Logo Search packages:      
Sourcecode: alsa-driver version File versions

ymfpci_main.c

/*
 *  Copyright (c) by Jaroslav Kysela <perex@perex.cz>
 *  Routines for control of YMF724/740/744/754 chips
 *
 *   This program is free software; you can redistribute it and/or modify
 *   it under the terms of the GNU General Public License as published by
 *   the Free Software Foundation; either version 2 of the License, or
 *   (at your option) any later version.
 *
 *   This program is distributed in the hope that it will be useful,
 *   but WITHOUT ANY WARRANTY; without even the implied warranty of
 *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *   GNU General Public License for more details.
 *
 *   You should have received a copy of the GNU General Public License
 *   along with this program; if not, write to the Free Software
 *   Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
 *
 */

#include <linux/delay.h>
#include <linux/firmware.h>
#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/pci.h>
#include <linux/sched.h>
#include <linux/slab.h>
#include <linux/vmalloc.h>

#include <sound/core.h>
#include <sound/control.h>
#include <sound/info.h>
#include <sound/tlv.h>
#include <sound/ymfpci.h>
#include <sound/asoundef.h>
#include <sound/mpu401.h>

#include <asm/io.h>
#include <asm/byteorder.h>

/*
 *  common I/O routines
 */

static void snd_ymfpci_irq_wait(struct snd_ymfpci *chip);

static inline u8 snd_ymfpci_readb(struct snd_ymfpci *chip, u32 offset)
{
      return readb(chip->reg_area_virt + offset);
}

static inline void snd_ymfpci_writeb(struct snd_ymfpci *chip, u32 offset, u8 val)
{
      writeb(val, chip->reg_area_virt + offset);
}

static inline u16 snd_ymfpci_readw(struct snd_ymfpci *chip, u32 offset)
{
      return readw(chip->reg_area_virt + offset);
}

static inline void snd_ymfpci_writew(struct snd_ymfpci *chip, u32 offset, u16 val)
{
      writew(val, chip->reg_area_virt + offset);
}

static inline u32 snd_ymfpci_readl(struct snd_ymfpci *chip, u32 offset)
{
      return readl(chip->reg_area_virt + offset);
}

static inline void snd_ymfpci_writel(struct snd_ymfpci *chip, u32 offset, u32 val)
{
      writel(val, chip->reg_area_virt + offset);
}

static int snd_ymfpci_codec_ready(struct snd_ymfpci *chip, int secondary)
{
      unsigned long end_time;
      u32 reg = secondary ? YDSXGR_SECSTATUSADR : YDSXGR_PRISTATUSADR;
      
      end_time = jiffies + msecs_to_jiffies(750);
      do {
            if ((snd_ymfpci_readw(chip, reg) & 0x8000) == 0)
                  return 0;
            schedule_timeout_uninterruptible(1);
      } while (time_before(jiffies, end_time));
      snd_printk(KERN_ERR "codec_ready: codec %i is not ready [0x%x]\n", secondary, snd_ymfpci_readw(chip, reg));
      return -EBUSY;
}

static void snd_ymfpci_codec_write(struct snd_ac97 *ac97, u16 reg, u16 val)
{
      struct snd_ymfpci *chip = ac97->private_data;
      u32 cmd;
      
      snd_ymfpci_codec_ready(chip, 0);
      cmd = ((YDSXG_AC97WRITECMD | reg) << 16) | val;
      snd_ymfpci_writel(chip, YDSXGR_AC97CMDDATA, cmd);
}

static u16 snd_ymfpci_codec_read(struct snd_ac97 *ac97, u16 reg)
{
      struct snd_ymfpci *chip = ac97->private_data;

      if (snd_ymfpci_codec_ready(chip, 0))
            return ~0;
      snd_ymfpci_writew(chip, YDSXGR_AC97CMDADR, YDSXG_AC97READCMD | reg);
      if (snd_ymfpci_codec_ready(chip, 0))
            return ~0;
      if (chip->device_id == PCI_DEVICE_ID_YAMAHA_744 && chip->rev < 2) {
            int i;
            for (i = 0; i < 600; i++)
                  snd_ymfpci_readw(chip, YDSXGR_PRISTATUSDATA);
      }
      return snd_ymfpci_readw(chip, YDSXGR_PRISTATUSDATA);
}

/*
 *  Misc routines
 */

static u32 snd_ymfpci_calc_delta(u32 rate)
{
      switch (rate) {
      case 8000:  return 0x02aaab00;
      case 11025: return 0x03accd00;
      case 16000: return 0x05555500;
      case 22050: return 0x07599a00;
      case 32000: return 0x0aaaab00;
      case 44100: return 0x0eb33300;
      default:    return ((rate << 16) / 375) << 5;
      }
}

static u32 def_rate[8] = {
      100, 2000, 8000, 11025, 16000, 22050, 32000, 48000
};

static u32 snd_ymfpci_calc_lpfK(u32 rate)
{
      u32 i;
      static u32 val[8] = {
            0x00570000, 0x06AA0000, 0x18B20000, 0x20930000,
            0x2B9A0000, 0x35A10000, 0x3EAA0000, 0x40000000
      };
      
      if (rate == 44100)
            return 0x40000000;      /* FIXME: What's the right value? */
      for (i = 0; i < 8; i++)
            if (rate <= def_rate[i])
                  return val[i];
      return val[0];
}

static u32 snd_ymfpci_calc_lpfQ(u32 rate)
{
      u32 i;
      static u32 val[8] = {
            0x35280000, 0x34A70000, 0x32020000, 0x31770000,
            0x31390000, 0x31C90000, 0x33D00000, 0x40000000
      };
      
      if (rate == 44100)
            return 0x370A0000;
      for (i = 0; i < 8; i++)
            if (rate <= def_rate[i])
                  return val[i];
      return val[0];
}

/*
 *  Hardware start management
 */

static void snd_ymfpci_hw_start(struct snd_ymfpci *chip)
{
      unsigned long flags;

      spin_lock_irqsave(&chip->reg_lock, flags);
      if (chip->start_count++ > 0)
            goto __end;
      snd_ymfpci_writel(chip, YDSXGR_MODE,
                    snd_ymfpci_readl(chip, YDSXGR_MODE) | 3);
      chip->active_bank = snd_ymfpci_readl(chip, YDSXGR_CTRLSELECT) & 1;
      __end:
            spin_unlock_irqrestore(&chip->reg_lock, flags);
}

static void snd_ymfpci_hw_stop(struct snd_ymfpci *chip)
{
      unsigned long flags;
      long timeout = 1000;

      spin_lock_irqsave(&chip->reg_lock, flags);
      if (--chip->start_count > 0)
            goto __end;
      snd_ymfpci_writel(chip, YDSXGR_MODE,
                    snd_ymfpci_readl(chip, YDSXGR_MODE) & ~3);
      while (timeout-- > 0) {
            if ((snd_ymfpci_readl(chip, YDSXGR_STATUS) & 2) == 0)
                  break;
      }
      if (atomic_read(&chip->interrupt_sleep_count)) {
            atomic_set(&chip->interrupt_sleep_count, 0);
            wake_up(&chip->interrupt_sleep);
      }
      __end:
            spin_unlock_irqrestore(&chip->reg_lock, flags);
}

/*
 *  Playback voice management
 */

static int voice_alloc(struct snd_ymfpci *chip,
                   enum snd_ymfpci_voice_type type, int pair,
                   struct snd_ymfpci_voice **rvoice)
{
      struct snd_ymfpci_voice *voice, *voice2;
      int idx;
      
      *rvoice = NULL;
      for (idx = 0; idx < YDSXG_PLAYBACK_VOICES; idx += pair ? 2 : 1) {
            voice = &chip->voices[idx];
            voice2 = pair ? &chip->voices[idx+1] : NULL;
            if (voice->use || (voice2 && voice2->use))
                  continue;
            voice->use = 1;
            if (voice2)
                  voice2->use = 1;
            switch (type) {
            case YMFPCI_PCM:
                  voice->pcm = 1;
                  if (voice2)
                        voice2->pcm = 1;
                  break;
            case YMFPCI_SYNTH:
                  voice->synth = 1;
                  break;
            case YMFPCI_MIDI:
                  voice->midi = 1;
                  break;
            }
            snd_ymfpci_hw_start(chip);
            if (voice2)
                  snd_ymfpci_hw_start(chip);
            *rvoice = voice;
            return 0;
      }
      return -ENOMEM;
}

static int snd_ymfpci_voice_alloc(struct snd_ymfpci *chip,
                          enum snd_ymfpci_voice_type type, int pair,
                          struct snd_ymfpci_voice **rvoice)
{
      unsigned long flags;
      int result;
      
      snd_assert(rvoice != NULL, return -EINVAL);
      snd_assert(!pair || type == YMFPCI_PCM, return -EINVAL);
      
      spin_lock_irqsave(&chip->voice_lock, flags);
      for (;;) {
            result = voice_alloc(chip, type, pair, rvoice);
            if (result == 0 || type != YMFPCI_PCM)
                  break;
            /* TODO: synth/midi voice deallocation */
            break;
      }
      spin_unlock_irqrestore(&chip->voice_lock, flags);     
      return result;          
}

static int snd_ymfpci_voice_free(struct snd_ymfpci *chip, struct snd_ymfpci_voice *pvoice)
{
      unsigned long flags;
      
      snd_assert(pvoice != NULL, return -EINVAL);
      snd_ymfpci_hw_stop(chip);
      spin_lock_irqsave(&chip->voice_lock, flags);
      if (pvoice->number == chip->src441_used) {
            chip->src441_used = -1;
            pvoice->ypcm->use_441_slot = 0;
      }
      pvoice->use = pvoice->pcm = pvoice->synth = pvoice->midi = 0;
      pvoice->ypcm = NULL;
      pvoice->interrupt = NULL;
      spin_unlock_irqrestore(&chip->voice_lock, flags);
      return 0;
}

