Logo Search packages:      
Sourcecode: alsa-driver version File versions

nm256.c

/* 
 * Driver for NeoMagic 256AV and 256ZX chipsets.
 * Copyright (c) 2000 by Takashi Iwai <tiwai@suse.de>
 *
 * Based on nm256_audio.c OSS driver in linux kernel.
 * The original author of OSS nm256 driver wishes to remain anonymous,
 * so I just put my acknoledgment to him/her here.
 * The original author's web page is found at
 *    http://www.uglx.org/sony.html
 *
 *
 *   This program is free software; you can redistribute it and/or modify
 *   it under the terms of the GNU General Public License as published by
 *   the Free Software Foundation; either version 2 of the License, or
 *   (at your option) any later version.
 *
 *   This program is distributed in the hope that it will be useful,
 *   but WITHOUT ANY WARRANTY; without even the implied warranty of
 *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *   GNU General Public License for more details.
 *
 *   You should have received a copy of the GNU General Public License
 *   along with this program; if not, write to the Free Software
 *   Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
 */
  
#include <asm/io.h>
#include <linux/delay.h>
#include <linux/interrupt.h>
#include <linux/init.h>
#include <linux/pci.h>
#include <linux/slab.h>
#include <linux/moduleparam.h>
#include <linux/mutex.h>

#include <sound/core.h>
#include <sound/info.h>
#include <sound/control.h>
#include <sound/pcm.h>
#include <sound/ac97_codec.h>
#include <sound/initval.h>

#define CARD_NAME "NeoMagic 256AV/ZX"
#define DRIVER_NAME "NM256"

MODULE_AUTHOR("Takashi Iwai <tiwai@suse.de>");
MODULE_DESCRIPTION("NeoMagic NM256AV/ZX");
MODULE_LICENSE("GPL");
MODULE_SUPPORTED_DEVICE("{{NeoMagic,NM256AV},"
            "{NeoMagic,NM256ZX}}");

/*
 * some compile conditions.
 */

static int index = SNDRV_DEFAULT_IDX1;    /* Index */
static char *id = SNDRV_DEFAULT_STR1;     /* ID for this card */
static int playback_bufsize = 16;
static int capture_bufsize = 16;
static int force_ac97;              /* disabled as default */
static int buffer_top;              /* not specified */
static int use_cache;               /* disabled */
static int vaio_hack;               /* disabled */
static int reset_workaround;
static int reset_workaround_2;

module_param(index, int, 0444);
MODULE_PARM_DESC(index, "Index value for " CARD_NAME " soundcard.");
module_param(id, charp, 0444);
MODULE_PARM_DESC(id, "ID string for " CARD_NAME " soundcard.");
module_param(playback_bufsize, int, 0444);
MODULE_PARM_DESC(playback_bufsize, "DAC frame size in kB for " CARD_NAME " soundcard.");
module_param(capture_bufsize, int, 0444);
MODULE_PARM_DESC(capture_bufsize, "ADC frame size in kB for " CARD_NAME " soundcard.");
module_param(force_ac97, bool, 0444);
MODULE_PARM_DESC(force_ac97, "Force to use AC97 codec for " CARD_NAME " soundcard.");
module_param(buffer_top, int, 0444);
MODULE_PARM_DESC(buffer_top, "Set the top address of audio buffer for " CARD_NAME " soundcard.");
module_param(use_cache, bool, 0444);
MODULE_PARM_DESC(use_cache, "Enable the cache for coefficient table access.");
module_param(vaio_hack, bool, 0444);
MODULE_PARM_DESC(vaio_hack, "Enable workaround for Sony VAIO notebooks.");
module_param(reset_workaround, bool, 0444);
MODULE_PARM_DESC(reset_workaround, "Enable AC97 RESET workaround for some laptops.");
module_param(reset_workaround_2, bool, 0444);
MODULE_PARM_DESC(reset_workaround_2, "Enable extended AC97 RESET workaround for some other laptops.");

/* just for backward compatibility */
static int enable;
module_param(enable, bool, 0444);



/*
 * hw definitions
 */

/* The BIOS signature. */
#define NM_SIGNATURE 0x4e4d0000
/* Signature mask. */
#define NM_SIG_MASK 0xffff0000

/* Size of the second memory area. */
#define NM_PORT2_SIZE 4096

/* The base offset of the mixer in the second memory area. */
#define NM_MIXER_OFFSET 0x600

/* The maximum size of a coefficient entry. */
#define NM_MAX_PLAYBACK_COEF_SIZE   0x5000
#define NM_MAX_RECORD_COEF_SIZE           0x1260

/* The interrupt register. */
#define NM_INT_REG 0xa04
/* And its bits. */
#define NM_PLAYBACK_INT 0x40
#define NM_RECORD_INT 0x100
#define NM_MISC_INT_1 0x4000
#define NM_MISC_INT_2 0x1
#define NM_ACK_INT(chip, X) snd_nm256_writew(chip, NM_INT_REG, (X) << 1)

/* The AV's "mixer ready" status bit and location. */
#define NM_MIXER_STATUS_OFFSET 0xa04
#define NM_MIXER_READY_MASK 0x0800
#define NM_MIXER_PRESENCE 0xa06
#define NM_PRESENCE_MASK 0x0050
#define NM_PRESENCE_VALUE 0x0040

/*
 * For the ZX.  It uses the same interrupt register, but it holds 32
 * bits instead of 16.
 */
#define NM2_PLAYBACK_INT 0x10000
#define NM2_RECORD_INT 0x80000
#define NM2_MISC_INT_1 0x8
#define NM2_MISC_INT_2 0x2
#define NM2_ACK_INT(chip, X) snd_nm256_writel(chip, NM_INT_REG, (X))

/* The ZX's "mixer ready" status bit and location. */
#define NM2_MIXER_STATUS_OFFSET 0xa06
#define NM2_MIXER_READY_MASK 0x0800

/* The playback registers start from here. */
#define NM_PLAYBACK_REG_OFFSET 0x0
/* The record registers start from here. */
#define NM_RECORD_REG_OFFSET 0x200

/* The rate register is located 2 bytes from the start of the register area. */
#define NM_RATE_REG_OFFSET 2

/* Mono/stereo flag, number of bits on playback, and rate mask. */
#define NM_RATE_STEREO 1
#define NM_RATE_BITS_16 2
#define NM_RATE_MASK 0xf0

/* Playback enable register. */
#define NM_PLAYBACK_ENABLE_REG (NM_PLAYBACK_REG_OFFSET + 0x1)
#define NM_PLAYBACK_ENABLE_FLAG 1
#define NM_PLAYBACK_ONESHOT 2
#define NM_PLAYBACK_FREERUN 4

/* Mutes the audio output. */
#define NM_AUDIO_MUTE_REG (NM_PLAYBACK_REG_OFFSET + 0x18)
#define NM_AUDIO_MUTE_LEFT 0x8000
#define NM_AUDIO_MUTE_RIGHT 0x0080

/* Recording enable register. */
#define NM_RECORD_ENABLE_REG (NM_RECORD_REG_OFFSET + 0)
#define NM_RECORD_ENABLE_FLAG 1
#define NM_RECORD_FREERUN 2

/* coefficient buffer pointer */
#define NM_COEFF_START_OFFSET 0x1c
#define NM_COEFF_END_OFFSET   0x20

/* DMA buffer offsets */
#define NM_RBUFFER_START (NM_RECORD_REG_OFFSET + 0x4)
#define NM_RBUFFER_END   (NM_RECORD_REG_OFFSET + 0x10)
#define NM_RBUFFER_WMARK (NM_RECORD_REG_OFFSET + 0xc)
#define NM_RBUFFER_CURRP (NM_RECORD_REG_OFFSET + 0x8)

