Logo Search packages:      
Sourcecode: alsa-driver version File versions

ak4xxx-adda.c

/*
 *   ALSA driver for AK4524 / AK4528 / AK4529 / AK4355 / AK4358 / AK4381
 *   AD and DA converters
 *
 *    Copyright (c) 2000-2004 Jaroslav Kysela <perex@perex.cz>,
 *                      Takashi Iwai <tiwai@suse.de>
 *
 *   This program is free software; you can redistribute it and/or modify
 *   it under the terms of the GNU General Public License as published by
 *   the Free Software Foundation; either version 2 of the License, or
 *   (at your option) any later version.
 *
 *   This program is distributed in the hope that it will be useful,
 *   but WITHOUT ANY WARRANTY; without even the implied warranty of
 *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *   GNU General Public License for more details.
 *
 *   You should have received a copy of the GNU General Public License
 *   along with this program; if not, write to the Free Software
 *   Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
 *
 */      

#include <asm/io.h>
#include <linux/delay.h>
#include <linux/interrupt.h>
#include <linux/init.h>
#include <sound/core.h>
#include <sound/control.h>
#include <sound/tlv.h>
#include <sound/ak4xxx-adda.h>

MODULE_AUTHOR("Jaroslav Kysela <perex@perex.cz>, Takashi Iwai <tiwai@suse.de>");
MODULE_DESCRIPTION("Routines for control of AK452x / AK43xx  AD/DA converters");
MODULE_LICENSE("GPL");

/* write the given register and save the data to the cache */
void snd_akm4xxx_write(struct snd_akm4xxx *ak, int chip, unsigned char reg,
                   unsigned char val)
{
      ak->ops.lock(ak, chip);
      ak->ops.write(ak, chip, reg, val);

      /* save the data */
      snd_akm4xxx_set(ak, chip, reg, val);
      ak->ops.unlock(ak, chip);
}

EXPORT_SYMBOL(snd_akm4xxx_write);

/* reset procedure for AK4524 and AK4528 */
static void ak4524_reset(struct snd_akm4xxx *ak, int state)
{
      unsigned int chip;
      unsigned char reg, maxreg;

      if (ak->type == SND_AK4528)
            maxreg = 0x06;
      else
            maxreg = 0x08;
      for (chip = 0; chip < ak->num_dacs/2; chip++) {
            snd_akm4xxx_write(ak, chip, 0x01, state ? 0x00 : 0x03);
            if (state)
                  continue;
            /* DAC volumes */
            for (reg = 0x04; reg < maxreg; reg++)
                  snd_akm4xxx_write(ak, chip, reg,
                                snd_akm4xxx_get(ak, chip, reg));
      }
}

/* reset procedure for AK4355 and AK4358 */
static void ak435X_reset(struct snd_akm4xxx *ak, int state,
            unsigned char total_regs)
{
      unsigned char reg;

      if (state) {
            snd_akm4xxx_write(ak, 0, 0x01, 0x02); /* reset and soft-mute */
            return;
      }
      for (reg = 0x00; reg < total_regs; reg++)
            if (reg != 0x01)
                  snd_akm4xxx_write(ak, 0, reg,
                                snd_akm4xxx_get(ak, 0, reg));
      snd_akm4xxx_write(ak, 0, 0x01, 0x01); /* un-reset, unmute */
}

/* reset procedure for AK4381 */
static void ak4381_reset(struct snd_akm4xxx *ak, int state)
{
      unsigned int chip;
      unsigned char reg;

      for (chip = 0; chip < ak->num_dacs/2; chip++) {
            snd_akm4xxx_write(ak, chip, 0x00, state ? 0x0c : 0x0f);
            if (state)
                  continue;
            for (reg = 0x01; reg < 0x05; reg++)
                  snd_akm4xxx_write(ak, chip, reg,
                                snd_akm4xxx_get(ak, chip, reg));
      }
}

/*
 * reset the AKM codecs
 * @state: 1 = reset codec, 0 = restore the registers
 *
 * assert the reset operation and restores the register values to the chips.
 */
void snd_akm4xxx_reset(struct snd_akm4xxx *ak, int state)
{
      switch (ak->type) {
      case SND_AK4524:
      case SND_AK4528:
            ak4524_reset(ak, state);
            break;
      case SND_AK4529:
            /* FIXME: needed for ak4529? */
            break;
      case SND_AK4355:
            ak435X_reset(ak, state, 0x0b);
            break;
      case SND_AK4358:
            ak435X_reset(ak, state, 0x10);
            break;
      case SND_AK4381:
            ak4381_reset(ak, state);
            break;
      default:
            break;
      }
}