/*
 *  PCM part
 */

static void snd_ymfpci_pcm_interrupt(struct snd_ymfpci *chip, struct snd_ymfpci_voice *voice)
{
      struct snd_ymfpci_pcm *ypcm;
      u32 pos, delta;
      
      if ((ypcm = voice->ypcm) == NULL)
            return;
      if (ypcm->substream == NULL)
            return;
      spin_lock(&chip->reg_lock);
      if (ypcm->running) {
            pos = le32_to_cpu(voice->bank[chip->active_bank].start);
            if (pos < ypcm->last_pos)
                  delta = pos + (ypcm->buffer_size - ypcm->last_pos);
            else
                  delta = pos - ypcm->last_pos;
            ypcm->period_pos += delta;
            ypcm->last_pos = pos;
            if (ypcm->period_pos >= ypcm->period_size) {
                  // printk("done - active_bank = 0x%x, start = 0x%x\n", chip->active_bank, voice->bank[chip->active_bank].start);
                  ypcm->period_pos %= ypcm->period_size;
                  spin_unlock(&chip->reg_lock);
                  snd_pcm_period_elapsed(ypcm->substream);
                  spin_lock(&chip->reg_lock);
            }

            if (unlikely(ypcm->update_pcm_vol)) {
                  unsigned int subs = ypcm->substream->number;
                  unsigned int next_bank = 1 - chip->active_bank;
                  struct snd_ymfpci_playback_bank *bank;
                  u32 volume;
                  
                  bank = &voice->bank[next_bank];
                  volume = cpu_to_le32(chip->pcm_mixer[subs].left << 15);
                  bank->left_gain_end = volume;
                  if (ypcm->output_rear)
                        bank->eff2_gain_end = volume;
                  if (ypcm->voices[1])
                        bank = &ypcm->voices[1]->bank[next_bank];
                  volume = cpu_to_le32(chip->pcm_mixer[subs].right << 15);
                  bank->right_gain_end = volume;
                  if (ypcm->output_rear)
                        bank->eff3_gain_end = volume;
                  ypcm->update_pcm_vol--;
            }
      }
      spin_unlock(&chip->reg_lock);
}

static void snd_ymfpci_pcm_capture_interrupt(struct snd_pcm_substream *substream)
{
      struct snd_pcm_runtime *runtime = substream->runtime;
      struct snd_ymfpci_pcm *ypcm = runtime->private_data;
      struct snd_ymfpci *chip = ypcm->chip;
      u32 pos, delta;
      
      spin_lock(&chip->reg_lock);
      if (ypcm->running) {
            pos = le32_to_cpu(chip->bank_capture[ypcm->capture_bank_number][chip->active_bank]->start) >> ypcm->shift;
            if (pos < ypcm->last_pos)
                  delta = pos + (ypcm->buffer_size - ypcm->last_pos);
            else
                  delta = pos - ypcm->last_pos;
            ypcm->period_pos += delta;
            ypcm->last_pos = pos;
            if (ypcm->period_pos >= ypcm->period_size) {
                  ypcm->period_pos %= ypcm->period_size;
                  // printk("done - active_bank = 0x%x, start = 0x%x\n", chip->active_bank, voice->bank[chip->active_bank].start);
                  spin_unlock(&chip->reg_lock);
                  snd_pcm_period_elapsed(substream);
                  spin_lock(&chip->reg_lock);
            }
      }
      spin_unlock(&chip->reg_lock);
}

static int snd_ymfpci_playback_trigger(struct snd_pcm_substream *substream,
                               int cmd)
{
      struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
      struct snd_ymfpci_pcm *ypcm = substream->runtime->private_data;
      struct snd_kcontrol *kctl = NULL;
      int result = 0;

      spin_lock(&chip->reg_lock);
      if (ypcm->voices[0] == NULL) {
            result = -EINVAL;
            goto __unlock;
      }
      switch (cmd) {
      case SNDRV_PCM_TRIGGER_START:
      case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
      case SNDRV_PCM_TRIGGER_RESUME:
            chip->ctrl_playback[ypcm->voices[0]->number + 1] = cpu_to_le32(ypcm->voices[0]->bank_addr);
            if (ypcm->voices[1] != NULL && !ypcm->use_441_slot)
                  chip->ctrl_playback[ypcm->voices[1]->number + 1] = cpu_to_le32(ypcm->voices[1]->bank_addr);
            ypcm->running = 1;
            break;
      case SNDRV_PCM_TRIGGER_STOP:
            if (substream->pcm == chip->pcm && !ypcm->use_441_slot) {
                  kctl = chip->pcm_mixer[substream->number].ctl;
                  kctl->vd[0].access |= SNDRV_CTL_ELEM_ACCESS_INACTIVE;
            }
            /* fall through */
      case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
      case SNDRV_PCM_TRIGGER_SUSPEND:
            chip->ctrl_playback[ypcm->voices[0]->number + 1] = 0;
            if (ypcm->voices[1] != NULL && !ypcm->use_441_slot)
                  chip->ctrl_playback[ypcm->voices[1]->number + 1] = 0;
            ypcm->running = 0;
            break;
      default:
            result = -EINVAL;
            break;
      }
      __unlock:
      spin_unlock(&chip->reg_lock);
      if (kctl)
            snd_ctl_notify(chip->card, SNDRV_CTL_EVENT_MASK_INFO, &kctl->id);
      return result;
}
static int snd_ymfpci_capture_trigger(struct snd_pcm_substream *substream,
                              int cmd)
{
      struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
      struct snd_ymfpci_pcm *ypcm = substream->runtime->private_data;
      int result = 0;
      u32 tmp;

      spin_lock(&chip->reg_lock);
      switch (cmd) {
      case SNDRV_PCM_TRIGGER_START:
      case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
      case SNDRV_PCM_TRIGGER_RESUME:
            tmp = snd_ymfpci_readl(chip, YDSXGR_MAPOFREC) | (1 << ypcm->capture_bank_number);
            snd_ymfpci_writel(chip, YDSXGR_MAPOFREC, tmp);
            ypcm->running = 1;
            break;
      case SNDRV_PCM_TRIGGER_STOP:
      case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
      case SNDRV_PCM_TRIGGER_SUSPEND:
            tmp = snd_ymfpci_readl(chip, YDSXGR_MAPOFREC) & ~(1 << ypcm->capture_bank_number);
            snd_ymfpci_writel(chip, YDSXGR_MAPOFREC, tmp);
            ypcm->running = 0;
            break;
      default:
            result = -EINVAL;
            break;
      }
      spin_unlock(&chip->reg_lock);
      return result;
}

static int snd_ymfpci_pcm_voice_alloc(struct snd_ymfpci_pcm *ypcm, int voices)
{
      int err;

      if (ypcm->voices[1] != NULL && voices < 2) {
            snd_ymfpci_voice_free(ypcm->chip, ypcm->voices[1]);
            ypcm->voices[1] = NULL;
      }
      if (voices == 1 && ypcm->voices[0] != NULL)
            return 0;         /* already allocated */
      if (voices == 2 && ypcm->voices[0] != NULL && ypcm->voices[1] != NULL)
            return 0;         /* already allocated */
      if (voices > 1) {
            if (ypcm->voices[0] != NULL && ypcm->voices[1] == NULL) {
                  snd_ymfpci_voice_free(ypcm->chip, ypcm->voices[0]);
                  ypcm->voices[0] = NULL;
            }           
      }
      err = snd_ymfpci_voice_alloc(ypcm->chip, YMFPCI_PCM, voices > 1, &ypcm->voices[0]);
      if (err < 0)
            return err;
      ypcm->voices[0]->ypcm = ypcm;
      ypcm->voices[0]->interrupt = snd_ymfpci_pcm_interrupt;
      if (voices > 1) {
            ypcm->voices[1] = &ypcm->chip->voices[ypcm->voices[0]->number + 1];
            ypcm->voices[1]->ypcm = ypcm;
      }
      return 0;
}

static void snd_ymfpci_pcm_init_voice(struct snd_ymfpci_pcm *ypcm, unsigned int voiceidx,
                              struct snd_pcm_runtime *runtime,
                              int has_pcm_volume)
{
      struct snd_ymfpci_voice *voice = ypcm->voices[voiceidx];
      u32 format;
      u32 delta = snd_ymfpci_calc_delta(runtime->rate);
      u32 lpfQ = snd_ymfpci_calc_lpfQ(runtime->rate);
      u32 lpfK = snd_ymfpci_calc_lpfK(runtime->rate);
      struct snd_ymfpci_playback_bank *bank;
      unsigned int nbank;
      u32 vol_left, vol_right;
      u8 use_left, use_right;
      unsigned long flags;