#define NM_PBUFFER_START (NM_PLAYBACK_REG_OFFSET + 0x4)
#define NM_PBUFFER_END   (NM_PLAYBACK_REG_OFFSET + 0x14)
#define NM_PBUFFER_WMARK (NM_PLAYBACK_REG_OFFSET + 0xc)
#define NM_PBUFFER_CURRP (NM_PLAYBACK_REG_OFFSET + 0x8)

struct nm256_stream {

      struct nm256 *chip;
      struct snd_pcm_substream *substream;
      int running;
      int suspended;
      
      u32 buf;    /* offset from chip->buffer */
      int bufsize;      /* buffer size in bytes */
      void __iomem *bufptr;         /* mapped pointer */
      unsigned long bufptr_addr;    /* physical address of the mapped pointer */

      int dma_size;           /* buffer size of the substream in bytes */
      int period_size;  /* period size in bytes */
      int periods;            /* # of periods */
      int shift;        /* bit shifts */
      int cur_period;         /* current period # */

};

struct nm256 {
      
      struct snd_card *card;

      void __iomem *cport;          /* control port */
      struct resource *res_cport;   /* its resource */
      unsigned long cport_addr;     /* physical address */

      void __iomem *buffer;         /* buffer */
      struct resource *res_buffer;  /* its resource */
      unsigned long buffer_addr;    /* buffer phyiscal address */

      u32 buffer_start;       /* start offset from pci resource 0 */
      u32 buffer_end;               /* end offset */
      u32 buffer_size;        /* total buffer size */

      u32 all_coeff_buf;            /* coefficient buffer */
      u32 coeff_buf[2];       /* coefficient buffer for each stream */

      unsigned int coeffs_current: 1;     /* coeff. table is loaded? */
      unsigned int use_cache: 1;    /* use one big coef. table */
      unsigned int reset_workaround: 1; /* Workaround for some laptops to avoid freeze */
      unsigned int reset_workaround_2: 1; /* Extended workaround for some other laptops to avoid freeze */
      unsigned int in_resume: 1;

      int mixer_base;               /* register offset of ac97 mixer */
      int mixer_status_offset;      /* offset of mixer status reg. */
      int mixer_status_mask;        /* bit mask to test the mixer status */

      int irq;
      int irq_acks;
      irq_handler_t interrupt;
      int badintrcount;       /* counter to check bogus interrupts */
      struct mutex irq_mutex;

      struct nm256_stream streams[2];

      struct snd_ac97 *ac97;
      unsigned short *ac97_regs; /* register caches, only for valid regs */

      struct snd_pcm *pcm;

      struct pci_dev *pci;

      spinlock_t reg_lock;

};


/*
 * include coefficient table
 */
#include "nm256_coef.c"


/*
 * PCI ids
 */
static struct pci_device_id snd_nm256_ids[] = {
      {PCI_VENDOR_ID_NEOMAGIC, PCI_DEVICE_ID_NEOMAGIC_NM256AV_AUDIO, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
      {PCI_VENDOR_ID_NEOMAGIC, PCI_DEVICE_ID_NEOMAGIC_NM256ZX_AUDIO, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
      {PCI_VENDOR_ID_NEOMAGIC, PCI_DEVICE_ID_NEOMAGIC_NM256XL_PLUS_AUDIO, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
      {0,},
};

MODULE_DEVICE_TABLE(pci, snd_nm256_ids);


/*
 * lowlvel stuffs
 */

static inline u8
snd_nm256_readb(struct nm256 *chip, int offset)
{
      return readb(chip->cport + offset);
}

static inline u16
snd_nm256_readw(struct nm256 *chip, int offset)
{
      return readw(chip->cport + offset);
}

static inline u32
snd_nm256_readl(struct nm256 *chip, int offset)
{
      return readl(chip->cport + offset);
}

static inline void
snd_nm256_writeb(struct nm256 *chip, int offset, u8 val)
{
      writeb(val, chip->cport + offset);
}

static inline void
snd_nm256_writew(struct nm256 *chip, int offset, u16 val)
{
      writew(val, chip->cport + offset);
}

static inline void
snd_nm256_writel(struct nm256 *chip, int offset, u32 val)
{
      writel(val, chip->cport + offset);
}

static inline void
snd_nm256_write_buffer(struct nm256 *chip, void *src, int offset, int size)
{
      offset -= chip->buffer_start;
#ifdef CONFIG_SND_DEBUG
      if (offset < 0 || offset >= chip->buffer_size) {
            snd_printk(KERN_ERR "write_buffer invalid offset = %d size = %d\n",
                     offset, size);
            return;
      }
#endif
      memcpy_toio(chip->buffer + offset, src, size);
}

/*
 * coefficient handlers -- what a magic!
 */

static u16
snd_nm256_get_start_offset(int which)
{
      u16 offset = 0;
      while (which-- > 0)
            offset += coefficient_sizes[which];
      return offset;
}

static void
snd_nm256_load_one_coefficient(struct nm256 *chip, int stream, u32 port, int which)
{
      u32 coeff_buf = chip->coeff_buf[stream];
      u16 offset = snd_nm256_get_start_offset(which);
      u16 size = coefficient_sizes[which];

      snd_nm256_write_buffer(chip, coefficients + offset, coeff_buf, size);
      snd_nm256_writel(chip, port, coeff_buf);
      /* ???  Record seems to behave differently than playback.  */
      if (stream == SNDRV_PCM_STREAM_PLAYBACK)
            size--;
      snd_nm256_writel(chip, port + 4, coeff_buf + size);
}

static void
snd_nm256_load_coefficient(struct nm256 *chip, int stream, int number)
{
      /* The enable register for the specified engine.  */
      u32 poffset = (stream == SNDRV_PCM_STREAM_CAPTURE ?
                   NM_RECORD_ENABLE_REG : NM_PLAYBACK_ENABLE_REG);
      u32 addr = NM_COEFF_START_OFFSET;

      addr += (stream == SNDRV_PCM_STREAM_CAPTURE ?
             NM_RECORD_REG_OFFSET : NM_PLAYBACK_REG_OFFSET);

      if (snd_nm256_readb(chip, poffset) & 1) {
            snd_printd("NM256: Engine was enabled while loading coefficients!\n");
            return;
      }

      /* The recording engine uses coefficient values 8-15.  */
      number &= 7;
      if (stream == SNDRV_PCM_STREAM_CAPTURE)
            number += 8;

      if (! chip->use_cache) {
            snd_nm256_load_one_coefficient(chip, stream, addr, number);
            return;
      }
      if (! chip->coeffs_current) {
            snd_nm256_write_buffer(chip, coefficients, chip->all_coeff_buf,
                               NM_TOTAL_COEFF_COUNT * 4);
            chip->coeffs_current = 1;
      } else {
            u32 base = chip->all_coeff_buf;
            u32 offset = snd_nm256_get_start_offset(number);
            u32 end_offset = offset + coefficient_sizes[number];
            snd_nm256_writel(chip, addr, base + offset);
            if (stream == SNDRV_PCM_STREAM_PLAYBACK)
                  end_offset--;
            snd_nm256_writel(chip, addr + 4, base + end_offset);
      }
}


/* The actual rates supported by the card. */
static unsigned int samplerates[8] = {
      8000, 11025, 16000, 22050, 24000, 32000, 44100, 48000,
};
static struct snd_pcm_hw_constraint_list constraints_rates = {
      .count = ARRAY_SIZE(samplerates), 
      .list = samplerates,
      .mask = 0,
};

/*
 * return the index of the target rate
 */
static int
snd_nm256_fixed_rate(unsigned int rate)
{
      unsigned int i;
      for (i = 0; i < ARRAY_SIZE(samplerates); i++) {
            if (rate == samplerates[i])
                  return i;
      }
      snd_BUG();
      return 0;
}