EXPORT_SYMBOL(snd_akm4xxx_reset);


/*
 * Volume conversion table for non-linear volumes
 * from -63.5dB (mute) to 0dB step 0.5dB
 *
 * Used for AK4524 input/ouput attenuation, AK4528, and
 * AK5365 input attenuation
 */
static const unsigned char vol_cvt_datt[128] = {
      0x00, 0x01, 0x01, 0x02, 0x02, 0x03, 0x03, 0x04,
      0x04, 0x04, 0x04, 0x05, 0x05, 0x05, 0x06, 0x06,
      0x06, 0x07, 0x07, 0x08, 0x08, 0x08, 0x09, 0x0a,
      0x0a, 0x0b, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 0x0f,
      0x10, 0x10, 0x11, 0x12, 0x12, 0x13, 0x13, 0x14,
      0x15, 0x16, 0x17, 0x17, 0x18, 0x19, 0x1a, 0x1c,
      0x1d, 0x1e, 0x1f, 0x20, 0x21, 0x22, 0x23, 0x23,
      0x24, 0x25, 0x26, 0x28, 0x29, 0x2a, 0x2b, 0x2d,
      0x2e, 0x30, 0x30, 0x31, 0x32, 0x33, 0x34, 0x35,
      0x37, 0x38, 0x39, 0x3b, 0x3c, 0x3e, 0x3f, 0x40,
      0x41, 0x42, 0x43, 0x44, 0x46, 0x47, 0x48, 0x4a,
      0x4b, 0x4d, 0x4e, 0x50, 0x51, 0x52, 0x53, 0x54,
      0x55, 0x56, 0x58, 0x59, 0x5b, 0x5c, 0x5e, 0x5f,
      0x60, 0x61, 0x62, 0x64, 0x65, 0x66, 0x67, 0x69,
      0x6a, 0x6c, 0x6d, 0x6f, 0x70, 0x71, 0x72, 0x73,
      0x75, 0x76, 0x77, 0x79, 0x7a, 0x7c, 0x7d, 0x7f,
};

/*
 * dB tables
 */
static const DECLARE_TLV_DB_SCALE(db_scale_vol_datt, -6350, 50, 1);
static const DECLARE_TLV_DB_SCALE(db_scale_8bit, -12750, 50, 1);
static const DECLARE_TLV_DB_SCALE(db_scale_7bit, -6350, 50, 1);
static const DECLARE_TLV_DB_LINEAR(db_scale_linear, TLV_DB_GAIN_MUTE, 0);

