);
      }
}


/*----------------------------------------------------------------
 * mixer interface
 *----------------------------------------------------------------*/

/*
 * bass/treble
 */
static int mixer_bass_treble_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo)
{
      uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
      uinfo->count = 1;
      uinfo->value.integer.min = 0;
      uinfo->value.integer.max = 11;
      return 0;
}

static int mixer_bass_treble_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
{
      struct snd_emu8000 *emu = snd_kcontrol_chip(kcontrol);
      
      ucontrol->value.integer.value[0] = kcontrol->private_value ? emu->treble_level : emu->bass_level;
      return 0;
}

static int mixer_bass_treble_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
{
      struct snd_emu8000 *emu = snd_kcontrol_chip(kcontrol);
      unsigned long flags;
      int change;
      unsigned short val1;
      
      val1 = ucontrol->value.integer.value[0] % 12;
      spin_lock_irqsave(&emu->control_lock, flags);
      if (kcontrol->private_value) {
            change = val1 != emu->treble_level;
            emu->treble_level = val1;
      } else {
            change = val1 != emu->bass_level;
            emu->bass_level = val1;
      }
      spin_unlock_irqrestore(&emu->control_lock, flags);
      snd_emu8000_update_equalizer(emu);
      return change;
}

static struct snd_kcontrol_new mixer_bass_control =
{
      .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
      .name = "Synth Tone Control - Bass",
      .info = mixer_bass_treble_info,
      .get = mixer_bass_treble_get,
      .put = mixer_bass_treble_put,
      .private_value = 0,
};

static struct snd_kcontrol_new mixer_treble_control =
{
      .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
      .name = "Synth Tone Control - Treble",
      .info = mixer_bass_treble_info,
      .get = mixer_bass_treble_get,
      .put = mixer_bass_treble_put,
      .private_value = 1,
};

/*
 * chorus/reverb mode
 */
static int mixer_chorus_reverb_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo)
{
      uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
      uinfo->count = 1;
      uinfo->value.integer.min = 0;
      uinfo->value.integer.max = kcontrol->private_value ? (SNDRV_EMU8000_CHORUS_NUMBERS-1) : (SNDRV_EMU8000_REVERB_NUMBERS-1);
      return 0;
}

static int mixer_chorus_reverb_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
{
      struct snd_emu8000 *emu = snd_kcontrol_chip(kcontrol);
      
      ucontrol->value.integer.value[0] = kcontrol->private_value ? emu->chorus_mode : emu->reverb_mode;
      return 0;
}

static int mixer_chorus_reverb_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
{
      struct snd_emu8000 *emu = snd_kcontrol_chip(kcontrol);
      unsigned long flags;
      int change;
      unsigned short val1;
      
      spin_lock_irqsave(&emu->control_lock, flags);
      if (kcontrol->private_value) {
            val1 = ucontrol->value.integer.value[0] % SNDRV_EMU8000_CHORUS_NUMBERS;
            change = val1 != emu->chorus_mode;
            emu->chorus_mode = val1;
      } else {
            val1 = ucontrol->value.integer.value[0] % SNDRV_EMU8000_REVERB_NUMBERS;
            change = val1 != emu->reverb_mode;
            emu->reverb_mode = val1;
      }
      spin_unlock_irqrestore(&emu->control_lock, flags);
      if (change) {
            if (kcontrol->private_value)
                  snd_emu8000_update_chorus_mode(emu);
            else
                  snd_emu8000_update_reverb_mode(emu);
      }
      return change;
}

static struct snd_kcontrol_new mixer_chorus_mode_control =
{
      .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
      .name = "Chorus Mode",
      .info = mixer_chorus_reverb_info,
      .get = mixer_chorus_reverb_get,
      .put = mixer_chorus_reverb_put,
      .private_value = 1,
};

static struct snd_kcontrol_new mixer_reverb_mode_control =
{
      .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
      .name = "Reverb Mode",
      .info = mixer_chorus_reverb_info,
      .get = mixer_chorus_reverb_get,
      .put = mixer_chorus_reverb_put,
      .private_value = 0,
};

/*
 * FM OPL3 chorus/reverb depth
 */
static int mixer_fm_depth_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo)
{
      uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
      uinfo->count = 1;
      uinfo->value.integer.min = 0;
      uinfo->value.integer.max = 255;
      return 0;
}

static int mixer_fm_depth_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
{
      struct snd_emu8000 *emu = snd_kcontrol_chip(kcontrol);
      
      ucontrol->value.integer.value[0] = kcontrol->private_value ? emu->fm_chorus_depth : emu->fm_reverb_depth;
      return 0;
}

static int mixer_fm_depth_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
{
      struct snd_emu8000 *emu = snd_kcontrol_chip(kcontrol);
      unsigned long flags;
      int change;
      unsigned short val1;
      
      val1 = ucontrol->value.integer.value[0] % 256;
      spin_lock_irqsave(&emu->control_lock, flags);
      if (kcontrol->private_value) {
            change = val1 != emu->fm_chorus_depth;
            emu->fm_chorus_depth = val1;
      } else {
            change = val1 != emu->fm_reverb_depth;
            emu->fm_reverb_depth = val1;
      }
      spin_unlock_irqrestore(&emu->control_lock, flags);
      if (change)
            snd_emu8000_init_fm(emu);
      return change;
}

static struct snd_kcontrol_new mixer_fm_chorus_depth_control =
{
      .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
      .name = "FM Chorus Depth",
      .info = mixer_fm_depth_info,
      .get = mixer_fm_depth_get,
      .put = mixer_fm_depth_put,
      .private_value = 1,
};

static struct snd_kcontrol_new mixer_fm_reverb_depth_control =
{
      .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
      .name = "FM Reverb Depth",
      .info = mixer_fm_depth_info,
      .get = mixer_fm_depth_get,
      .put = mixer_fm_depth_put,
      .private_value = 0,
};


static struct snd_kcontrol_new *mixer_defs[EMU8000_NUM_CONTROLS] = {
      &mixer_bass_control,
      &mixer_treble_control,
      &mixer_chorus_mode_control,
      &mixer_reverb_mode_control,
      &mixer_fm_chorus_depth_control,
      &mixer_fm_reverb_depth_control,
};