/*
 * set sample rate and format
 */
static void
snd_nm256_set_format(struct nm256 *chip, struct nm256_stream *s,
                 struct snd_pcm_substream *substream)
{
      struct snd_pcm_runtime *runtime = substream->runtime;
      int rate_index = snd_nm256_fixed_rate(runtime->rate);
      unsigned char ratebits = (rate_index << 4) & NM_RATE_MASK;

      s->shift = 0;
      if (snd_pcm_format_width(runtime->format) == 16) {
            ratebits |= NM_RATE_BITS_16;
            s->shift++;
      }
      if (runtime->channels > 1) {
            ratebits |= NM_RATE_STEREO;
            s->shift++;
      }

      runtime->rate = samplerates[rate_index];

      switch (substream->stream) {
      case SNDRV_PCM_STREAM_PLAYBACK:
            snd_nm256_load_coefficient(chip, 0, rate_index); /* 0 = playback */
            snd_nm256_writeb(chip,
                         NM_PLAYBACK_REG_OFFSET + NM_RATE_REG_OFFSET,
                         ratebits);
            break;
      case SNDRV_PCM_STREAM_CAPTURE:
            snd_nm256_load_coefficient(chip, 1, rate_index); /* 1 = record */
            snd_nm256_writeb(chip,
                         NM_RECORD_REG_OFFSET + NM_RATE_REG_OFFSET,
                         ratebits);
            break;
      }
}

/* acquire interrupt */
static int snd_nm256_acquire_irq(struct nm256 *chip)
{
      mutex_lock(&chip->irq_mutex);
      if (chip->irq < 0) {
            if (request_irq(chip->pci->irq, chip->interrupt, IRQF_SHARED,
                        chip->card->driver, chip)) {
                  snd_printk(KERN_ERR "unable to grab IRQ %d\n", chip->pci->irq);
                  mutex_unlock(&chip->irq_mutex);
                  return -EBUSY;
            }
            chip->irq = chip->pci->irq;
      }
      chip->irq_acks++;
      mutex_unlock(&chip->irq_mutex);
      return 0;
}

/* release interrupt */
static void snd_nm256_release_irq(struct nm256 *chip)
{
      mutex_lock(&chip->irq_mutex);
      if (chip->irq_acks > 0)
            chip->irq_acks--;
      if (chip->irq_acks == 0 && chip->irq >= 0) {
            free_irq(chip->irq, chip);
            chip->irq = -1;
      }
      mutex_unlock(&chip->irq_mutex);
}

/*
 * start / stop
 */

/* update the watermark (current period) */
static void snd_nm256_pcm_mark(struct nm256 *chip, struct nm256_stream *s, int reg)
{
      s->cur_period++;
      s->cur_period %= s->periods;
      snd_nm256_writel(chip, reg, s->buf + s->cur_period * s->period_size);
}

#define snd_nm256_playback_mark(chip, s) snd_nm256_pcm_mark(chip, s, NM_PBUFFER_WMARK)
#define snd_nm256_capture_mark(chip, s)  snd_nm256_pcm_mark(chip, s, NM_RBUFFER_WMARK)

static void
snd_nm256_playback_start(struct nm256 *chip, struct nm256_stream *s,
                   struct snd_pcm_substream *substream)
{
      /* program buffer pointers */
      snd_nm256_writel(chip, NM_PBUFFER_START, s->buf);
      snd_nm256_writel(chip, NM_PBUFFER_END, s->buf + s->dma_size - (1 << s->shift));
      snd_nm256_writel(chip, NM_PBUFFER_CURRP, s->buf);
      snd_nm256_playback_mark(chip, s);

      /* Enable playback engine and interrupts. */
      snd_nm256_writeb(chip, NM_PLAYBACK_ENABLE_REG,
                   NM_PLAYBACK_ENABLE_FLAG | NM_PLAYBACK_FREERUN);
      /* Enable both channels. */
      snd_nm256_writew(chip, NM_AUDIO_MUTE_REG, 0x0);
}

static void
snd_nm256_capture_start(struct nm256 *chip, struct nm256_stream *s,
                  struct snd_pcm_substream *substream)
{
      /* program buffer pointers */
      snd_nm256_writel(chip, NM_RBUFFER_START, s->buf);
      snd_nm256_writel(chip, NM_RBUFFER_END, s->buf + s->dma_size);
      snd_nm256_writel(chip, NM_RBUFFER_CURRP, s->buf);
      snd_nm256_capture_mark(chip, s);

      /* Enable playback engine and interrupts. */
      snd_nm256_writeb(chip, NM_RECORD_ENABLE_REG,
                   NM_RECORD_ENABLE_FLAG | NM_RECORD_FREERUN);
}

/* Stop the play engine. */
static void
snd_nm256_playback_stop(struct nm256 *chip)
{
      /* Shut off sound from both channels. */
      snd_nm256_writew(chip, NM_AUDIO_MUTE_REG,
                   NM_AUDIO_MUTE_LEFT | NM_AUDIO_MUTE_RIGHT);
      /* Disable play engine. */
      snd_nm256_writeb(chip, NM_PLAYBACK_ENABLE_REG, 0);
}

static void
snd_nm256_capture_stop(struct nm256 *chip)
{
      /* Disable recording engine. */
      snd_nm256_writeb(chip, NM_RECORD_ENABLE_REG, 0);
}

static int
snd_nm256_playback_trigger(struct snd_pcm_substream *substream, int cmd)
{
      struct nm256 *chip = snd_pcm_substream_chip(substream);
      struct nm256_stream *s = substream->runtime->private_data;
      int err = 0;

      if (snd_BUG_ON(!s))
            return -ENXIO;

      spin_lock(&chip->reg_lock);
      switch (cmd) {
      case SNDRV_PCM_TRIGGER_RESUME:
            s->suspended = 0;
            /* fallthru */
      case SNDRV_PCM_TRIGGER_START:
            if (! s->running) {
                  snd_nm256_playback_start(chip, s, substream);
                  s->running = 1;
            }
            break;
      case SNDRV_PCM_TRIGGER_SUSPEND:
            s->suspended = 1;
            /* fallthru */
      case SNDRV_PCM_TRIGGER_STOP:
            if (s->running) {
                  snd_nm256_playback_stop(chip);
                  s->running = 0;
            }
            break;
      default:
            err = -EINVAL;
            break;
      }
      spin_unlock(&chip->reg_lock);
      return err;
}

static int
snd_nm256_capture_trigger(struct snd_pcm_substream *substream, int cmd)
{
      struct nm256 *chip = snd_pcm_substream_chip(substream);
      struct nm256_stream *s = substream->runtime->private_data;
      int err = 0;

      if (snd_BUG_ON(!s))
            return -ENXIO;

      spin_lock(&chip->reg_lock);
      switch (cmd) {
      case SNDRV_PCM_TRIGGER_START:
      case SNDRV_PCM_TRIGGER_RESUME:
            if (! s->running) {
                  snd_nm256_capture_start(chip, s, substream);
                  s->running = 1;
            }
            break;
      case SNDRV_PCM_TRIGGER_STOP:
      case SNDRV_PCM_TRIGGER_SUSPEND:
            if (s->running) {
                  snd_nm256_capture_stop(chip);
                  s->running = 0;
            }
            break;
      default:
            err = -EINVAL;
            break;
      }
      spin_unlock(&chip->reg_lock);
      return err;
}