/*
 * initialize all the ak4xxx chips
 */
void snd_akm4xxx_init(struct snd_akm4xxx *ak)
{
      static const unsigned char inits_ak4524[] = {
            0x00, 0x07, /* 0: all power up */
            0x01, 0x00, /* 1: ADC/DAC reset */
            0x02, 0x60, /* 2: 24bit I2S */
            0x03, 0x19, /* 3: deemphasis off */
            0x01, 0x03, /* 1: ADC/DAC enable */
            0x04, 0x00, /* 4: ADC left muted */
            0x05, 0x00, /* 5: ADC right muted */
            0x06, 0x00, /* 6: DAC left muted */
            0x07, 0x00, /* 7: DAC right muted */
            0xff, 0xff
      };
      static const unsigned char inits_ak4528[] = {
            0x00, 0x07, /* 0: all power up */
            0x01, 0x00, /* 1: ADC/DAC reset */
            0x02, 0x60, /* 2: 24bit I2S */
            0x03, 0x0d, /* 3: deemphasis off, turn LR highpass filters on */
            0x01, 0x03, /* 1: ADC/DAC enable */
            0x04, 0x00, /* 4: ADC left muted */
            0x05, 0x00, /* 5: ADC right muted */
            0xff, 0xff
      };
      static const unsigned char inits_ak4529[] = {
            0x09, 0x01, /* 9: ATS=0, RSTN=1 */
            0x0a, 0x3f, /* A: all power up, no zero/overflow detection */
            0x00, 0x0c, /* 0: TDM=0, 24bit I2S, SMUTE=0 */
            0x01, 0x00, /* 1: ACKS=0, ADC, loop off */
            0x02, 0xff, /* 2: LOUT1 muted */
            0x03, 0xff, /* 3: ROUT1 muted */
            0x04, 0xff, /* 4: LOUT2 muted */
            0x05, 0xff, /* 5: ROUT2 muted */
            0x06, 0xff, /* 6: LOUT3 muted */
            0x07, 0xff, /* 7: ROUT3 muted */
            0x0b, 0xff, /* B: LOUT4 muted */
            0x0c, 0xff, /* C: ROUT4 muted */
            0x08, 0x55, /* 8: deemphasis all off */
            0xff, 0xff
      };
      static const unsigned char inits_ak4355[] = {
            0x01, 0x02, /* 1: reset and soft-mute */
            0x00, 0x06, /* 0: mode3(i2s), disable auto-clock detect,
                       * disable DZF, sharp roll-off, RSTN#=0 */
            0x02, 0x0e, /* 2: DA's power up, normal speed, RSTN#=0 */
            // 0x02, 0x2e, /* quad speed */
            0x03, 0x01, /* 3: de-emphasis off */
            0x04, 0x00, /* 4: LOUT1 volume muted */
            0x05, 0x00, /* 5: ROUT1 volume muted */
            0x06, 0x00, /* 6: LOUT2 volume muted */
            0x07, 0x00, /* 7: ROUT2 volume muted */
            0x08, 0x00, /* 8: LOUT3 volume muted */
            0x09, 0x00, /* 9: ROUT3 volume muted */
            0x0a, 0x00, /* a: DATT speed=0, ignore DZF */
            0x01, 0x01, /* 1: un-reset, unmute */
            0xff, 0xff
      };
      static const unsigned char inits_ak4358[] = {
            0x01, 0x02, /* 1: reset and soft-mute */
            0x00, 0x06, /* 0: mode3(i2s), disable auto-clock detect,
                       * disable DZF, sharp roll-off, RSTN#=0 */
            0x02, 0x4e, /* 2: DA's power up, normal speed, RSTN#=0 */
            /* 0x02, 0x6e,*/ /* quad speed */
            0x03, 0x01, /* 3: de-emphasis off */
            0x04, 0x00, /* 4: LOUT1 volume muted */
            0x05, 0x00, /* 5: ROUT1 volume muted */
            0x06, 0x00, /* 6: LOUT2 volume muted */
            0x07, 0x00, /* 7: ROUT2 volume muted */
            0x08, 0x00, /* 8: LOUT3 volume muted */
            0x09, 0x00, /* 9: ROUT3 volume muted */
            0x0b, 0x00, /* b: LOUT4 volume muted */
            0x0c, 0x00, /* c: ROUT4 volume muted */
            0x0a, 0x00, /* a: DATT speed=0, ignore DZF */
            0x01, 0x01, /* 1: un-reset, unmute */
            0xff, 0xff
      };
      static const unsigned char inits_ak4381[] = {
            0x00, 0x0c, /* 0: mode3(i2s), disable auto-clock detect */
            0x01, 0x02, /* 1: de-emphasis off, normal speed,
                       * sharp roll-off, DZF off */
            // 0x01, 0x12, /* quad speed */
            0x02, 0x00, /* 2: DZF disabled */
            0x03, 0x00, /* 3: LATT 0 */
            0x04, 0x00, /* 4: RATT 0 */
            0x00, 0x0f, /* 0: power-up, un-reset */
            0xff, 0xff
      };

      int chip, num_chips;
      const unsigned char *ptr, *inits;
      unsigned char reg, data;

      memset(ak->images, 0, sizeof(ak->images));
      memset(ak->volumes, 0, sizeof(ak->volumes));

      switch (ak->type) {
      case SND_AK4524:
            inits = inits_ak4524;
            num_chips = ak->num_dacs / 2;
            break;
      case SND_AK4528:
            inits = inits_ak4528;
            num_chips = ak->num_dacs / 2;
            break;
      case SND_AK4529:
            inits = inits_ak4529;
            num_chips = 1;
            break;
      case SND_AK4355:
            inits = inits_ak4355;
            num_chips = 1;
            break;
      case SND_AK4358:
            inits = inits_ak4358;
            num_chips = 1;
            break;
      case SND_AK4381:
            inits = inits_ak4381;
            num_chips = ak->num_dacs / 2;
            break;
      case SND_AK5365:
            /* FIXME: any init sequence? */
            return;
      default:
            snd_BUG();
            return;
      }

      for (chip = 0; chip < num_chips; chip++) {
            ptr = inits;
            while (*ptr != 0xff) {
                  reg = *ptr++;
                  data = *ptr++;
                  snd_akm4xxx_write(ak, chip, reg, data);
            }
      }
}

EXPORT_SYMBOL(snd_akm4xxx_init);