      snd_assert(voice != NULL, return);
      if (runtime->channels == 1) {
            use_left = 1;
            use_right = 1;
      } else {
            use_left = (voiceidx & 1) == 0;
            use_right = !use_left;
      }
      if (has_pcm_volume) {
            vol_left = cpu_to_le32(ypcm->chip->pcm_mixer
                               [ypcm->substream->number].left << 15);
            vol_right = cpu_to_le32(ypcm->chip->pcm_mixer
                              [ypcm->substream->number].right << 15);
      } else {
            vol_left = cpu_to_le32(0x40000000);
            vol_right = cpu_to_le32(0x40000000);
      }
      spin_lock_irqsave(&ypcm->chip->voice_lock, flags);
      format = runtime->channels == 2 ? 0x00010000 : 0;
      if (snd_pcm_format_width(runtime->format) == 8)
            format |= 0x80000000;
      else if (ypcm->chip->device_id == PCI_DEVICE_ID_YAMAHA_754 &&
             runtime->rate == 44100 && runtime->channels == 2 &&
             voiceidx == 0 && (ypcm->chip->src441_used == -1 ||
                           ypcm->chip->src441_used == voice->number)) {
            ypcm->chip->src441_used = voice->number;
            ypcm->use_441_slot = 1;
            format |= 0x10000000;
      }
      if (ypcm->chip->src441_used == voice->number &&
          (format & 0x10000000) == 0) {
            ypcm->chip->src441_used = -1;
            ypcm->use_441_slot = 0;
      }
      if (runtime->channels == 2 && (voiceidx & 1) != 0)
            format |= 1;
      spin_unlock_irqrestore(&ypcm->chip->voice_lock, flags);
      for (nbank = 0; nbank < 2; nbank++) {
            bank = &voice->bank[nbank];
            memset(bank, 0, sizeof(*bank));
            bank->format = cpu_to_le32(format);
            bank->base = cpu_to_le32(runtime->dma_addr);
            bank->loop_end = cpu_to_le32(ypcm->buffer_size);
            bank->lpfQ = cpu_to_le32(lpfQ);
            bank->delta =
            bank->delta_end = cpu_to_le32(delta);
            bank->lpfK =
            bank->lpfK_end = cpu_to_le32(lpfK);
            bank->eg_gain =
            bank->eg_gain_end = cpu_to_le32(0x40000000);

            if (ypcm->output_front) {
                  if (use_left) {
                        bank->left_gain =
                        bank->left_gain_end = vol_left;
                  }
                  if (use_right) {
                        bank->right_gain =
                        bank->right_gain_end = vol_right;
                  }
            }
            if (ypcm->output_rear) {
                    if (!ypcm->swap_rear) {
                        if (use_left) {
                              bank->eff2_gain =
                              bank->eff2_gain_end = vol_left;
                        }
                        if (use_right) {
                              bank->eff3_gain =
                              bank->eff3_gain_end = vol_right;
                        }
                    } else {
                        /* The SPDIF out channels seem to be swapped, so we have
                         * to swap them here, too.  The rear analog out channels
                         * will be wrong, but otherwise AC3 would not work.
                         */
                        if (use_left) {
                              bank->eff3_gain =
                              bank->eff3_gain_end = vol_left;
                        }
                        if (use_right) {
                              bank->eff2_gain =
                              bank->eff2_gain_end = vol_right;
                        }
                  }
                }
      }
}

static int __devinit snd_ymfpci_ac3_init(struct snd_ymfpci *chip)
{
      if (snd_dma_alloc_pages(SNDRV_DMA_TYPE_DEV, snd_dma_pci_data(chip->pci),
                        4096, &chip->ac3_tmp_base) < 0)
            return -ENOMEM;

      chip->bank_effect[3][0]->base =
      chip->bank_effect[3][1]->base = cpu_to_le32(chip->ac3_tmp_base.addr);
      chip->bank_effect[3][0]->loop_end =
      chip->bank_effect[3][1]->loop_end = cpu_to_le32(1024);
      chip->bank_effect[4][0]->base =
      chip->bank_effect[4][1]->base = cpu_to_le32(chip->ac3_tmp_base.addr + 2048);
      chip->bank_effect[4][0]->loop_end =
      chip->bank_effect[4][1]->loop_end = cpu_to_le32(1024);

      spin_lock_irq(&chip->reg_lock);
      snd_ymfpci_writel(chip, YDSXGR_MAPOFEFFECT,
                    snd_ymfpci_readl(chip, YDSXGR_MAPOFEFFECT) | 3 << 3);
      spin_unlock_irq(&chip->reg_lock);
      return 0;
}

static int snd_ymfpci_ac3_done(struct snd_ymfpci *chip)
{
      spin_lock_irq(&chip->reg_lock);
      snd_ymfpci_writel(chip, YDSXGR_MAPOFEFFECT,
                    snd_ymfpci_readl(chip, YDSXGR_MAPOFEFFECT) & ~(3 << 3));
      spin_unlock_irq(&chip->reg_lock);
      // snd_ymfpci_irq_wait(chip);
      if (chip->ac3_tmp_base.area) {
            snd_dma_free_pages(&chip->ac3_tmp_base);
            chip->ac3_tmp_base.area = NULL;
      }
      return 0;
}

static int snd_ymfpci_playback_hw_params(struct snd_pcm_substream *substream,
                               struct snd_pcm_hw_params *hw_params)
{
      struct snd_pcm_runtime *runtime = substream->runtime;
      struct snd_ymfpci_pcm *ypcm = runtime->private_data;
      int err;

      if ((err = snd_pcm_lib_malloc_pages(substream, params_buffer_bytes(hw_params))) < 0)
            return err;
      if ((err = snd_ymfpci_pcm_voice_alloc(ypcm, params_channels(hw_params))) < 0)
            return err;
      return 0;
}

static int snd_ymfpci_playback_hw_free(struct snd_pcm_substream *substream)
{
      struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
      struct snd_pcm_runtime *runtime = substream->runtime;
      struct snd_ymfpci_pcm *ypcm;
      
      if (runtime->private_data == NULL)
            return 0;
      ypcm = runtime->private_data;

      /* wait, until the PCI operations are not finished */
      snd_ymfpci_irq_wait(chip);
      snd_pcm_lib_free_pages(substream);
      if (ypcm->voices[1]) {
            snd_ymfpci_voice_free(chip, ypcm->voices[1]);
            ypcm->voices[1] = NULL;
      }
      if (ypcm->voices[0]) {
            snd_ymfpci_voice_free(chip, ypcm->voices[0]);
            ypcm->voices[0] = NULL;
      }
      return 0;
}

static int snd_ymfpci_playback_prepare(struct snd_pcm_substream *substream)
{
      struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
      struct snd_pcm_runtime *runtime = substream->runtime;
      struct snd_ymfpci_pcm *ypcm = runtime->private_data;
      struct snd_kcontrol *kctl;
      unsigned int nvoice;

      ypcm->period_size = runtime->period_size;
      ypcm->buffer_size = runtime->buffer_size;
      ypcm->period_pos = 0;
      ypcm->last_pos = 0;
      for (nvoice = 0; nvoice < runtime->channels; nvoice++)
            snd_ymfpci_pcm_init_voice(ypcm, nvoice, runtime,
                                substream->pcm == chip->pcm);

      if (substream->pcm == chip->pcm && !ypcm->use_441_slot) {
            kctl = chip->pcm_mixer[substream->number].ctl;
            kctl->vd[0].access &= ~SNDRV_CTL_ELEM_ACCESS_INACTIVE;
            snd_ctl_notify(chip->card, SNDRV_CTL_EVENT_MASK_INFO, &kctl->id);
      }
      return 0;
}

static int snd_ymfpci_capture_hw_params(struct snd_pcm_substream *substream,
                              struct snd_pcm_hw_params *hw_params)
{
      return snd_pcm_lib_malloc_pages(substream, params_buffer_bytes(hw_params));
}

static int snd_ymfpci_capture_hw_free(struct snd_pcm_substream *substream)
{
      struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);

      /* wait, until the PCI operations are not finished */
      snd_ymfpci_irq_wait(chip);
      return snd_pcm_lib_free_pages(substream);
}

static int snd_ymfpci_capture_prepare(struct snd_pcm_substream *substream)
{
      struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
      struct snd_pcm_runtime *runtime = substream->runtime;
      struct snd_ymfpci_pcm *ypcm = runtime->private_data;
      struct snd_ymfpci_capture_bank * bank;
      int nbank;
      u32 rate, format;

      ypcm->period_size = runtime->period_size;
      ypcm->buffer_size = runtime->buffer_size;
      ypcm->period_pos = 0;
      ypcm->last_pos = 0;
      ypcm->shift = 0;
      rate = ((48000 * 4096) / runtime->rate) - 1;
      format = 0;
      if (runtime->channels == 2) {
            format |= 2;
            ypcm->shift++;
      }
      if (snd_pcm_format_width(runtime->format) == 8)
            format |= 1;
      else
            ypcm->shift++;
      switch (ypcm->capture_bank_number) {
      case 0:
            snd_ymfpci_writel(chip, YDSXGR_RECFORMAT, format);
            snd_ymfpci_writel(chip, YDSXGR_RECSLOTSR, rate);
            break;
      case 1:
            snd_ymfpci_writel(chip, YDSXGR_ADCFORMAT, format);
            snd_ymfpci_writel(chip, YDSXGR_ADCSLOTSR, rate);
            break;
      }
      for (nbank = 0; nbank < 2; nbank++) {
            bank = chip->bank_capture[ypcm->capture_bank_number][nbank];
            bank->base = cpu_to_le32(runtime->dma_addr);
            bank->loop_end = cpu_to_le32(ypcm->buffer_size << ypcm->shift);
            bank->start = 0;
            bank->num_of_loops = 0;
      }
      return 0;
}

static snd_pcm_uframes_t snd_ymfpci_playback_pointer(struct snd_pcm_substream *substream)
{
      struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
      struct snd_pcm_runtime *runtime = substream->runtime;
      struct snd_ymfpci_pcm *ypcm = runtime->private_data;
      struct snd_ymfpci_voice *voice = ypcm->voices[0];