/*
 * prepare playback/capture channel
 */
static int snd_nm256_pcm_prepare(struct snd_pcm_substream *substream)
{
      struct nm256 *chip = snd_pcm_substream_chip(substream);
      struct snd_pcm_runtime *runtime = substream->runtime;
      struct nm256_stream *s = runtime->private_data;

      if (snd_BUG_ON(!s))
            return -ENXIO;
      s->dma_size = frames_to_bytes(runtime, substream->runtime->buffer_size);
      s->period_size = frames_to_bytes(runtime, substream->runtime->period_size);
      s->periods = substream->runtime->periods;
      s->cur_period = 0;

      spin_lock_irq(&chip->reg_lock);
      s->running = 0;
      snd_nm256_set_format(chip, s, substream);
      spin_unlock_irq(&chip->reg_lock);

      return 0;
}


/*
 * get the current pointer
 */
static snd_pcm_uframes_t
snd_nm256_playback_pointer(struct snd_pcm_substream *substream)
{
      struct nm256 *chip = snd_pcm_substream_chip(substream);
      struct nm256_stream *s = substream->runtime->private_data;
      unsigned long curp;

      if (snd_BUG_ON(!s))
            return 0;
      curp = snd_nm256_readl(chip, NM_PBUFFER_CURRP) - (unsigned long)s->buf;
      curp %= s->dma_size;
      return bytes_to_frames(substream->runtime, curp);
}

static snd_pcm_uframes_t
snd_nm256_capture_pointer(struct snd_pcm_substream *substream)
{
      struct nm256 *chip = snd_pcm_substream_chip(substream);
      struct nm256_stream *s = substream->runtime->private_data;
      unsigned long curp;

      if (snd_BUG_ON(!s))
            return 0;
      curp = snd_nm256_readl(chip, NM_RBUFFER_CURRP) - (unsigned long)s->buf;
      curp %= s->dma_size;    
      return bytes_to_frames(substream->runtime, curp);
}

/* Remapped I/O space can be accessible as pointer on i386 */
/* This might be changed in the future */
#ifndef __i386__
/*
 * silence / copy for playback
 */
static int
snd_nm256_playback_silence(struct snd_pcm_substream *substream,
                     int channel, /* not used (interleaved data) */
                     snd_pcm_uframes_t pos,
                     snd_pcm_uframes_t count)
{
      struct snd_pcm_runtime *runtime = substream->runtime;
      struct nm256_stream *s = runtime->private_data;
      count = frames_to_bytes(runtime, count);
      pos = frames_to_bytes(runtime, pos);
      memset_io(s->bufptr + pos, 0, count);
      return 0;
}

static int
snd_nm256_playback_copy(struct snd_pcm_substream *substream,
                  int channel, /* not used (interleaved data) */
                  snd_pcm_uframes_t pos,
                  void __user *src,
                  snd_pcm_uframes_t count)
{
      struct snd_pcm_runtime *runtime = substream->runtime;
      struct nm256_stream *s = runtime->private_data;
      count = frames_to_bytes(runtime, count);
      pos = frames_to_bytes(runtime, pos);
      if (copy_from_user_toio(s->bufptr + pos, src, count))
            return -EFAULT;
      return 0;
}

/*
 * copy to user
 */
static int
snd_nm256_capture_copy(struct snd_pcm_substream *substream,
                   int channel, /* not used (interleaved data) */
                   snd_pcm_uframes_t pos,
                   void __user *dst,
                   snd_pcm_uframes_t count)
{
      struct snd_pcm_runtime *runtime = substream->runtime;
      struct nm256_stream *s = runtime->private_data;
      count = frames_to_bytes(runtime, count);
      pos = frames_to_bytes(runtime, pos);
      if (copy_to_user_fromio(dst, s->bufptr + pos, count))
            return -EFAULT;
      return 0;
}

#endif /* !__i386__ */


/*
 * update playback/capture watermarks
 */

/* spinlock held! */
static void
snd_nm256_playback_update(struct nm256 *chip)
{
      struct nm256_stream *s;

      s = &chip->streams[SNDRV_PCM_STREAM_PLAYBACK];
      if (s->running && s->substream) {
            spin_unlock(&chip->reg_lock);
            snd_pcm_period_elapsed(s->substream);
            spin_lock(&chip->reg_lock);
            snd_nm256_playback_mark(chip, s);
      }
}

/* spinlock held! */
static void
snd_nm256_capture_update(struct nm256 *chip)
{
      struct nm256_stream *s;

      s = &chip->streams[SNDRV_PCM_STREAM_CAPTURE];
      if (s->running && s->substream) {
            spin_unlock(&chip->reg_lock);
            snd_pcm_period_elapsed(s->substream);
            spin_lock(&chip->reg_lock);
            snd_nm256_capture_mark(chip, s);
      }
}

/*
 * hardware info
 */
static struct snd_pcm_hardware snd_nm256_playback =
{
      .info =                 SNDRV_PCM_INFO_MMAP_IOMEM |SNDRV_PCM_INFO_MMAP_VALID |
                        SNDRV_PCM_INFO_INTERLEAVED |
                        /*SNDRV_PCM_INFO_PAUSE |*/
                        SNDRV_PCM_INFO_RESUME,
      .formats =        SNDRV_PCM_FMTBIT_U8 | SNDRV_PCM_FMTBIT_S16_LE,
      .rates =          SNDRV_PCM_RATE_KNOT/*24k*/ | SNDRV_PCM_RATE_8000_48000,
      .rate_min =       8000,
      .rate_max =       48000,
      .channels_min =         1,
      .channels_max =         2,
      .periods_min =          2,
      .periods_max =          1024,
      .buffer_bytes_max =     128 * 1024,
      .period_bytes_min =     256,
      .period_bytes_max =     128 * 1024,
};

static struct snd_pcm_hardware snd_nm256_capture =
{
      .info =                 SNDRV_PCM_INFO_MMAP_IOMEM | SNDRV_PCM_INFO_MMAP_VALID |
                        SNDRV_PCM_INFO_INTERLEAVED |
                        /*SNDRV_PCM_INFO_PAUSE |*/
                        SNDRV_PCM_INFO_RESUME,
      .formats =        SNDRV_PCM_FMTBIT_U8 | SNDRV_PCM_FMTBIT_S16_LE,
      .rates =          SNDRV_PCM_RATE_KNOT/*24k*/ | SNDRV_PCM_RATE_8000_48000,
      .rate_min =       8000,
      .rate_max =       48000,
      .channels_min =         1,
      .channels_max =         2,
      .periods_min =          2,
      .periods_max =          1024,
      .buffer_bytes_max =     128 * 1024,
      .period_bytes_min =     256,
      .period_bytes_max =     128 * 1024,
};


/* set dma transfer size */
static int snd_nm256_pcm_hw_params(struct snd_pcm_substream *substream,
                           struct snd_pcm_hw_params *hw_params)
{
      /* area and addr are already set and unchanged */
      substream->runtime->dma_bytes = params_buffer_bytes(hw_params);
      return 0;
}

/*
 * open
 */
static void snd_nm256_setup_stream(struct nm256 *chip, struct nm256_stream *s,
                           struct snd_pcm_substream *substream,
                           struct snd_pcm_hardware *hw_ptr)
{
      struct snd_pcm_runtime *runtime = substream->runtime;

      s->running = 0;
      runtime->hw = *hw_ptr;
      runtime->hw.buffer_bytes_max = s->bufsize;
      runtime->hw.period_bytes_max = s->bufsize / 2;
      runtime->dma_area = (void __force *) s->bufptr;
      runtime->dma_addr = s->bufptr_addr;
      runtime->dma_bytes = s->bufsize;
      runtime->private_data = s;
      s->substream = substream;

      snd_pcm_hw_constraint_list(runtime, 0, SNDRV_PCM_HW_PARAM_RATE,
                           &constraints_rates);
}

static int
snd_nm256_playback_open(struct snd_pcm_substream *substream)
{
      struct nm256 *chip = snd_pcm_substream_chip(substream);

      if (snd_nm256_acquire_irq(chip) < 0)
            return -EBUSY;
      snd_nm256_setup_stream(chip, &chip->streams[SNDRV_PCM_STREAM_PLAYBACK],
                         substream, &snd_nm256_playback);
      return 0;
}

static int
snd_nm256_capture_open(struct snd_pcm_substream *substream)
{
      struct nm256 *chip = snd_pcm_substream_chip(substream);

      if (snd_nm256_acquire_irq(chip) < 0)
            return -EBUSY;
      snd_nm256_setup_stream(chip, &chip->streams[SNDRV_PCM_STREAM_CAPTURE],
                         substream, &snd_nm256_capture);
      return 0;
}