/*
 * Mixer callbacks
 */
#define AK_IPGA               (1<<20)     /* including IPGA */
#define AK_VOL_CVT                  (1<<21)     /* need dB conversion */
#define AK_NEEDSMSB                 (1<<22)     /* need MSB update bit */
#define AK_INVERT                   (1<<23)     /* data is inverted */
#define AK_GET_CHIP(val)            (((val) >> 8) & 0xff)
#define AK_GET_ADDR(val)            ((val) & 0xff)
#define AK_GET_SHIFT(val)           (((val) >> 16) & 0x0f)
#define AK_GET_VOL_CVT(val)         (((val) >> 21) & 1)
#define AK_GET_IPGA(val)            (((val) >> 20) & 1)
#define AK_GET_NEEDSMSB(val)        (((val) >> 22) & 1)
#define AK_GET_INVERT(val)          (((val) >> 23) & 1)
#define AK_GET_MASK(val)            (((val) >> 24) & 0xff)
#define AK_COMPOSE(chip,addr,shift,mask) \
      (((chip) << 8) | (addr) | ((shift) << 16) | ((mask) << 24))

static int snd_akm4xxx_volume_info(struct snd_kcontrol *kcontrol,
                           struct snd_ctl_elem_info *uinfo)
{
      unsigned int mask = AK_GET_MASK(kcontrol->private_value);

      uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
      uinfo->count = 1;
      uinfo->value.integer.min = 0;
      uinfo->value.integer.max = mask;
      return 0;
}

static int snd_akm4xxx_volume_get(struct snd_kcontrol *kcontrol,
                          struct snd_ctl_elem_value *ucontrol)
{
      struct snd_akm4xxx *ak = snd_kcontrol_chip(kcontrol);
      int chip = AK_GET_CHIP(kcontrol->private_value);
      int addr = AK_GET_ADDR(kcontrol->private_value);

      ucontrol->value.integer.value[0] = snd_akm4xxx_get_vol(ak, chip, addr);
      return 0;
}

static int put_ak_reg(struct snd_kcontrol *kcontrol, int addr,
                  unsigned char nval)
{
      struct snd_akm4xxx *ak = snd_kcontrol_chip(kcontrol);
      unsigned int mask = AK_GET_MASK(kcontrol->private_value);
      int chip = AK_GET_CHIP(kcontrol->private_value);

      if (snd_akm4xxx_get_vol(ak, chip, addr) == nval)
            return 0;

      snd_akm4xxx_set_vol(ak, chip, addr, nval);
      if (AK_GET_VOL_CVT(kcontrol->private_value) && nval < 128)
            nval = vol_cvt_datt[nval];
      if (AK_GET_IPGA(kcontrol->private_value) && nval >= 128)
            nval++; /* need to correct + 1 since both 127 and 128 are 0dB */
      if (AK_GET_INVERT(kcontrol->private_value))
            nval = mask - nval;
      if (AK_GET_NEEDSMSB(kcontrol->private_value))
            nval |= 0x80;
      /* printk(KERN_DEBUG "DEBUG - AK writing reg: chip %x addr %x,
         nval %x\n", chip, addr, nval); */
      snd_akm4xxx_write(ak, chip, addr, nval);
      return 1;
}

static int snd_akm4xxx_volume_put(struct snd_kcontrol *kcontrol,
                          struct snd_ctl_elem_value *ucontrol)
{
      unsigned int mask = AK_GET_MASK(kcontrol->private_value);
      unsigned int val = ucontrol->value.integer.value[0];
      if (val > mask)
            return -EINVAL;
      return put_ak_reg(kcontrol, AK_GET_ADDR(kcontrol->private_value), val);
}

static int snd_akm4xxx_stereo_volume_info(struct snd_kcontrol *kcontrol,
                                struct snd_ctl_elem_info *uinfo)
{
      unsigned int mask = AK_GET_MASK(kcontrol->private_value);

      uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
      uinfo->count = 2;
      uinfo->value.integer.min = 0;
      uinfo->value.integer.max = mask;
      return 0;
}

static int snd_akm4xxx_stereo_volume_get(struct snd_kcontrol *kcontrol,
                               struct snd_ctl_elem_value *ucontrol)
{
      struct snd_akm4xxx *ak = snd_kcontrol_chip(kcontrol);
      int chip = AK_GET_CHIP(kcontrol->private_value);
      int addr = AK_GET_ADDR(kcontrol->private_value);

      ucontrol->value.integer.value[0] = snd_akm4xxx_get_vol(ak, chip, addr);
      ucontrol->value.integer.value[1] = snd_akm4xxx_get_vol(ak, chip, addr+1);
      return 0;
}