      if (!(ypcm->running && voice))
            return 0;
      return le32_to_cpu(voice->bank[chip->active_bank].start);
}

static snd_pcm_uframes_t snd_ymfpci_capture_pointer(struct snd_pcm_substream *substream)
{
      struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
      struct snd_pcm_runtime *runtime = substream->runtime;
      struct snd_ymfpci_pcm *ypcm = runtime->private_data;

      if (!ypcm->running)
            return 0;
      return le32_to_cpu(chip->bank_capture[ypcm->capture_bank_number][chip->active_bank]->start) >> ypcm->shift;
}

static void snd_ymfpci_irq_wait(struct snd_ymfpci *chip)
{
      wait_queue_t wait;
      int loops = 4;

      while (loops-- > 0) {
            if ((snd_ymfpci_readl(chip, YDSXGR_MODE) & 3) == 0)
                  continue;
            init_waitqueue_entry(&wait, current);
            add_wait_queue(&chip->interrupt_sleep, &wait);
            atomic_inc(&chip->interrupt_sleep_count);
            schedule_timeout_uninterruptible(msecs_to_jiffies(50));
            remove_wait_queue(&chip->interrupt_sleep, &wait);
      }
}

static irqreturn_t snd_ymfpci_interrupt(int irq, void *dev_id)
{
      struct snd_ymfpci *chip = dev_id;
      u32 status, nvoice, mode;
      struct snd_ymfpci_voice *voice;

      status = snd_ymfpci_readl(chip, YDSXGR_STATUS);
      if (status & 0x80000000) {
            chip->active_bank = snd_ymfpci_readl(chip, YDSXGR_CTRLSELECT) & 1;
            spin_lock(&chip->voice_lock);
            for (nvoice = 0; nvoice < YDSXG_PLAYBACK_VOICES; nvoice++) {
                  voice = &chip->voices[nvoice];
                  if (voice->interrupt)
                        voice->interrupt(chip, voice);
            }
            for (nvoice = 0; nvoice < YDSXG_CAPTURE_VOICES; nvoice++) {
                  if (chip->capture_substream[nvoice])
                        snd_ymfpci_pcm_capture_interrupt(chip->capture_substream[nvoice]);
            }
#if 0
            for (nvoice = 0; nvoice < YDSXG_EFFECT_VOICES; nvoice++) {
                  if (chip->effect_substream[nvoice])
                        snd_ymfpci_pcm_effect_interrupt(chip->effect_substream[nvoice]);
            }
#endif
            spin_unlock(&chip->voice_lock);
            spin_lock(&chip->reg_lock);
            snd_ymfpci_writel(chip, YDSXGR_STATUS, 0x80000000);
            mode = snd_ymfpci_readl(chip, YDSXGR_MODE) | 2;
            snd_ymfpci_writel(chip, YDSXGR_MODE, mode);
            spin_unlock(&chip->reg_lock);

            if (atomic_read(&chip->interrupt_sleep_count)) {
                  atomic_set(&chip->interrupt_sleep_count, 0);
                  wake_up(&chip->interrupt_sleep);
            }
      }

      status = snd_ymfpci_readw(chip, YDSXGR_INTFLAG);
      if (status & 1) {
            if (chip->timer)
                  snd_timer_interrupt(chip->timer, chip->timer->sticks);
      }
      snd_ymfpci_writew(chip, YDSXGR_INTFLAG, status);

      if (chip->rawmidi)
            snd_mpu401_uart_interrupt(irq, chip->rawmidi->private_data);
      return IRQ_HANDLED;
}

static struct snd_pcm_hardware snd_ymfpci_playback =
{
      .info =                 (SNDRV_PCM_INFO_MMAP |
                         SNDRV_PCM_INFO_MMAP_VALID | 
                         SNDRV_PCM_INFO_INTERLEAVED |
                         SNDRV_PCM_INFO_BLOCK_TRANSFER |
                         SNDRV_PCM_INFO_PAUSE |
                         SNDRV_PCM_INFO_RESUME),
      .formats =        SNDRV_PCM_FMTBIT_U8 | SNDRV_PCM_FMTBIT_S16_LE,
      .rates =          SNDRV_PCM_RATE_CONTINUOUS | SNDRV_PCM_RATE_8000_48000,
      .rate_min =       8000,
      .rate_max =       48000,
      .channels_min =         1,
      .channels_max =         2,
      .buffer_bytes_max =     256 * 1024, /* FIXME: enough? */
      .period_bytes_min =     64,
      .period_bytes_max =     256 * 1024, /* FIXME: enough? */
      .periods_min =          3,
      .periods_max =          1024,
      .fifo_size =            0,
};

static struct snd_pcm_hardware snd_ymfpci_capture =
{
      .info =                 (SNDRV_PCM_INFO_MMAP |
                         SNDRV_PCM_INFO_MMAP_VALID |
                         SNDRV_PCM_INFO_INTERLEAVED |
                         SNDRV_PCM_INFO_BLOCK_TRANSFER |
                         SNDRV_PCM_INFO_PAUSE |
                         SNDRV_PCM_INFO_RESUME),
      .formats =        SNDRV_PCM_FMTBIT_U8 | SNDRV_PCM_FMTBIT_S16_LE,
      .rates =          SNDRV_PCM_RATE_CONTINUOUS | SNDRV_PCM_RATE_8000_48000,
      .rate_min =       8000,
      .rate_max =       48000,
      .channels_min =         1,
      .channels_max =         2,
      .buffer_bytes_max =     256 * 1024, /* FIXME: enough? */
      .period_bytes_min =     64,
      .period_bytes_max =     256 * 1024, /* FIXME: enough? */
      .periods_min =          3,
      .periods_max =          1024,
      .fifo_size =            0,
};

static void snd_ymfpci_pcm_free_substream(struct snd_pcm_runtime *runtime)
{
      kfree(runtime->private_data);
}

static int snd_ymfpci_playback_open_1(struct snd_pcm_substream *substream)
{
      struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
      struct snd_pcm_runtime *runtime = substream->runtime;
      struct snd_ymfpci_pcm *ypcm;

      ypcm = kzalloc(sizeof(*ypcm), GFP_KERNEL);
      if (ypcm == NULL)
            return -ENOMEM;
      ypcm->chip = chip;
      ypcm->type = PLAYBACK_VOICE;
      ypcm->substream = substream;
      runtime->hw = snd_ymfpci_playback;
      runtime->private_data = ypcm;
      runtime->private_free = snd_ymfpci_pcm_free_substream;
      /* FIXME? True value is 256/48 = 5.33333 ms */
      snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_PERIOD_TIME, 5333, UINT_MAX);
      return 0;
}

/* call with spinlock held */
static void ymfpci_open_extension(struct snd_ymfpci *chip)
{
      if (! chip->rear_opened) {
            if (! chip->spdif_opened) /* set AC3 */
                  snd_ymfpci_writel(chip, YDSXGR_MODE,
                                snd_ymfpci_readl(chip, YDSXGR_MODE) | (1 << 30));
            /* enable second codec (4CHEN) */
            snd_ymfpci_writew(chip, YDSXGR_SECCONFIG,
                          (snd_ymfpci_readw(chip, YDSXGR_SECCONFIG) & ~0x0330) | 0x0010);
      }
}

/* call with spinlock held */
static void ymfpci_close_extension(struct snd_ymfpci *chip)
{
      if (! chip->rear_opened) {
            if (! chip->spdif_opened)
                  snd_ymfpci_writel(chip, YDSXGR_MODE,
                                snd_ymfpci_readl(chip, YDSXGR_MODE) & ~(1 << 30));
            snd_ymfpci_writew(chip, YDSXGR_SECCONFIG,
                          (snd_ymfpci_readw(chip, YDSXGR_SECCONFIG) & ~0x0330) & ~0x0010);
      }
}

static int snd_ymfpci_playback_open(struct snd_pcm_substream *substream)
{
      struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
      struct snd_pcm_runtime *runtime = substream->runtime;
      struct snd_ymfpci_pcm *ypcm;
      int err;
      
      if ((err = snd_ymfpci_playback_open_1(substream)) < 0)
            return err;
      ypcm = runtime->private_data;
      ypcm->output_front = 1;
      ypcm->output_rear = chip->mode_dup4ch ? 1 : 0;
      ypcm->swap_rear = 0;
      spin_lock_irq(&chip->reg_lock);
      if (ypcm->output_rear) {
            ymfpci_open_extension(chip);
            chip->rear_opened++;
      }
      spin_unlock_irq(&chip->reg_lock);
      return 0;
}

static int snd_ymfpci_playback_spdif_open(struct snd_pcm_substream *substream)
{
      struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
      struct snd_pcm_runtime *runtime = substream->runtime;
      struct snd_ymfpci_pcm *ypcm;
      int err;
      
      if ((err = snd_ymfpci_playback_open_1(substream)) < 0)
            return err;
      ypcm = runtime->private_data;
      ypcm->output_front = 0;
      ypcm->output_rear = 1;
      ypcm->swap_rear = 1;
      spin_lock_irq(&chip->reg_lock);
      snd_ymfpci_writew(chip, YDSXGR_SPDIFOUTCTRL,
                    snd_ymfpci_readw(chip, YDSXGR_SPDIFOUTCTRL) | 2);
      ymfpci_open_extension(chip);
      chip->spdif_pcm_bits = chip->spdif_bits;
      snd_ymfpci_writew(chip, YDSXGR_SPDIFOUTSTATUS, chip->spdif_pcm_bits);
      chip->spdif_opened++;
      spin_unlock_irq(&chip->reg_lock);