/*
 * close - we don't have to do special..
 */
static int
snd_nm256_playback_close(struct snd_pcm_substream *substream)
{
      struct nm256 *chip = snd_pcm_substream_chip(substream);

      snd_nm256_release_irq(chip);
      return 0;
}


static int
snd_nm256_capture_close(struct snd_pcm_substream *substream)
{
      struct nm256 *chip = snd_pcm_substream_chip(substream);

      snd_nm256_release_irq(chip);
      return 0;
}

/*
 * create a pcm instance
 */
static struct snd_pcm_ops snd_nm256_playback_ops = {
      .open =           snd_nm256_playback_open,
      .close =    snd_nm256_playback_close,
      .ioctl =    snd_pcm_lib_ioctl,
      .hw_params =      snd_nm256_pcm_hw_params,
      .prepare =  snd_nm256_pcm_prepare,
      .trigger =  snd_nm256_playback_trigger,
      .pointer =  snd_nm256_playback_pointer,
#ifndef __i386__
      .copy =           snd_nm256_playback_copy,
      .silence =  snd_nm256_playback_silence,
#endif
      .mmap =           snd_pcm_lib_mmap_iomem,
};

static struct snd_pcm_ops snd_nm256_capture_ops = {
      .open =           snd_nm256_capture_open,
      .close =    snd_nm256_capture_close,
      .ioctl =    snd_pcm_lib_ioctl,
      .hw_params =      snd_nm256_pcm_hw_params,
      .prepare =  snd_nm256_pcm_prepare,
      .trigger =  snd_nm256_capture_trigger,
      .pointer =  snd_nm256_capture_pointer,
#ifndef __i386__
      .copy =           snd_nm256_capture_copy,
#endif
      .mmap =           snd_pcm_lib_mmap_iomem,
};

static int __devinit
snd_nm256_pcm(struct nm256 *chip, int device)
{
      struct snd_pcm *pcm;
      int i, err;

      for (i = 0; i < 2; i++) {
            struct nm256_stream *s = &chip->streams[i];
            s->bufptr = chip->buffer + (s->buf - chip->buffer_start);
            s->bufptr_addr = chip->buffer_addr + (s->buf - chip->buffer_start);
      }

      err = snd_pcm_new(chip->card, chip->card->driver, device,
                    1, 1, &pcm);
      if (err < 0)
            return err;

      snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_nm256_playback_ops);
      snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &snd_nm256_capture_ops);

      pcm->private_data = chip;
      pcm->info_flags = 0;
      chip->pcm = pcm;

      return 0;
}


/* 
 * Initialize the hardware. 
 */
static void
snd_nm256_init_chip(struct nm256 *chip)
{
      /* Reset everything. */
      snd_nm256_writeb(chip, 0x0, 0x11);
      snd_nm256_writew(chip, 0x214, 0);
      /* stop sounds.. */
      //snd_nm256_playback_stop(chip);
      //snd_nm256_capture_stop(chip);
}


static irqreturn_t
snd_nm256_intr_check(struct nm256 *chip)
{
      if (chip->badintrcount++ > 1000) {
            /*
             * I'm not sure if the best thing is to stop the card from
             * playing or just release the interrupt (after all, we're in
             * a bad situation, so doing fancy stuff may not be such a good
             * idea).
             *
             * I worry about the card engine continuing to play noise
             * over and over, however--that could become a very
             * obnoxious problem.  And we know that when this usually
             * happens things are fairly safe, it just means the user's
             * inserted a PCMCIA card and someone's spamming us with IRQ 9s.
             */
            if (chip->streams[SNDRV_PCM_STREAM_PLAYBACK].running)
                  snd_nm256_playback_stop(chip);
            if (chip->streams[SNDRV_PCM_STREAM_CAPTURE].running)
                  snd_nm256_capture_stop(chip);
            chip->badintrcount = 0;
            return IRQ_HANDLED;
      }
      return IRQ_NONE;
}

/* 
 * Handle a potential interrupt for the device referred to by DEV_ID. 
 *
 * I don't like the cut-n-paste job here either between the two routines,
 * but there are sufficient differences between the two interrupt handlers
 * that parameterizing it isn't all that great either.  (Could use a macro,
 * I suppose...yucky bleah.)
 */

static irqreturn_t
snd_nm256_interrupt(int irq, void *dev_id)
{
      struct nm256 *chip = dev_id;
      u16 status;
      u8 cbyte;

      status = snd_nm256_readw(chip, NM_INT_REG);

      /* Not ours. */
      if (status == 0)
            return snd_nm256_intr_check(chip);

      chip->badintrcount = 0;

      /* Rather boring; check for individual interrupts and process them. */

      spin_lock(&chip->reg_lock);
      if (status & NM_PLAYBACK_INT) {
            status &= ~NM_PLAYBACK_INT;
            NM_ACK_INT(chip, NM_PLAYBACK_INT);
            snd_nm256_playback_update(chip);
      }

      if (status & NM_RECORD_INT) {
            status &= ~NM_RECORD_INT;
            NM_ACK_INT(chip, NM_RECORD_INT);
            snd_nm256_capture_update(chip);
      }

      if (status & NM_MISC_INT_1) {
            status &= ~NM_MISC_INT_1;
            NM_ACK_INT(chip, NM_MISC_INT_1);
            snd_printd("NM256: Got misc interrupt #1\n");
            snd_nm256_writew(chip, NM_INT_REG, 0x8000);
            cbyte = snd_nm256_readb(chip, 0x400);
            snd_nm256_writeb(chip, 0x400, cbyte | 2);
      }

      if (status & NM_MISC_INT_2) {
            status &= ~NM_MISC_INT_2;
            NM_ACK_INT(chip, NM_MISC_INT_2);
            snd_printd("NM256: Got misc interrupt #2\n");
            cbyte = snd_nm256_readb(chip, 0x400);
            snd_nm256_writeb(chip, 0x400, cbyte & ~2);
      }

      /* Unknown interrupt. */
      if (status) {
            snd_printd("NM256: Fire in the hole! Unknown status 0x%x\n",
                     status);
            /* Pray. */
            NM_ACK_INT(chip, status);
      }

      spin_unlock(&chip->reg_lock);
      return IRQ_HANDLED;
}

/*
 * Handle a potential interrupt for the device referred to by DEV_ID.
 * This handler is for the 256ZX, and is very similar to the non-ZX
 * routine.
 */

static irqreturn_t
snd_nm256_interrupt_zx(int irq, void *dev_id)
{
      struct nm256 *chip = dev_id;
      u32 status;
      u8 cbyte;

      status = snd_nm256_readl(chip, NM_INT_REG);

      /* Not ours. */
      if (status == 0)
            return snd_nm256_intr_check(chip);

      chip->badintrcount = 0;