static int snd_akm4xxx_stereo_volume_put(struct snd_kcontrol *kcontrol,
                               struct snd_ctl_elem_value *ucontrol)
{
      int addr = AK_GET_ADDR(kcontrol->private_value);
      unsigned int mask = AK_GET_MASK(kcontrol->private_value);
      unsigned int val[2];
      int change;

      val[0] = ucontrol->value.integer.value[0];
      val[1] = ucontrol->value.integer.value[1];
      if (val[0] > mask || val[1] > mask)
            return -EINVAL;
      change = put_ak_reg(kcontrol, addr, val[0]);
      change |= put_ak_reg(kcontrol, addr + 1, val[1]);
      return change;
}

static int snd_akm4xxx_deemphasis_info(struct snd_kcontrol *kcontrol,
                               struct snd_ctl_elem_info *uinfo)
{
      static char *texts[4] = {
            "44.1kHz", "Off", "48kHz", "32kHz",
      };
      uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
      uinfo->count = 1;
      uinfo->value.enumerated.items = 4;
      if (uinfo->value.enumerated.item >= 4)
            uinfo->value.enumerated.item = 3;
      strcpy(uinfo->value.enumerated.name,
             texts[uinfo->value.enumerated.item]);
      return 0;
}

static int snd_akm4xxx_deemphasis_get(struct snd_kcontrol *kcontrol,
                              struct snd_ctl_elem_value *ucontrol)
{
      struct snd_akm4xxx *ak = snd_kcontrol_chip(kcontrol);
      int chip = AK_GET_CHIP(kcontrol->private_value);
      int addr = AK_GET_ADDR(kcontrol->private_value);
      int shift = AK_GET_SHIFT(kcontrol->private_value);
      ucontrol->value.enumerated.item[0] =
            (snd_akm4xxx_get(ak, chip, addr) >> shift) & 3;
      return 0;
}

static int snd_akm4xxx_deemphasis_put(struct snd_kcontrol *kcontrol,
                              struct snd_ctl_elem_value *ucontrol)
{
      struct snd_akm4xxx *ak = snd_kcontrol_chip(kcontrol);
      int chip = AK_GET_CHIP(kcontrol->private_value);
      int addr = AK_GET_ADDR(kcontrol->private_value);
      int shift = AK_GET_SHIFT(kcontrol->private_value);
      unsigned char nval = ucontrol->value.enumerated.item[0] & 3;
      int change;
      
      nval = (nval << shift) |
            (snd_akm4xxx_get(ak, chip, addr) & ~(3 << shift));
      change = snd_akm4xxx_get(ak, chip, addr) != nval;
      if (change)
            snd_akm4xxx_write(ak, chip, addr, nval);
      return change;
}

#define ak4xxx_switch_info    snd_ctl_boolean_mono_info

static int ak4xxx_switch_get(struct snd_kcontrol *kcontrol,
                       struct snd_ctl_elem_value *ucontrol)
{
      struct snd_akm4xxx *ak = snd_kcontrol_chip(kcontrol);
      int chip = AK_GET_CHIP(kcontrol->private_value);
      int addr = AK_GET_ADDR(kcontrol->private_value);
      int shift = AK_GET_SHIFT(kcontrol->private_value);
      int invert = AK_GET_INVERT(kcontrol->private_value);
      /* we observe the (1<<shift) bit only */
      unsigned char val = snd_akm4xxx_get(ak, chip, addr) & (1<<shift);
      if (invert)
            val = ! val;
      ucontrol->value.integer.value[0] = (val & (1<<shift)) != 0;
      return 0;
}

static int ak4xxx_switch_put(struct snd_kcontrol *kcontrol,
                       struct snd_ctl_elem_value *ucontrol)
{
      struct snd_akm4xxx *ak = snd_kcontrol_chip(kcontrol);
      int chip = AK_GET_CHIP(kcontrol->private_value);
      int addr = AK_GET_ADDR(kcontrol->private_value);
      int shift = AK_GET_SHIFT(kcontrol->private_value);
      int invert = AK_GET_INVERT(kcontrol->private_value);
      long flag = ucontrol->value.integer.value[0];
      unsigned char val, oval;
      int change;

      if (invert)
            flag = ! flag;
      oval = snd_akm4xxx_get(ak, chip, addr);
      if (flag)
            val = oval | (1<<shift);
      else
            val = oval & ~(1<<shift);
      change = (oval != val);
      if (change)
            snd_akm4xxx_write(ak, chip, addr, val);
      return change;
}