      chip->spdif_pcm_ctl->vd[0].access &= ~SNDRV_CTL_ELEM_ACCESS_INACTIVE;
      snd_ctl_notify(chip->card, SNDRV_CTL_EVENT_MASK_VALUE |
                   SNDRV_CTL_EVENT_MASK_INFO, &chip->spdif_pcm_ctl->id);
      return 0;
}

static int snd_ymfpci_playback_4ch_open(struct snd_pcm_substream *substream)
{
      struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
      struct snd_pcm_runtime *runtime = substream->runtime;
      struct snd_ymfpci_pcm *ypcm;
      int err;
      
      if ((err = snd_ymfpci_playback_open_1(substream)) < 0)
            return err;
      ypcm = runtime->private_data;
      ypcm->output_front = 0;
      ypcm->output_rear = 1;
      ypcm->swap_rear = 0;
      spin_lock_irq(&chip->reg_lock);
      ymfpci_open_extension(chip);
      chip->rear_opened++;
      spin_unlock_irq(&chip->reg_lock);
      return 0;
}

static int snd_ymfpci_capture_open(struct snd_pcm_substream *substream,
                           u32 capture_bank_number)
{
      struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
      struct snd_pcm_runtime *runtime = substream->runtime;
      struct snd_ymfpci_pcm *ypcm;

      ypcm = kzalloc(sizeof(*ypcm), GFP_KERNEL);
      if (ypcm == NULL)
            return -ENOMEM;
      ypcm->chip = chip;
      ypcm->type = capture_bank_number + CAPTURE_REC;
      ypcm->substream = substream;  
      ypcm->capture_bank_number = capture_bank_number;
      chip->capture_substream[capture_bank_number] = substream;
      runtime->hw = snd_ymfpci_capture;
      /* FIXME? True value is 256/48 = 5.33333 ms */
      snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_PERIOD_TIME, 5333, UINT_MAX);
      runtime->private_data = ypcm;
      runtime->private_free = snd_ymfpci_pcm_free_substream;
      snd_ymfpci_hw_start(chip);
      return 0;
}

static int snd_ymfpci_capture_rec_open(struct snd_pcm_substream *substream)
{
      return snd_ymfpci_capture_open(substream, 0);
}

static int snd_ymfpci_capture_ac97_open(struct snd_pcm_substream *substream)
{
      return snd_ymfpci_capture_open(substream, 1);
}

static int snd_ymfpci_playback_close_1(struct snd_pcm_substream *substream)
{
      return 0;
}

static int snd_ymfpci_playback_close(struct snd_pcm_substream *substream)
{
      struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
      struct snd_ymfpci_pcm *ypcm = substream->runtime->private_data;

      spin_lock_irq(&chip->reg_lock);
      if (ypcm->output_rear && chip->rear_opened > 0) {
            chip->rear_opened--;
            ymfpci_close_extension(chip);
      }
      spin_unlock_irq(&chip->reg_lock);
      return snd_ymfpci_playback_close_1(substream);
}

static int snd_ymfpci_playback_spdif_close(struct snd_pcm_substream *substream)
{
      struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);

      spin_lock_irq(&chip->reg_lock);
      chip->spdif_opened = 0;
      ymfpci_close_extension(chip);
      snd_ymfpci_writew(chip, YDSXGR_SPDIFOUTCTRL,
                    snd_ymfpci_readw(chip, YDSXGR_SPDIFOUTCTRL) & ~2);
      snd_ymfpci_writew(chip, YDSXGR_SPDIFOUTSTATUS, chip->spdif_bits);
      spin_unlock_irq(&chip->reg_lock);
      chip->spdif_pcm_ctl->vd[0].access |= SNDRV_CTL_ELEM_ACCESS_INACTIVE;
      snd_ctl_notify(chip->card, SNDRV_CTL_EVENT_MASK_VALUE |
                   SNDRV_CTL_EVENT_MASK_INFO, &chip->spdif_pcm_ctl->id);
      return snd_ymfpci_playback_close_1(substream);
}

static int snd_ymfpci_playback_4ch_close(struct snd_pcm_substream *substream)
{
      struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);

      spin_lock_irq(&chip->reg_lock);
      if (chip->rear_opened > 0) {
            chip->rear_opened--;
            ymfpci_close_extension(chip);
      }
      spin_unlock_irq(&chip->reg_lock);
      return snd_ymfpci_playback_close_1(substream);
}

static int snd_ymfpci_capture_close(struct snd_pcm_substream *substream)
{
      struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
      struct snd_pcm_runtime *runtime = substream->runtime;
      struct snd_ymfpci_pcm *ypcm = runtime->private_data;

      if (ypcm != NULL) {
            chip->capture_substream[ypcm->capture_bank_number] = NULL;
            snd_ymfpci_hw_stop(chip);
      }
      return 0;
}

static struct snd_pcm_ops snd_ymfpci_playback_ops = {
      .open =                 snd_ymfpci_playback_open,
      .close =          snd_ymfpci_playback_close,
      .ioctl =          snd_pcm_lib_ioctl,
      .hw_params =            snd_ymfpci_playback_hw_params,
      .hw_free =        snd_ymfpci_playback_hw_free,
      .prepare =        snd_ymfpci_playback_prepare,
      .trigger =        snd_ymfpci_playback_trigger,
      .pointer =        snd_ymfpci_playback_pointer,
};

static struct snd_pcm_ops snd_ymfpci_capture_rec_ops = {
      .open =                 snd_ymfpci_capture_rec_open,
      .close =          snd_ymfpci_capture_close,
      .ioctl =          snd_pcm_lib_ioctl,
      .hw_params =            snd_ymfpci_capture_hw_params,
      .hw_free =        snd_ymfpci_capture_hw_free,
      .prepare =        snd_ymfpci_capture_prepare,
      .trigger =        snd_ymfpci_capture_trigger,
      .pointer =        snd_ymfpci_capture_pointer,
};

int __devinit snd_ymfpci_pcm(struct snd_ymfpci *chip, int device, struct snd_pcm ** rpcm)
{
      struct snd_pcm *pcm;
      int err;

      if (rpcm)
            *rpcm = NULL;
      if ((err = snd_pcm_new(chip->card, "YMFPCI", device, 32, 1, &pcm)) < 0)
            return err;
      pcm->private_data = chip;

      snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_ymfpci_playback_ops);
      snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &snd_ymfpci_capture_rec_ops);

      /* global setup */
      pcm->info_flags = 0;
      strcpy(pcm->name, "YMFPCI");
      chip->pcm = pcm;

      snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_DEV,
                                    snd_dma_pci_data(chip->pci), 64*1024, 256*1024);

      if (rpcm)
            *rpcm = pcm;
      return 0;
}

static struct snd_pcm_ops snd_ymfpci_capture_ac97_ops = {
      .open =                 snd_ymfpci_capture_ac97_open,
      .close =          snd_ymfpci_capture_close,
      .ioctl =          snd_pcm_lib_ioctl,
      .hw_params =            snd_ymfpci_capture_hw_params,
      .hw_free =        snd_ymfpci_capture_hw_free,
      .prepare =        snd_ymfpci_capture_prepare,
      .trigger =        snd_ymfpci_capture_trigger,
      .pointer =        snd_ymfpci_capture_pointer,
};

int __devinit snd_ymfpci_pcm2(struct snd_ymfpci *chip, int device, struct snd_pcm ** rpcm)
{
      struct snd_pcm *pcm;
      int err;

      if (rpcm)
            *rpcm = NULL;
      if ((err = snd_pcm_new(chip->card, "YMFPCI - PCM2", device, 0, 1, &pcm)) < 0)
            return err;
      pcm->private_data = chip;

      snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &snd_ymfpci_capture_ac97_ops);

      /* global setup */
      pcm->info_flags = 0;
      sprintf(pcm->name, "YMFPCI - %s",
            chip->device_id == PCI_DEVICE_ID_YAMAHA_754 ? "Direct Recording" : "AC'97");
      chip->pcm2 = pcm;

      snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_DEV,
                                    snd_dma_pci_data(chip->pci), 64*1024, 256*1024);

      if (rpcm)
            *rpcm = pcm;
      return 0;
}

static struct snd_pcm_ops snd_ymfpci_playback_spdif_ops = {
      .open =                 snd_ymfpci_playback_spdif_open,
      .close =          snd_ymfpci_playback_spdif_close,
      .ioctl =          snd_pcm_lib_ioctl,
      .hw_params =            snd_ymfpci_playback_hw_params,
      .hw_free =        snd_ymfpci_playback_hw_free,
      .prepare =        snd_ymfpci_playback_prepare,
      .trigger =        snd_ymfpci_playback_trigger,
      .pointer =        snd_ymfpci_playback_pointer,
};

int __devinit snd_ymfpci_pcm_spdif(struct snd_ymfpci *chip, int device, struct snd_pcm ** rpcm)
{
      struct snd_pcm *pcm;
      int err;

      if (rpcm)
            *rpcm = NULL;
      if ((err = snd_pcm_new(chip->card, "YMFPCI - IEC958", device, 1, 0, &pcm)) < 0)
            return err;
      pcm->private_data = chip;

      snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_ymfpci_playback_spdif_ops);