      /* Rather boring; check for individual interrupts and process them. */

      spin_lock(&chip->reg_lock);
      if (status & NM2_PLAYBACK_INT) {
            status &= ~NM2_PLAYBACK_INT;
            NM2_ACK_INT(chip, NM2_PLAYBACK_INT);
            snd_nm256_playback_update(chip);
      }

      if (status & NM2_RECORD_INT) {
            status &= ~NM2_RECORD_INT;
            NM2_ACK_INT(chip, NM2_RECORD_INT);
            snd_nm256_capture_update(chip);
      }

      if (status & NM2_MISC_INT_1) {
            status &= ~NM2_MISC_INT_1;
            NM2_ACK_INT(chip, NM2_MISC_INT_1);
            snd_printd("NM256: Got misc interrupt #1\n");
            cbyte = snd_nm256_readb(chip, 0x400);
            snd_nm256_writeb(chip, 0x400, cbyte | 2);
      }

      if (status & NM2_MISC_INT_2) {
            status &= ~NM2_MISC_INT_2;
            NM2_ACK_INT(chip, NM2_MISC_INT_2);
            snd_printd("NM256: Got misc interrupt #2\n");
            cbyte = snd_nm256_readb(chip, 0x400);
            snd_nm256_writeb(chip, 0x400, cbyte & ~2);
      }

      /* Unknown interrupt. */
      if (status) {
            snd_printd("NM256: Fire in the hole! Unknown status 0x%x\n",
                     status);
            /* Pray. */
            NM2_ACK_INT(chip, status);
      }

      spin_unlock(&chip->reg_lock);
      return IRQ_HANDLED;
}

/*
 * AC97 interface
 */

/*
 * Waits for the mixer to become ready to be written; returns a zero value
 * if it timed out.
 */
static int
snd_nm256_ac97_ready(struct nm256 *chip)
{
      int timeout = 10;
      u32 testaddr;
      u16 testb;

      testaddr = chip->mixer_status_offset;
      testb = chip->mixer_status_mask;

      /* 
       * Loop around waiting for the mixer to become ready. 
       */
      while (timeout-- > 0) {
            if ((snd_nm256_readw(chip, testaddr) & testb) == 0)
                  return 1;
            udelay(100);
      }
      return 0;
}

/* 
 * Initial register values to be written to the AC97 mixer.
 * While most of these are identical to the reset values, we do this
 * so that we have most of the register contents cached--this avoids
 * reading from the mixer directly (which seems to be problematic,
 * probably due to ignorance).
 */

struct initialValues {
      unsigned short reg;
      unsigned short value;
};

static struct initialValues nm256_ac97_init_val[] =
{
      { AC97_MASTER,          0x8000 },
      { AC97_HEADPHONE, 0x8000 },
      { AC97_MASTER_MONO,     0x8000 },
      { AC97_PC_BEEP,         0x8000 },
      { AC97_PHONE,           0x8008 },
      { AC97_MIC,       0x8000 },
      { AC97_LINE,            0x8808 },
      { AC97_CD,        0x8808 },
      { AC97_VIDEO,           0x8808 },
      { AC97_AUX,       0x8808 },
      { AC97_PCM,       0x8808 },
      { AC97_REC_SEL,         0x0000 },
      { AC97_REC_GAIN,  0x0B0B },
      { AC97_GENERAL_PURPOSE, 0x0000 },
      { AC97_3D_CONTROL,      0x8000 }, 
      { AC97_VENDOR_ID1,      0x8384 },
      { AC97_VENDOR_ID2,      0x7609 },
};

static int nm256_ac97_idx(unsigned short reg)
{
      int i;
      for (i = 0; i < ARRAY_SIZE(nm256_ac97_init_val); i++)
            if (nm256_ac97_init_val[i].reg == reg)
                  return i;
      return -1;
}

/*
 * some nm256 easily crash when reading from mixer registers
 * thus we're treating it as a write-only mixer and cache the
 * written values
 */
static unsigned short
snd_nm256_ac97_read(struct snd_ac97 *ac97, unsigned short reg)
{
      struct nm256 *chip = ac97->private_data;
      int idx = nm256_ac97_idx(reg);

      if (idx < 0)
            return 0;
      return chip->ac97_regs[idx];
}

/* 
 */
static void
snd_nm256_ac97_write(struct snd_ac97 *ac97,
                 unsigned short reg, unsigned short val)
{
      struct nm256 *chip = ac97->private_data;
      int tries = 2;
      int idx = nm256_ac97_idx(reg);
      u32 base;

      if (idx < 0)
            return;

      base = chip->mixer_base;

      snd_nm256_ac97_ready(chip);

      /* Wait for the write to take, too. */
      while (tries-- > 0) {
            snd_nm256_writew(chip, base + reg, val);
            msleep(1);  /* a little delay here seems better.. */
            if (snd_nm256_ac97_ready(chip)) {
                  /* successful write: set cache */
                  chip->ac97_regs[idx] = val;
                  return;
            }
      }
      snd_printd("nm256: ac97 codec not ready..\n");
}

/* static resolution table */
static struct snd_ac97_res_table nm256_res_table[] = {
      { AC97_MASTER, 0x1f1f },
      { AC97_HEADPHONE, 0x1f1f },
      { AC97_MASTER_MONO, 0x001f },
      { AC97_PC_BEEP, 0x001f },
      { AC97_PHONE, 0x001f },
      { AC97_MIC, 0x001f },
      { AC97_LINE, 0x1f1f },
      { AC97_CD, 0x1f1f },
      { AC97_VIDEO, 0x1f1f },
      { AC97_AUX, 0x1f1f },
      { AC97_PCM, 0x1f1f },
      { AC97_REC_GAIN, 0x0f0f },
      { } /* terminator */
};

/* initialize the ac97 into a known state */
static void
snd_nm256_ac97_reset(struct snd_ac97 *ac97)
{
      struct nm256 *chip = ac97->private_data;

      /* Reset the mixer.  'Tis magic!  */
      snd_nm256_writeb(chip, 0x6c0, 1);
      if (! chip->reset_workaround) {
            /* Dell latitude LS will lock up by this */
            snd_nm256_writeb(chip, 0x6cc, 0x87);
      }
      if (! chip->reset_workaround_2) {
            /* Dell latitude CSx will lock up by this */
            snd_nm256_writeb(chip, 0x6cc, 0x80);
            snd_nm256_writeb(chip, 0x6cc, 0x0);
      }
      if (! chip->in_resume) {
            int i;
            for (i = 0; i < ARRAY_SIZE(nm256_ac97_init_val); i++) {
                  /* preload the cache, so as to avoid even a single
                   * read of the mixer regs
                   */
                  snd_nm256_ac97_write(ac97, nm256_ac97_init_val[i].reg,
                                   nm256_ac97_init_val[i].value);
            }
      }
}

/* create an ac97 mixer interface */
static int __devinit
snd_nm256_mixer(struct nm256 *chip)
{
      struct snd_ac97_bus *pbus;
      struct snd_ac97_template ac97;
      int err;
      static struct snd_ac97_bus_ops ops = {
            .reset = snd_nm256_ac97_reset,
            .write = snd_nm256_ac97_write,
            .read = snd_nm256_ac97_read,
      };

      chip->ac97_regs = kcalloc(ARRAY_SIZE(nm256_ac97_init_val),
                          sizeof(short), GFP_KERNEL);
      if (! chip->ac97_regs)
            return -ENOMEM;

      if ((err = snd_ac97_bus(chip->card, 0, &ops, NULL, &pbus)) < 0)
            return err;

      memset(&ac97, 0, sizeof(ac97));
      ac97.scaps = AC97_SCAP_AUDIO; /* we support audio! */
      ac97.private_data = chip;
      ac97.res_table = nm256_res_table;
      pbus->no_vra = 1;
      err = snd_ac97_mixer(pbus, &ac97, &chip->ac97);
      if (err < 0)
            return err;
      if (! (chip->ac97->id & (0xf0000000))) {
            /* looks like an invalid id */
            sprintf(chip->card->mixername, "%s AC97", chip->card->driver);
      }
      return 0;
}