#define AK5365_NUM_INPUTS 5

static int ak4xxx_capture_num_inputs(struct snd_akm4xxx *ak, int mixer_ch)
{
      int num_names;
      const char **input_names;

      input_names = ak->adc_info[mixer_ch].input_names;
      num_names = 0;
      while (num_names < AK5365_NUM_INPUTS && input_names[num_names])
            ++num_names;
      return num_names;
}

static int ak4xxx_capture_source_info(struct snd_kcontrol *kcontrol,
                              struct snd_ctl_elem_info *uinfo)
{
      struct snd_akm4xxx *ak = snd_kcontrol_chip(kcontrol);
      int mixer_ch = AK_GET_SHIFT(kcontrol->private_value);
      const char **input_names;
      int  num_names, idx;

      num_names = ak4xxx_capture_num_inputs(ak, mixer_ch);
      if (!num_names)
            return -EINVAL;
      uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
      uinfo->count = 1;
      uinfo->value.enumerated.items = num_names;
      idx = uinfo->value.enumerated.item;
      if (idx >= num_names)
            return -EINVAL;
      input_names = ak->adc_info[mixer_ch].input_names;
      strncpy(uinfo->value.enumerated.name, input_names[idx],
            sizeof(uinfo->value.enumerated.name));
      return 0;
}

static int ak4xxx_capture_source_get(struct snd_kcontrol *kcontrol,
                             struct snd_ctl_elem_value *ucontrol)
{
      struct snd_akm4xxx *ak = snd_kcontrol_chip(kcontrol);
      int chip = AK_GET_CHIP(kcontrol->private_value);
      int addr = AK_GET_ADDR(kcontrol->private_value);
      int mask = AK_GET_MASK(kcontrol->private_value);
      unsigned char val;

      val = snd_akm4xxx_get(ak, chip, addr) & mask;
      ucontrol->value.enumerated.item[0] = val;
      return 0;
}

static int ak4xxx_capture_source_put(struct snd_kcontrol *kcontrol,
                             struct snd_ctl_elem_value *ucontrol)
{
      struct snd_akm4xxx *ak = snd_kcontrol_chip(kcontrol);
      int mixer_ch = AK_GET_SHIFT(kcontrol->private_value);
      int chip = AK_GET_CHIP(kcontrol->private_value);
      int addr = AK_GET_ADDR(kcontrol->private_value);
      int mask = AK_GET_MASK(kcontrol->private_value);
      unsigned char oval, val;
      int num_names = ak4xxx_capture_num_inputs(ak, mixer_ch);

      if (ucontrol->value.enumerated.item[0] >= num_names)
            return -EINVAL;

      oval = snd_akm4xxx_get(ak, chip, addr);
      val = oval & ~mask;
      val |= ucontrol->value.enumerated.item[0] & mask;
      if (val != oval) {
            snd_akm4xxx_write(ak, chip, addr, val);
            return 1;
      }
      return 0;
}

/*
 * build AK4xxx controls
 */

static int build_dac_controls(struct snd_akm4xxx *ak)
{
      int idx, err, mixer_ch, num_stereo;
      struct snd_kcontrol_new knew;