      /* global setup */
      pcm->info_flags = 0;
      strcpy(pcm->name, "YMFPCI - IEC958");
      chip->pcm_spdif = pcm;

      snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_DEV,
                                    snd_dma_pci_data(chip->pci), 64*1024, 256*1024);

      if (rpcm)
            *rpcm = pcm;
      return 0;
}

static struct snd_pcm_ops snd_ymfpci_playback_4ch_ops = {
      .open =                 snd_ymfpci_playback_4ch_open,
      .close =          snd_ymfpci_playback_4ch_close,
      .ioctl =          snd_pcm_lib_ioctl,
      .hw_params =            snd_ymfpci_playback_hw_params,
      .hw_free =        snd_ymfpci_playback_hw_free,
      .prepare =        snd_ymfpci_playback_prepare,
      .trigger =        snd_ymfpci_playback_trigger,
      .pointer =        snd_ymfpci_playback_pointer,
};

int __devinit snd_ymfpci_pcm_4ch(struct snd_ymfpci *chip, int device, struct snd_pcm ** rpcm)
{
      struct snd_pcm *pcm;
      int err;

      if (rpcm)
            *rpcm = NULL;
      if ((err = snd_pcm_new(chip->card, "YMFPCI - Rear", device, 1, 0, &pcm)) < 0)
            return err;
      pcm->private_data = chip;

      snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_ymfpci_playback_4ch_ops);

      /* global setup */
      pcm->info_flags = 0;
      strcpy(pcm->name, "YMFPCI - Rear PCM");
      chip->pcm_4ch = pcm;

      snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_DEV,
                                    snd_dma_pci_data(chip->pci), 64*1024, 256*1024);

      if (rpcm)
            *rpcm = pcm;
      return 0;
}

static int snd_ymfpci_spdif_default_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo)
{
      uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
      uinfo->count = 1;
      return 0;
}

static int snd_ymfpci_spdif_default_get(struct snd_kcontrol *kcontrol,
                              struct snd_ctl_elem_value *ucontrol)
{
      struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);

      spin_lock_irq(&chip->reg_lock);
      ucontrol->value.iec958.status[0] = (chip->spdif_bits >> 0) & 0xff;
      ucontrol->value.iec958.status[1] = (chip->spdif_bits >> 8) & 0xff;
      ucontrol->value.iec958.status[3] = IEC958_AES3_CON_FS_48000;
      spin_unlock_irq(&chip->reg_lock);
      return 0;
}

static int snd_ymfpci_spdif_default_put(struct snd_kcontrol *kcontrol,
                               struct snd_ctl_elem_value *ucontrol)
{
      struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
      unsigned int val;
      int change;

      val = ((ucontrol->value.iec958.status[0] & 0x3e) << 0) |
            (ucontrol->value.iec958.status[1] << 8);
      spin_lock_irq(&chip->reg_lock);
      change = chip->spdif_bits != val;
      chip->spdif_bits = val;
      if ((snd_ymfpci_readw(chip, YDSXGR_SPDIFOUTCTRL) & 1) && chip->pcm_spdif == NULL)
            snd_ymfpci_writew(chip, YDSXGR_SPDIFOUTSTATUS, chip->spdif_bits);
      spin_unlock_irq(&chip->reg_lock);
      return change;
}

static struct snd_kcontrol_new snd_ymfpci_spdif_default __devinitdata =
{
      .iface =    SNDRV_CTL_ELEM_IFACE_PCM,
      .name =         SNDRV_CTL_NAME_IEC958("",PLAYBACK,DEFAULT),
      .info =           snd_ymfpci_spdif_default_info,
      .get =            snd_ymfpci_spdif_default_get,
      .put =            snd_ymfpci_spdif_default_put
};

static int snd_ymfpci_spdif_mask_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo)
{
      uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
      uinfo->count = 1;
      return 0;
}

static int snd_ymfpci_spdif_mask_get(struct snd_kcontrol *kcontrol,
                              struct snd_ctl_elem_value *ucontrol)
{
      struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);

      spin_lock_irq(&chip->reg_lock);
      ucontrol->value.iec958.status[0] = 0x3e;
      ucontrol->value.iec958.status[1] = 0xff;
      spin_unlock_irq(&chip->reg_lock);
      return 0;
}

static struct snd_kcontrol_new snd_ymfpci_spdif_mask __devinitdata =
{
      .access =   SNDRV_CTL_ELEM_ACCESS_READ,
      .iface =    SNDRV_CTL_ELEM_IFACE_PCM,
      .name =         SNDRV_CTL_NAME_IEC958("",PLAYBACK,CON_MASK),
      .info =           snd_ymfpci_spdif_mask_info,
      .get =            snd_ymfpci_spdif_mask_get,
};

static int snd_ymfpci_spdif_stream_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo)
{
      uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
      uinfo->count = 1;
      return 0;
}

static int snd_ymfpci_spdif_stream_get(struct snd_kcontrol *kcontrol,
                              struct snd_ctl_elem_value *ucontrol)
{
      struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);

      spin_lock_irq(&chip->reg_lock);
      ucontrol->value.iec958.status[0] = (chip->spdif_pcm_bits >> 0) & 0xff;
      ucontrol->value.iec958.status[1] = (chip->spdif_pcm_bits >> 8) & 0xff;
      ucontrol->value.iec958.status[3] = IEC958_AES3_CON_FS_48000;
      spin_unlock_irq(&chip->reg_lock);
      return 0;
}

static int snd_ymfpci_spdif_stream_put(struct snd_kcontrol *kcontrol,
                              struct snd_ctl_elem_value *ucontrol)
{
      struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
      unsigned int val;
      int change;

      val = ((ucontrol->value.iec958.status[0] & 0x3e) << 0) |
            (ucontrol->value.iec958.status[1] << 8);
      spin_lock_irq(&chip->reg_lock);
      change = chip->spdif_pcm_bits != val;
      chip->spdif_pcm_bits = val;
      if ((snd_ymfpci_readw(chip, YDSXGR_SPDIFOUTCTRL) & 2))
            snd_ymfpci_writew(chip, YDSXGR_SPDIFOUTSTATUS, chip->spdif_pcm_bits);
      spin_unlock_irq(&chip->reg_lock);
      return change;
}

static struct snd_kcontrol_new snd_ymfpci_spdif_stream __devinitdata =
{
      .access =   SNDRV_CTL_ELEM_ACCESS_READWRITE | SNDRV_CTL_ELEM_ACCESS_INACTIVE,
      .iface =    SNDRV_CTL_ELEM_IFACE_PCM,
      .name =         SNDRV_CTL_NAME_IEC958("",PLAYBACK,PCM_STREAM),
      .info =           snd_ymfpci_spdif_stream_info,
      .get =            snd_ymfpci_spdif_stream_get,
      .put =            snd_ymfpci_spdif_stream_put
};

static int snd_ymfpci_drec_source_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *info)
{
      static char *texts[3] = {"AC'97", "IEC958", "ZV Port"};

      info->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
      info->count = 1;
      info->value.enumerated.items = 3;
      if (info->value.enumerated.item > 2)
            info->value.enumerated.item = 2;
      strcpy(info->value.enumerated.name, texts[info->value.enumerated.item]);
      return 0;
}

static int snd_ymfpci_drec_source_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *value)
{
      struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
      u16 reg;

      spin_lock_irq(&chip->reg_lock);
      reg = snd_ymfpci_readw(chip, YDSXGR_GLOBALCTRL);
      spin_unlock_irq(&chip->reg_lock);
      if (!(reg & 0x100))
            value->value.enumerated.item[0] = 0;
      else
            value->value.enumerated.item[0] = 1 + ((reg & 0x200) != 0);
      return 0;
}

static int snd_ymfpci_drec_source_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *value)
{
      struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
      u16 reg, old_reg;

      spin_lock_irq(&chip->reg_lock);
      old_reg = snd_ymfpci_readw(chip, YDSXGR_GLOBALCTRL);
      if (value->value.enumerated.item[0] == 0)
            reg = old_reg & ~0x100;
      else
            reg = (old_reg & ~0x300) | 0x100 | ((value->value.enumerated.item[0] == 2) << 9);
      snd_ymfpci_writew(chip, YDSXGR_GLOBALCTRL, reg);
      spin_unlock_irq(&chip->reg_lock);
      return reg != old_reg;
}

static struct snd_kcontrol_new snd_ymfpci_drec_source __devinitdata = {
      .access =   SNDRV_CTL_ELEM_ACCESS_READWRITE,
      .iface =    SNDRV_CTL_ELEM_IFACE_MIXER,
      .name =           "Direct Recording Source",
      .info =           snd_ymfpci_drec_source_info,
      .get =            snd_ymfpci_drec_source_get,
      .put =            snd_ymfpci_drec_source_put
};

/*
 *  Mixer controls
 */

#define YMFPCI_SINGLE(xname, xindex, reg, shift) \
{ .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, .index = xindex, \
  .info = snd_ymfpci_info_single, \
  .get = snd_ymfpci_get_single, .put = snd_ymfpci_put_single, \
  .private_value = ((reg) | ((shift) << 16)) }

#define snd_ymfpci_info_single            snd_ctl_boolean_mono_info

static int snd_ymfpci_get_single(struct snd_kcontrol *kcontrol,
                         struct snd_ctl_elem_value *ucontrol)
{
      struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
      int reg = kcontrol->private_value & 0xffff;
      unsigned int shift = (kcontrol->private_value >> 16) & 0xff;
      unsigned int mask = 1;
      
      switch (reg) {
      case YDSXGR_SPDIFOUTCTRL: break;
      case YDSXGR_SPDIFINCTRL: break;
      default: return -EINVAL;
      }
      ucontrol->value.integer.value[0] =
            (snd_ymfpci_readl(chip, reg) >> shift) & mask;
      return 0;
}

static int snd_ymfpci_put_single(struct snd_kcontrol *kcontrol,
                         struct snd_ctl_elem_value *ucontrol)
{
      struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
      int reg = kcontrol->private_value & 0xffff;
      unsigned int shift = (kcontrol->private_value >> 16) & 0xff;
      unsigned int mask = 1;
      int change;
      unsigned int val, oval;
      
      switch (reg) {
      case YDSXGR_SPDIFOUTCTRL: break;
      case YDSXGR_SPDIFINCTRL: break;
      default: return -EINVAL;
      }
      val = (ucontrol->value.integer.value[0] & mask);
      val <<= shift;
      spin_lock_irq(&chip->reg_lock);
      oval = snd_ymfpci_readl(chip, reg);
      val = (oval & ~(mask << shift)) | val;
      change = val != oval;
      snd_ymfpci_writel(chip, reg, val);
      spin_unlock_irq(&chip->reg_lock);
      return change;
}

static const DECLARE_TLV_DB_LINEAR(db_scale_native, TLV_DB_GAIN_MUTE, 0);