/*
 * create and attach mixer elements for WaveTable treble/bass controls
 */
static int __devinit
snd_emu8000_create_mixer(struct snd_card *card, struct snd_emu8000 *emu)
{
      int i, err = 0;

      if (snd_BUG_ON(!emu || !card))
            return -EINVAL;

      spin_lock_init(&emu->control_lock);

      memset(emu->controls, 0, sizeof(emu->controls));
      for (i = 0; i < EMU8000_NUM_CONTROLS; i++) {
            if ((err = snd_ctl_add(card, emu->controls[i] = snd_ctl_new1(mixer_defs[i], emu))) < 0)
                  goto __error;
      }
      return 0;

__error:
      for (i = 0; i < EMU8000_NUM_CONTROLS; i++) {
            down_write(&card->controls_rwsem);
            if (emu->controls[i])
                  snd_ctl_remove(card, emu->controls[i]);
            up_write(&card->controls_rwsem);
      }
      return err;
}


/*
 * free resources
 */
static int snd_emu8000_free(struct snd_emu8000 *hw)
{
      release_and_free_resource(hw->res_port1);
      release_and_free_resource(hw->res_port2);
      release_and_free_resource(hw->res_port3);
      kfree(hw);
      return 0;
}

/*
 */
static int snd_emu8000_dev_free(struct snd_device *device)
{
      struct snd_emu8000 *hw = device->device_data;
      return snd_emu8000_free(hw);
}

/*
 * initialize and register emu8000 synth device.
 */
int __devinit
snd_emu8000_new(struct snd_card *card, int index, long port, int seq_ports,
            struct snd_seq_device **awe_ret)
{
      struct snd_seq_device *awe;
      struct snd_emu8000 *hw;
      int err;
      static struct snd_device_ops ops = {
            .dev_free = snd_emu8000_dev_free,
      };

      if (awe_ret)
            *awe_ret = NULL;

      if (seq_ports <= 0)
            return 0;

      hw = kzalloc(sizeof(*hw), GFP_KERNEL);
      if (hw == NULL)
            return -ENOMEM;
      spin_lock_init(&hw->reg_lock);
      hw->index = index;
      hw->port1 = port;
      hw->port2 = port + 0x400;
      hw->port3 = port + 0x800;
      if (!(hw->res_port1 = request_region(hw->port1, 4, "Emu8000-1")) ||
          !(hw->res_port2 = request_region(hw->port2, 4, "Emu8000-2")) ||
          !(hw->res_port3 = request_region(hw->port3, 4, "Emu8000-3"))) {
            snd_printk(KERN_ERR "sbawe: can't grab ports 0x%lx, 0x%lx, 0x%lx\n", hw->port1, hw->port2, hw->port3);
            snd_emu8000_free(hw);
            return -EBUSY;
      }
      hw->mem_size = 0;
      hw->card = card;
      hw->seq_ports = seq_ports;
      hw->bass_level = 5;
      hw->treble_level = 9;
      hw->chorus_mode = 2;
      hw->reverb_mode = 4;
      hw->fm_chorus_depth = 0;
      hw->fm_reverb_depth = 0;

      if (snd_emu8000_detect(hw) < 0) {
            snd_emu8000_free(hw);
            return -ENODEV;
      }

      snd_emu8000_init_hw(hw);
      if ((err = snd_emu8000_create_mixer(card, hw)) < 0) {
            snd_emu8000_free(hw);
            return err;
      }
      
      if ((err = snd_device_new(card, SNDRV_DEV_CODEC, hw, &ops)) < 0) {
            snd_emu8000_free(hw);
            return err;
      }
#if defined(CONFIG_SND_SEQUENCER) || (defined(MODULE) && defined(CONFIG_SND_SEQUENCER_MODULE))
      if (snd_seq_device_new(card, index, SNDRV_SEQ_DEV_ID_EMU8000,
                         sizeof(struct snd_emu8000*), &awe) >= 0) {
            strcpy(awe->name, "EMU-8000");
            *(struct snd_emu8000 **)SNDRV_SEQ_DEVICE_ARGPTR(awe) = hw;
      }
#else
      awe = NULL;
#endif
      if (awe_ret)
            *awe_ret = awe;

      return 0;
}


/*
 * exported stuff
 */

EXPORT_SYMBOL(snd_emu8000_poke);
EXPORT_SYMBOL(snd_emu8000_peek);
EXPORT_SYMBOL(snd_emu8000_poke_dw);
EXPORT_SYMBOL(snd_emu8000_peek_dw);
EXPORT_SYMBOL(snd_emu8000_dma_chan);
EXPORT_SYMBOL(snd_emu8000_init_fm);
EXPORT_SYMBOL(snd_emu8000_load_chorus_fx);
EXPORT_SYMBOL(snd_emu8000_load_reverb_fx);
EXPORT_SYMBOL(snd_emu8000_update_chorus_mode);
EXPORT_SYMBOL(snd_emu8000_update_reverb_mode);
EXPORT_SYMBOL(snd_emu8000_update_equalizer);

Generated by  Doxygen 1.6.0   Back to index