      mixer_ch = 0;
      for (idx = 0; idx < ak->num_dacs; ) {
            /* mute control for Revolution 7.1 - AK4381 */
            if (ak->type == SND_AK4381 
                        &&  ak->dac_info[mixer_ch].switch_name) {
                  memset(&knew, 0, sizeof(knew));
                  knew.iface = SNDRV_CTL_ELEM_IFACE_MIXER;
                  knew.count = 1;
                  knew.access = SNDRV_CTL_ELEM_ACCESS_READWRITE;
                  knew.name = ak->dac_info[mixer_ch].switch_name;
                  knew.info = ak4xxx_switch_info;
                  knew.get = ak4xxx_switch_get;
                  knew.put = ak4xxx_switch_put;
                  knew.access = 0;
                  /* register 1, bit 0 (SMUTE): 0 = normal operation,
                     1 = mute */
                  knew.private_value =
                        AK_COMPOSE(idx/2, 1, 0, 0) | AK_INVERT;
                  err = snd_ctl_add(ak->card, snd_ctl_new1(&knew, ak));
                  if (err < 0)
                        return err;
            }
            memset(&knew, 0, sizeof(knew));
            if (! ak->dac_info || ! ak->dac_info[mixer_ch].name) {
                  knew.name = "DAC Volume";
                  knew.index = mixer_ch + ak->idx_offset * 2;
                  num_stereo = 1;
            } else {
                  knew.name = ak->dac_info[mixer_ch].name;
                  num_stereo = ak->dac_info[mixer_ch].num_channels;
            }
            knew.iface = SNDRV_CTL_ELEM_IFACE_MIXER;
            knew.count = 1;
            knew.access = SNDRV_CTL_ELEM_ACCESS_READWRITE |
                  SNDRV_CTL_ELEM_ACCESS_TLV_READ;
            if (num_stereo == 2) {
                  knew.info = snd_akm4xxx_stereo_volume_info;
                  knew.get = snd_akm4xxx_stereo_volume_get;
                  knew.put = snd_akm4xxx_stereo_volume_put;
            } else {
                  knew.info = snd_akm4xxx_volume_info;
                  knew.get = snd_akm4xxx_volume_get;
                  knew.put = snd_akm4xxx_volume_put;
            }
            switch (ak->type) {
            case SND_AK4524:
                  /* register 6 & 7 */
                  knew.private_value =
                        AK_COMPOSE(idx/2, (idx%2) + 6, 0, 127) |
                        AK_VOL_CVT;
                  knew.tlv.p = db_scale_vol_datt;
                  break;
            case SND_AK4528:
                  /* register 4 & 5 */
                  knew.private_value =
                        AK_COMPOSE(idx/2, (idx%2) + 4, 0, 127) |
                        AK_VOL_CVT;
                  knew.tlv.p = db_scale_vol_datt;
                  break;
            case SND_AK4529: {
                  /* registers 2-7 and b,c */
                  int val = idx < 6 ? idx + 2 : (idx - 6) + 0xb;
                  knew.private_value =
                        AK_COMPOSE(0, val, 0, 255) | AK_INVERT;
                  knew.tlv.p = db_scale_8bit;
                  break;
            }
            case SND_AK4355:
                  /* register 4-9, chip #0 only */
                  knew.private_value = AK_COMPOSE(0, idx + 4, 0, 255);
                  knew.tlv.p = db_scale_8bit;
                  break;
            case SND_AK4358: {
                  /* register 4-9 and 11-12, chip #0 only */
                  int  addr = idx < 6 ? idx + 4 : idx + 5;
                  knew.private_value =
                        AK_COMPOSE(0, addr, 0, 127) | AK_NEEDSMSB;
                  knew.tlv.p = db_scale_7bit;
                  break;
            }
            case SND_AK4381:
                  /* register 3 & 4 */
                  knew.private_value =
                        AK_COMPOSE(idx/2, (idx%2) + 3, 0, 255);
                  knew.tlv.p = db_scale_linear;
                  break;
            default:
                  return -EINVAL;
            }

            err = snd_ctl_add(ak->card, snd_ctl_new1(&knew, ak));
            if (err < 0)
                  return err;

            idx += num_stereo;
            mixer_ch++;
      }
      return 0;
}

static int build_adc_controls(struct snd_akm4xxx *ak)
{
      int idx, err, mixer_ch, num_stereo;
      struct snd_kcontrol_new knew;

      mixer_ch = 0;
      for (idx = 0; idx < ak->num_adcs;) {
            memset(&knew, 0, sizeof(knew));
            if (! ak->adc_info || ! ak->adc_info[mixer_ch].name) {
                  knew.name = "ADC Volume";
                  knew.index = mixer_ch + ak->idx_offset * 2;
                  num_stereo = 1;
            } else {
                  knew.name = ak->adc_info[mixer_ch].name;
                  num_stereo = ak->adc_info[mixer_ch].num_channels;
            }
            knew.iface = SNDRV_CTL_ELEM_IFACE_MIXER;
            knew.count = 1;
            knew.access = SNDRV_CTL_ELEM_ACCESS_READWRITE |
                  SNDRV_CTL_ELEM_ACCESS_TLV_READ;
            if (num_stereo == 2) {
                  knew.info = snd_akm4xxx_stereo_volume_info;
                  knew.get = snd_akm4xxx_stereo_volume_get;
                  knew.put = snd_akm4xxx_stereo_volume_put;
            } else {
                  knew.info = snd_akm4xxx_volume_info;
                  knew.get = snd_akm4xxx_volume_get;
                  knew.put = snd_akm4xxx_volume_put;
            }
            /* register 4 & 5 */
            if (ak->type == SND_AK5365)
                  knew.private_value =
                        AK_COMPOSE(idx/2, (idx%2) + 4, 0, 151) |
                        AK_VOL_CVT | AK_IPGA;
            else
                  knew.private_value =
                        AK_COMPOSE(idx/2, (idx%2) + 4, 0, 163) |
                        AK_VOL_CVT | AK_IPGA;
            knew.tlv.p = db_scale_vol_datt;
            err = snd_ctl_add(ak->card, snd_ctl_new1(&knew, ak));
            if (err < 0)
                  return err;