#define YMFPCI_DOUBLE(xname, xindex, reg) \
{ .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, .index = xindex, \
  .access = SNDRV_CTL_ELEM_ACCESS_READWRITE | SNDRV_CTL_ELEM_ACCESS_TLV_READ, \
  .info = snd_ymfpci_info_double, \
  .get = snd_ymfpci_get_double, .put = snd_ymfpci_put_double, \
  .private_value = reg, \
  .tlv = { .p = db_scale_native } }

static int snd_ymfpci_info_double(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo)
{
      unsigned int reg = kcontrol->private_value;

      if (reg < 0x80 || reg >= 0xc0)
            return -EINVAL;
      uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
      uinfo->count = 2;
      uinfo->value.integer.min = 0;
      uinfo->value.integer.max = 16383;
      return 0;
}

static int snd_ymfpci_get_double(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
{
      struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
      unsigned int reg = kcontrol->private_value;
      unsigned int shift_left = 0, shift_right = 16, mask = 16383;
      unsigned int val;
      
      if (reg < 0x80 || reg >= 0xc0)
            return -EINVAL;
      spin_lock_irq(&chip->reg_lock);
      val = snd_ymfpci_readl(chip, reg);
      spin_unlock_irq(&chip->reg_lock);
      ucontrol->value.integer.value[0] = (val >> shift_left) & mask;
      ucontrol->value.integer.value[1] = (val >> shift_right) & mask;
      return 0;
}

static int snd_ymfpci_put_double(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
{
      struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
      unsigned int reg = kcontrol->private_value;
      unsigned int shift_left = 0, shift_right = 16, mask = 16383;
      int change;
      unsigned int val1, val2, oval;
      
      if (reg < 0x80 || reg >= 0xc0)
            return -EINVAL;
      val1 = ucontrol->value.integer.value[0] & mask;
      val2 = ucontrol->value.integer.value[1] & mask;
      val1 <<= shift_left;
      val2 <<= shift_right;
      spin_lock_irq(&chip->reg_lock);
      oval = snd_ymfpci_readl(chip, reg);
      val1 = (oval & ~((mask << shift_left) | (mask << shift_right))) | val1 | val2;
      change = val1 != oval;
      snd_ymfpci_writel(chip, reg, val1);
      spin_unlock_irq(&chip->reg_lock);
      return change;
}

static int snd_ymfpci_put_nativedacvol(struct snd_kcontrol *kcontrol,
                               struct snd_ctl_elem_value *ucontrol)
{
      struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
      unsigned int reg = YDSXGR_NATIVEDACOUTVOL;
      unsigned int reg2 = YDSXGR_BUF441OUTVOL;
      int change;
      unsigned int value, oval;
      
      value = ucontrol->value.integer.value[0] & 0x3fff;
      value |= (ucontrol->value.integer.value[1] & 0x3fff) << 16;
      spin_lock_irq(&chip->reg_lock);
      oval = snd_ymfpci_readl(chip, reg);
      change = value != oval;
      snd_ymfpci_writel(chip, reg, value);
      snd_ymfpci_writel(chip, reg2, value);
      spin_unlock_irq(&chip->reg_lock);
      return change;
}

/*
 * 4ch duplication
 */
#define snd_ymfpci_info_dup4ch            snd_ctl_boolean_mono_info

static int snd_ymfpci_get_dup4ch(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
{
      struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
      ucontrol->value.integer.value[0] = chip->mode_dup4ch;
      return 0;
}

static int snd_ymfpci_put_dup4ch(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
{
      struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
      int change;
      change = (ucontrol->value.integer.value[0] != chip->mode_dup4ch);
      if (change)
            chip->mode_dup4ch = !!ucontrol->value.integer.value[0];
      return change;
}


static struct snd_kcontrol_new snd_ymfpci_controls[] __devinitdata = {
{
      .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
      .name = "Wave Playback Volume",
      .access = SNDRV_CTL_ELEM_ACCESS_READWRITE |
              SNDRV_CTL_ELEM_ACCESS_TLV_READ,
      .info = snd_ymfpci_info_double,
      .get = snd_ymfpci_get_double,
      .put = snd_ymfpci_put_nativedacvol,
      .private_value = YDSXGR_NATIVEDACOUTVOL,
      .tlv = { .p = db_scale_native },
},
YMFPCI_DOUBLE("Wave Capture Volume", 0, YDSXGR_NATIVEDACLOOPVOL),
YMFPCI_DOUBLE("Digital Capture Volume", 0, YDSXGR_NATIVEDACINVOL),
YMFPCI_DOUBLE("Digital Capture Volume", 1, YDSXGR_NATIVEADCINVOL),
YMFPCI_DOUBLE("ADC Playback Volume", 0, YDSXGR_PRIADCOUTVOL),
YMFPCI_DOUBLE("ADC Capture Volume", 0, YDSXGR_PRIADCLOOPVOL),
YMFPCI_DOUBLE("ADC Playback Volume", 1, YDSXGR_SECADCOUTVOL),
YMFPCI_DOUBLE("ADC Capture Volume", 1, YDSXGR_SECADCLOOPVOL),
YMFPCI_DOUBLE("FM Legacy Volume", 0, YDSXGR_LEGACYOUTVOL),
YMFPCI_DOUBLE(SNDRV_CTL_NAME_IEC958("AC97 ", PLAYBACK,VOLUME), 0, YDSXGR_ZVOUTVOL),
YMFPCI_DOUBLE(SNDRV_CTL_NAME_IEC958("", CAPTURE,VOLUME), 0, YDSXGR_ZVLOOPVOL),
YMFPCI_DOUBLE(SNDRV_CTL_NAME_IEC958("AC97 ",PLAYBACK,VOLUME), 1, YDSXGR_SPDIFOUTVOL),
YMFPCI_DOUBLE(SNDRV_CTL_NAME_IEC958("",CAPTURE,VOLUME), 1, YDSXGR_SPDIFLOOPVOL),
YMFPCI_SINGLE(SNDRV_CTL_NAME_IEC958("",PLAYBACK,SWITCH), 0, YDSXGR_SPDIFOUTCTRL, 0),
YMFPCI_SINGLE(SNDRV_CTL_NAME_IEC958("",CAPTURE,SWITCH), 0, YDSXGR_SPDIFINCTRL, 0),
YMFPCI_SINGLE(SNDRV_CTL_NAME_IEC958("Loop",NONE,NONE), 0, YDSXGR_SPDIFINCTRL, 4),
{
      .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
      .name = "4ch Duplication",
      .info = snd_ymfpci_info_dup4ch,
      .get = snd_ymfpci_get_dup4ch,
      .put = snd_ymfpci_put_dup4ch,
},
};


/*
 * GPIO
 */

static int snd_ymfpci_get_gpio_out(struct snd_ymfpci *chip, int pin)
{
      u16 reg, mode;
      unsigned long flags;

      spin_lock_irqsave(&chip->reg_lock, flags);
      reg = snd_ymfpci_readw(chip, YDSXGR_GPIOFUNCENABLE);
      reg &= ~(1 << (pin + 8));
      reg |= (1 << pin);
      snd_ymfpci_writew(chip, YDSXGR_GPIOFUNCENABLE, reg);
      /* set the level mode for input line */
      mode = snd_ymfpci_readw(chip, YDSXGR_GPIOTYPECONFIG);
      mode &= ~(3 << (pin * 2));
      snd_ymfpci_writew(chip, YDSXGR_GPIOTYPECONFIG, mode);
      snd_ymfpci_writew(chip, YDSXGR_GPIOFUNCENABLE, reg | (1 << (pin + 8)));
      mode = snd_ymfpci_readw(chip, YDSXGR_GPIOINSTATUS);
      spin_unlock_irqrestore(&chip->reg_lock, flags);
      return (mode >> pin) & 1;
}

static int snd_ymfpci_set_gpio_out(struct snd_ymfpci *chip, int pin, int enable)
{
      u16 reg;
      unsigned long flags;

      spin_lock_irqsave(&chip->reg_lock, flags);
      reg = snd_ymfpci_readw(chip, YDSXGR_GPIOFUNCENABLE);
      reg &= ~(1 << pin);
      reg &= ~(1 << (pin + 8));
      snd_ymfpci_writew(chip, YDSXGR_GPIOFUNCENABLE, reg);
      snd_ymfpci_writew(chip, YDSXGR_GPIOOUTCTRL, enable << pin);
      snd_ymfpci_writew(chip, YDSXGR_GPIOFUNCENABLE, reg | (1 << (pin + 8)));
      spin_unlock_irqrestore(&chip->reg_lock, flags);

      return 0;
}

#define snd_ymfpci_gpio_sw_info           snd_ctl_boolean_mono_info

static int snd_ymfpci_gpio_sw_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
{
      struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
      int pin = (int)kcontrol->private_value;
      ucontrol->value.integer.value[0] = snd_ymfpci_get_gpio_out(chip, pin);
      return 0;
}

static int snd_ymfpci_gpio_sw_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
{
      struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
      int pin = (int)kcontrol->private_value;

      if (snd_ymfpci_get_gpio_out(chip, pin) != ucontrol->value.integer.value[0]) {
            snd_ymfpci_set_gpio_out(chip, pin, !!ucontrol->value.integer.value[0]);
            ucontrol->value.integer.value[0] = snd_ymfpci_get_gpio_out(chip, pin);
            return 1;
      }
      return 0;
}

static struct snd_kcontrol_new snd_ymfpci_rear_shared __devinitdata = {
      .name = "Shared Rear/Line-In Switch",
      .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
      .info = snd_ymfpci_gpio_sw_info,
      .get = snd_ymfpci_gpio_sw_get,
      .put = snd_ymfpci_gpio_sw_put,
      .private_value = 2,
};