/* 
 * See if the signature left by the NM256 BIOS is intact; if so, we use
 * the associated address as the end of our audio buffer in the video
 * RAM.
 */

static int __devinit
snd_nm256_peek_for_sig(struct nm256 *chip)
{
      /* The signature is located 1K below the end of video RAM.  */
      void __iomem *temp;
      /* Default buffer end is 5120 bytes below the top of RAM.  */
      unsigned long pointer_found = chip->buffer_end - 0x1400;
      u32 sig;

      temp = ioremap_nocache(chip->buffer_addr + chip->buffer_end - 0x400, 16);
      if (temp == NULL) {
            snd_printk(KERN_ERR "Unable to scan for card signature in video RAM\n");
            return -EBUSY;
      }

      sig = readl(temp);
      if ((sig & NM_SIG_MASK) == NM_SIGNATURE) {
            u32 pointer = readl(temp + 4);

            /*
             * If it's obviously invalid, don't use it
             */
            if (pointer == 0xffffffff ||
                pointer < chip->buffer_size ||
                pointer > chip->buffer_end) {
                  snd_printk(KERN_ERR "invalid signature found: 0x%x\n", pointer);
                  iounmap(temp);
                  return -ENODEV;
            } else {
                  pointer_found = pointer;
                  printk(KERN_INFO "nm256: found card signature in video RAM: 0x%x\n",
                         pointer);
            }
      }

      iounmap(temp);
      chip->buffer_end = pointer_found;

      return 0;
}

#ifdef CONFIG_PM
/*
 * APM event handler, so the card is properly reinitialized after a power
 * event.
 */
static int nm256_suspend(struct pci_dev *pci, pm_message_t state)
{
      struct snd_card *card = pci_get_drvdata(pci);
      struct nm256 *chip = card->private_data;

      snd_power_change_state(card, SNDRV_CTL_POWER_D3hot);
      snd_pcm_suspend_all(chip->pcm);
      snd_ac97_suspend(chip->ac97);
      chip->coeffs_current = 0;
      pci_disable_device(pci);
      pci_save_state(pci);
      pci_set_power_state(pci, pci_choose_state(pci, state));
      return 0;
}

static int nm256_resume(struct pci_dev *pci)
{
      struct snd_card *card = pci_get_drvdata(pci);
      struct nm256 *chip = card->private_data;
      int i;

      /* Perform a full reset on the hardware */
      chip->in_resume = 1;

      pci_set_power_state(pci, PCI_D0);
      pci_restore_state(pci);
      if (pci_enable_device(pci) < 0) {
            printk(KERN_ERR "nm256: pci_enable_device failed, "
                   "disabling device\n");
            snd_card_disconnect(card);
            return -EIO;
      }
      pci_set_master(pci);

      snd_nm256_init_chip(chip);

      /* restore ac97 */
      snd_ac97_resume(chip->ac97);

      for (i = 0; i < 2; i++) {
            struct nm256_stream *s = &chip->streams[i];
            if (s->substream && s->suspended) {
                  spin_lock_irq(&chip->reg_lock);
                  snd_nm256_set_format(chip, s, s->substream);
                  spin_unlock_irq(&chip->reg_lock);
            }
      }

      snd_power_change_state(card, SNDRV_CTL_POWER_D0);
      chip->in_resume = 0;
      return 0;
}
#endif /* CONFIG_PM */

static int snd_nm256_free(struct nm256 *chip)
{
      if (chip->streams[SNDRV_PCM_STREAM_PLAYBACK].running)
            snd_nm256_playback_stop(chip);
      if (chip->streams[SNDRV_PCM_STREAM_CAPTURE].running)
            snd_nm256_capture_stop(chip);

      if (chip->irq >= 0)
            free_irq(chip->irq, chip);

      if (chip->cport)
            iounmap(chip->cport);
      if (chip->buffer)
            iounmap(chip->buffer);
      release_and_free_resource(chip->res_cport);
      release_and_free_resource(chip->res_buffer);

      pci_disable_device(chip->pci);
      kfree(chip->ac97_regs);
      kfree(chip);
      return 0;
}

static int snd_nm256_dev_free(struct snd_device *device)
{
      struct nm256 *chip = device->device_data;
      return snd_nm256_free(chip);
}

static int __devinit
snd_nm256_create(struct snd_card *card, struct pci_dev *pci,
             struct nm256 **chip_ret)
{
      struct nm256 *chip;
      int err, pval;
      static struct snd_device_ops ops = {
            .dev_free = snd_nm256_dev_free,
      };
      u32 addr;

      *chip_ret = NULL;

      if ((err = pci_enable_device(pci)) < 0)
            return err;

      chip = kzalloc(sizeof(*chip), GFP_KERNEL);
      if (chip == NULL) {
            pci_disable_device(pci);
            return -ENOMEM;
      }

      chip->card = card;
      chip->pci = pci;
      chip->use_cache = use_cache;
      spin_lock_init(&chip->reg_lock);
      chip->irq = -1;
      mutex_init(&chip->irq_mutex);

      /* store buffer sizes in bytes */
      chip->streams[SNDRV_PCM_STREAM_PLAYBACK].bufsize = playback_bufsize * 1024;
      chip->streams[SNDRV_PCM_STREAM_CAPTURE].bufsize = capture_bufsize * 1024;

      /* 
       * The NM256 has two memory ports.  The first port is nothing
       * more than a chunk of video RAM, which is used as the I/O ring
       * buffer.  The second port has the actual juicy stuff (like the
       * mixer and the playback engine control registers).
       */

      chip->buffer_addr = pci_resource_start(pci, 0);
      chip->cport_addr = pci_resource_start(pci, 1);

      /* Init the memory port info.  */
      /* remap control port (#2) */
      chip->res_cport = request_mem_region(chip->cport_addr, NM_PORT2_SIZE,
                                   card->driver);
      if (chip->res_cport == NULL) {
            snd_printk(KERN_ERR "memory region 0x%lx (size 0x%x) busy\n",
                     chip->cport_addr, NM_PORT2_SIZE);
            err = -EBUSY;
            goto __error;
      }
      chip->cport = ioremap_nocache(chip->cport_addr, NM_PORT2_SIZE);
      if (chip->cport == NULL) {
            snd_printk(KERN_ERR "unable to map control port %lx\n", chip->cport_addr);
            err = -ENOMEM;
            goto __error;
      }

      if (!strcmp(card->driver, "NM256AV")) {
            /* Ok, try to see if this is a non-AC97 version of the hardware. */
            pval = snd_nm256_readw(chip, NM_MIXER_PRESENCE);
            if ((pval & NM_PRESENCE_MASK) != NM_PRESENCE_VALUE) {
                  if (! force_ac97) {
                        printk(KERN_ERR "nm256: no ac97 is found!\n");
                        printk(KERN_ERR "  force the driver to load by "
                               "passing in the module parameter\n");
                        printk(KERN_ERR "    force_ac97=1\n");
                        printk(KERN_ERR "  or try sb16, opl3sa2, or "
                               "cs423x drivers instead.\n");
                        err = -ENXIO;
                        goto __error;
                  }
            }
            chip->buffer_end = 2560 * 1024;
            chip->interrupt = snd_nm256_interrupt;
            chip->mixer_status_offset = NM_MIXER_STATUS_OFFSET;
            chip->mixer_status_mask = NM_MIXER_READY_MASK;
      } else {
            /* Not sure if there is any relevant detect for the ZX or not.  */
            if (snd_nm256_readb(chip, 0xa0b) != 0)
                  chip->buffer_end = 6144 * 1024;
            else
                  chip->buffer_end = 4096 * 1024;

            chip->interrupt = snd_nm256_interrupt_zx;
            chip->mixer_status_offset = NM2_MIXER_STATUS_OFFSET;
            chip->mixer_status_mask = NM2_MIXER_READY_MASK;
      }
      