            if (ak->type == SND_AK5365 && (idx % 2) == 0) {
                  if (! ak->adc_info || 
                      ! ak->adc_info[mixer_ch].switch_name) {
                        knew.name = "Capture Switch";
                        knew.index = mixer_ch + ak->idx_offset * 2;
                  } else
                        knew.name = ak->adc_info[mixer_ch].switch_name;
                  knew.info = ak4xxx_switch_info;
                  knew.get = ak4xxx_switch_get;
                  knew.put = ak4xxx_switch_put;
                  knew.access = 0;
                  /* register 2, bit 0 (SMUTE): 0 = normal operation,
                     1 = mute */
                  knew.private_value =
                        AK_COMPOSE(idx/2, 2, 0, 0) | AK_INVERT;
                  err = snd_ctl_add(ak->card, snd_ctl_new1(&knew, ak));
                  if (err < 0)
                        return err;

                  memset(&knew, 0, sizeof(knew));
                  knew.name = ak->adc_info[mixer_ch].selector_name;
                  if (!knew.name) {
                        knew.name = "Capture Channel";
                        knew.index = mixer_ch + ak->idx_offset * 2;
                  }

                  knew.iface = SNDRV_CTL_ELEM_IFACE_MIXER;
                  knew.info = ak4xxx_capture_source_info;
                  knew.get = ak4xxx_capture_source_get;
                  knew.put = ak4xxx_capture_source_put;
                  knew.access = 0;
                  /* input selector control: reg. 1, bits 0-2.
                   * mis-use 'shift' to pass mixer_ch */
                  knew.private_value
                        = AK_COMPOSE(idx/2, 1, mixer_ch, 0x07);
                  err = snd_ctl_add(ak->card, snd_ctl_new1(&knew, ak));
                  if (err < 0)
                        return err;
            }

            idx += num_stereo;
            mixer_ch++;
      }
      return 0;
}

static int build_deemphasis(struct snd_akm4xxx *ak, int num_emphs)
{
      int idx, err;
      struct snd_kcontrol_new knew;

      for (idx = 0; idx < num_emphs; idx++) {
            memset(&knew, 0, sizeof(knew));
            knew.name = "Deemphasis";
            knew.index = idx + ak->idx_offset;
            knew.iface = SNDRV_CTL_ELEM_IFACE_MIXER;
            knew.count = 1;
            knew.info = snd_akm4xxx_deemphasis_info;
            knew.get = snd_akm4xxx_deemphasis_get;
            knew.put = snd_akm4xxx_deemphasis_put;
            switch (ak->type) {
            case SND_AK4524:
            case SND_AK4528:
                  /* register 3 */
                  knew.private_value = AK_COMPOSE(idx, 3, 0, 0);
                  break;
            case SND_AK4529: {
                  int shift = idx == 3 ? 6 : (2 - idx) * 2;
                  /* register 8 with shift */
                  knew.private_value = AK_COMPOSE(0, 8, shift, 0);
                  break;
            }
            case SND_AK4355:
            case SND_AK4358:
                  knew.private_value = AK_COMPOSE(idx, 3, 0, 0);
                  break;
            case SND_AK4381:
                  knew.private_value = AK_COMPOSE(idx, 1, 1, 0);
                  break;
            default:
                  return -EINVAL;
            }
            err = snd_ctl_add(ak->card, snd_ctl_new1(&knew, ak));
            if (err < 0)
                  return err;
      }
      return 0;
}

int snd_akm4xxx_build_controls(struct snd_akm4xxx *ak)
{
      int err, num_emphs;

      err = build_dac_controls(ak);
      if (err < 0)
            return err;

      err = build_adc_controls(ak);
      if (err < 0)
            return err;

      if (ak->type == SND_AK4355 || ak->type == SND_AK4358)
            num_emphs = 1;
      else
            num_emphs = ak->num_dacs / 2;
      err = build_deemphasis(ak, num_emphs);
      if (err < 0)
            return err;

      return 0;
}
      
EXPORT_SYMBOL(snd_akm4xxx_build_controls);

static int __init alsa_akm4xxx_module_init(void)
{
      return 0;
}
        
static void __exit alsa_akm4xxx_module_exit(void)
{
}
        
module_init(alsa_akm4xxx_module_init)
module_exit(alsa_akm4xxx_module_exit)

Generated by  Doxygen 1.6.0   Back to index