      chip->buffer_size = chip->streams[SNDRV_PCM_STREAM_PLAYBACK].bufsize +
            chip->streams[SNDRV_PCM_STREAM_CAPTURE].bufsize;
      if (chip->use_cache)
            chip->buffer_size += NM_TOTAL_COEFF_COUNT * 4;
      else
            chip->buffer_size += NM_MAX_PLAYBACK_COEF_SIZE + NM_MAX_RECORD_COEF_SIZE;

      if (buffer_top >= chip->buffer_size && buffer_top < chip->buffer_end)
            chip->buffer_end = buffer_top;
      else {
            /* get buffer end pointer from signature */
            if ((err = snd_nm256_peek_for_sig(chip)) < 0)
                  goto __error;
      }

      chip->buffer_start = chip->buffer_end - chip->buffer_size;
      chip->buffer_addr += chip->buffer_start;

      printk(KERN_INFO "nm256: Mapping port 1 from 0x%x - 0x%x\n",
             chip->buffer_start, chip->buffer_end);

      chip->res_buffer = request_mem_region(chip->buffer_addr,
                                    chip->buffer_size,
                                    card->driver);
      if (chip->res_buffer == NULL) {
            snd_printk(KERN_ERR "nm256: buffer 0x%lx (size 0x%x) busy\n",
                     chip->buffer_addr, chip->buffer_size);
            err = -EBUSY;
            goto __error;
      }
      chip->buffer = ioremap_nocache(chip->buffer_addr, chip->buffer_size);
      if (chip->buffer == NULL) {
            err = -ENOMEM;
            snd_printk(KERN_ERR "unable to map ring buffer at %lx\n", chip->buffer_addr);
            goto __error;
      }

      /* set offsets */
      addr = chip->buffer_start;
      chip->streams[SNDRV_PCM_STREAM_PLAYBACK].buf = addr;
      addr += chip->streams[SNDRV_PCM_STREAM_PLAYBACK].bufsize;
      chip->streams[SNDRV_PCM_STREAM_CAPTURE].buf = addr;
      addr += chip->streams[SNDRV_PCM_STREAM_CAPTURE].bufsize;
      if (chip->use_cache) {
            chip->all_coeff_buf = addr;
      } else {
            chip->coeff_buf[SNDRV_PCM_STREAM_PLAYBACK] = addr;
            addr += NM_MAX_PLAYBACK_COEF_SIZE;
            chip->coeff_buf[SNDRV_PCM_STREAM_CAPTURE] = addr;
      }

      /* Fixed setting. */
      chip->mixer_base = NM_MIXER_OFFSET;

      chip->coeffs_current = 0;

      snd_nm256_init_chip(chip);

      // pci_set_master(pci); /* needed? */
      
      if ((err = snd_device_new(card, SNDRV_DEV_LOWLEVEL, chip, &ops)) < 0)
            goto __error;

      snd_card_set_dev(card, &pci->dev);

      *chip_ret = chip;
      return 0;

__error:
      snd_nm256_free(chip);
      return err;
}


enum { NM_BLACKLISTED, NM_RESET_WORKAROUND, NM_RESET_WORKAROUND_2 };

static struct snd_pci_quirk nm256_quirks[] __devinitdata = {
      /* HP omnibook 4150 has cs4232 codec internally */
      SND_PCI_QUIRK(0x103c, 0x0007, "HP omnibook 4150", NM_BLACKLISTED),
      /* Reset workarounds to avoid lock-ups */
      SND_PCI_QUIRK(0x104d, 0x8041, "Sony PCG-F305", NM_RESET_WORKAROUND),
      SND_PCI_QUIRK(0x1028, 0x0080, "Dell Latitude LS", NM_RESET_WORKAROUND),
      SND_PCI_QUIRK(0x1028, 0x0091, "Dell Latitude CSx", NM_RESET_WORKAROUND_2),
      { } /* terminator */
};


static int __devinit snd_nm256_probe(struct pci_dev *pci,
                             const struct pci_device_id *pci_id)
{
      struct snd_card *card;
      struct nm256 *chip;
      int err;
      const struct snd_pci_quirk *q;

      q = snd_pci_quirk_lookup(pci, nm256_quirks);
      if (q) {
            snd_printdd(KERN_INFO "nm256: Enabled quirk for %s.\n", q->name);
            switch (q->value) {
            case NM_BLACKLISTED:
                  printk(KERN_INFO "nm256: The device is blacklisted. "
                         "Loading stopped\n");
                  return -ENODEV;
            case NM_RESET_WORKAROUND_2:
                  reset_workaround_2 = 1;
                  /* Fall-through */
            case NM_RESET_WORKAROUND:
                  reset_workaround = 1;
                  break;
            }
      }

      card = snd_card_new(index, id, THIS_MODULE, 0);
      if (card == NULL)
            return -ENOMEM;

      switch (pci->device) {
      case PCI_DEVICE_ID_NEOMAGIC_NM256AV_AUDIO:
            strcpy(card->driver, "NM256AV");
            break;
      case PCI_DEVICE_ID_NEOMAGIC_NM256ZX_AUDIO:
            strcpy(card->driver, "NM256ZX");
            break;
      case PCI_DEVICE_ID_NEOMAGIC_NM256XL_PLUS_AUDIO:
            strcpy(card->driver, "NM256XL+");
            break;
      default:
            snd_printk(KERN_ERR "invalid device id 0x%x\n", pci->device);
            snd_card_free(card);
            return -EINVAL;
      }

      if (vaio_hack)
            buffer_top = 0x25a800;  /* this avoids conflicts with XFree86 server */

      if (playback_bufsize < 4)
            playback_bufsize = 4;
      if (playback_bufsize > 128)
            playback_bufsize = 128;
      if (capture_bufsize < 4)
            capture_bufsize = 4;
      if (capture_bufsize > 128)
            capture_bufsize = 128;
      if ((err = snd_nm256_create(card, pci, &chip)) < 0) {
            snd_card_free(card);
            return err;
      }
      card->private_data = chip;

      if (reset_workaround) {
            snd_printdd(KERN_INFO "nm256: reset_workaround activated\n");
            chip->reset_workaround = 1;
      }

      if (reset_workaround_2) {
            snd_printdd(KERN_INFO "nm256: reset_workaround_2 activated\n");
            chip->reset_workaround_2 = 1;
      }

      if ((err = snd_nm256_pcm(chip, 0)) < 0 ||
          (err = snd_nm256_mixer(chip)) < 0) {
            snd_card_free(card);
            return err;
      }

      sprintf(card->shortname, "NeoMagic %s", card->driver);
      sprintf(card->longname, "%s at 0x%lx & 0x%lx, irq %d",
            card->shortname,
            chip->buffer_addr, chip->cport_addr, chip->irq);

      if ((err = snd_card_register(card)) < 0) {
            snd_card_free(card);
            return err;
      }

      pci_set_drvdata(pci, card);
      return 0;
}

static void __devexit snd_nm256_remove(struct pci_dev *pci)
{
      snd_card_free(pci_get_drvdata(pci));
      pci_set_drvdata(pci, NULL);
}


static struct pci_driver driver = {
      .name = "NeoMagic 256",
      .id_table = snd_nm256_ids,
      .probe = snd_nm256_probe,
      .remove = __devexit_p(snd_nm256_remove),
#ifdef CONFIG_PM
      .suspend = nm256_suspend,
      .resume = nm256_resume,
#endif
};


static int __init alsa_card_nm256_init(void)
{
      return pci_register_driver(&driver);
}

static void __exit alsa_card_nm256_exit(void)
{
      pci_unregister_driver(&driver);
}

module_init(alsa_card_nm256_init)
module_exit(alsa_card_nm256_exit)

Generated by  Doxygen 1.6.0   Back to index