/*
 * PCM voice volume
 */

static int snd_ymfpci_pcm_vol_info(struct snd_kcontrol *kcontrol,
                           struct snd_ctl_elem_info *uinfo)
{
      uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
      uinfo->count = 2;
      uinfo->value.integer.min = 0;
      uinfo->value.integer.max = 0x8000;
      return 0;
}

static int snd_ymfpci_pcm_vol_get(struct snd_kcontrol *kcontrol,
                          struct snd_ctl_elem_value *ucontrol)
{
      struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
      unsigned int subs = kcontrol->id.subdevice;

      ucontrol->value.integer.value[0] = chip->pcm_mixer[subs].left;
      ucontrol->value.integer.value[1] = chip->pcm_mixer[subs].right;
      return 0;
}

static int snd_ymfpci_pcm_vol_put(struct snd_kcontrol *kcontrol,
                          struct snd_ctl_elem_value *ucontrol)
{
      struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
      unsigned int subs = kcontrol->id.subdevice;
      struct snd_pcm_substream *substream;
      unsigned long flags;

      if (ucontrol->value.integer.value[0] != chip->pcm_mixer[subs].left ||
          ucontrol->value.integer.value[1] != chip->pcm_mixer[subs].right) {
            chip->pcm_mixer[subs].left = ucontrol->value.integer.value[0];
            chip->pcm_mixer[subs].right = ucontrol->value.integer.value[1];
            if (chip->pcm_mixer[subs].left > 0x8000)
                  chip->pcm_mixer[subs].left = 0x8000;
            if (chip->pcm_mixer[subs].right > 0x8000)
                  chip->pcm_mixer[subs].right = 0x8000;

            substream = (struct snd_pcm_substream *)kcontrol->private_value;
            spin_lock_irqsave(&chip->voice_lock, flags);
            if (substream->runtime && substream->runtime->private_data) {
                  struct snd_ymfpci_pcm *ypcm = substream->runtime->private_data;
                  if (!ypcm->use_441_slot)
                        ypcm->update_pcm_vol = 2;
            }
            spin_unlock_irqrestore(&chip->voice_lock, flags);
            return 1;
      }
      return 0;
}

static struct snd_kcontrol_new snd_ymfpci_pcm_volume __devinitdata = {
      .iface = SNDRV_CTL_ELEM_IFACE_PCM,
      .name = "PCM Playback Volume",
      .access = SNDRV_CTL_ELEM_ACCESS_READWRITE |
            SNDRV_CTL_ELEM_ACCESS_INACTIVE,
      .info = snd_ymfpci_pcm_vol_info,
      .get = snd_ymfpci_pcm_vol_get,
      .put = snd_ymfpci_pcm_vol_put,
};


/*
 *  Mixer routines
 */

static void snd_ymfpci_mixer_free_ac97_bus(struct snd_ac97_bus *bus)
{
      struct snd_ymfpci *chip = bus->private_data;
      chip->ac97_bus = NULL;
}

static void snd_ymfpci_mixer_free_ac97(struct snd_ac97 *ac97)
{
      struct snd_ymfpci *chip = ac97->private_data;
      chip->ac97 = NULL;
}

int __devinit snd_ymfpci_mixer(struct snd_ymfpci *chip, int rear_switch)
{
      struct snd_ac97_template ac97;
      struct snd_kcontrol *kctl;
      struct snd_pcm_substream *substream;
      unsigned int idx;
      int err;
      static struct snd_ac97_bus_ops ops = {
            .write = snd_ymfpci_codec_write,
            .read = snd_ymfpci_codec_read,
      };

      if ((err = snd_ac97_bus(chip->card, 0, &ops, chip, &chip->ac97_bus)) < 0)
            return err;
      chip->ac97_bus->private_free = snd_ymfpci_mixer_free_ac97_bus;
      chip->ac97_bus->no_vra = 1; /* YMFPCI doesn't need VRA */

      memset(&ac97, 0, sizeof(ac97));
      ac97.private_data = chip;
      ac97.private_free = snd_ymfpci_mixer_free_ac97;
      if ((err = snd_ac97_mixer(chip->ac97_bus, &ac97, &chip->ac97)) < 0)
            return err;

      /* to be sure */
      snd_ac97_update_bits(chip->ac97, AC97_EXTENDED_STATUS,
                       AC97_EA_VRA|AC97_EA_VRM, 0);

      for (idx = 0; idx < ARRAY_SIZE(snd_ymfpci_controls); idx++) {
            if ((err = snd_ctl_add(chip->card, snd_ctl_new1(&snd_ymfpci_controls[idx], chip))) < 0)
                  return err;
      }

      /* add S/PDIF control */
      snd_assert(chip->pcm_spdif != NULL, return -EIO);
      if ((err = snd_ctl_add(chip->card, kctl = snd_ctl_new1(&snd_ymfpci_spdif_default, chip))) < 0)
            return err;
      kctl->id.device = chip->pcm_spdif->device;
      if ((err = snd_ctl_add(chip->card, kctl = snd_ctl_new1(&snd_ymfpci_spdif_mask, chip))) < 0)
            return err;
      kctl->id.device = chip->pcm_spdif->device;
      if ((err = snd_ctl_add(chip->card, kctl = snd_ctl_new1(&snd_ymfpci_spdif_stream, chip))) < 0)
            return err;
      kctl->id.device = chip->pcm_spdif->device;
      chip->spdif_pcm_ctl = kctl;

      /* direct recording source */
      if (chip->device_id == PCI_DEVICE_ID_YAMAHA_754 &&
          (err = snd_ctl_add(chip->card, kctl = snd_ctl_new1(&snd_ymfpci_drec_source, chip))) < 0)
            return err;

      /*
       * shared rear/line-in
       */
      if (rear_switch) {
            if ((err = snd_ctl_add(chip->card, snd_ctl_new1(&snd_ymfpci_rear_shared, chip))) < 0)
                  return err;
      }

      /* per-voice volume */
      substream = chip->pcm->streams[SNDRV_PCM_STREAM_PLAYBACK].substream;
      for (idx = 0; idx < 32; ++idx) {
            kctl = snd_ctl_new1(&snd_ymfpci_pcm_volume, chip);
            if (!kctl)
                  return -ENOMEM;
            kctl->id.device = chip->pcm->device;
            kctl->id.subdevice = idx;
            kctl->private_value = (unsigned long)substream;
            if ((err = snd_ctl_add(chip->card, kctl)) < 0)
                  return err;
            chip->pcm_mixer[idx].left = 0x8000;
            chip->pcm_mixer[idx].right = 0x8000;
            chip->pcm_mixer[idx].ctl = kctl;
            substream = substream->next;
      }

      return 0;
}


/*
 * timer
 */

static int snd_ymfpci_timer_start(struct snd_timer *timer)
{
      struct snd_ymfpci *chip;
      unsigned long flags;
      unsigned int count;

      chip = snd_timer_chip(timer);
      count = (timer->sticks << 1) - 1;
      spin_lock_irqsave(&chip->reg_lock, flags);
      snd_ymfpci_writew(chip, YDSXGR_TIMERCOUNT, count);
      snd_ymfpci_writeb(chip, YDSXGR_TIMERCTRL, 0x03);
      spin_unlock_irqrestore(&chip->reg_lock, flags);
      return 0;
}

static int snd_ymfpci_timer_stop(struct snd_timer *timer)
{
      struct snd_ymfpci *chip;
      unsigned long flags;

      chip = snd_timer_chip(timer);
      spin_lock_irqsave(&chip->reg_lock, flags);
      snd_ymfpci_writeb(chip, YDSXGR_TIMERCTRL, 0x00);
      spin_unlock_irqrestore(&chip->reg_lock, flags);
      return 0;
}

static int snd_ymfpci_timer_precise_resolution(struct snd_timer *timer,
                                     unsigned long *num, unsigned long *den)
{
      *num = 1;
      *den = 48000;
      return 0;
}

static struct snd_timer_hardware snd_ymfpci_timer_hw = {
      .flags = SNDRV_TIMER_HW_AUTO,
      .resolution = 20833, /* 1/fs = 20.8333...us */
      .ticks = 0x8000,
      .start = snd_ymfpci_timer_start,
      .stop = snd_ymfpci_timer_stop,
      .precise_resolution = snd_ymfpci_timer_precise_resolution,
};

int __devinit snd_ymfpci_timer(struct snd_ymfpci *chip, int device)
{
      struct snd_timer *timer = NULL;
      struct snd_timer_id tid;
      int err;

      tid.dev_class = SNDRV_TIMER_CLASS_CARD;
      tid.dev_sclass = SNDRV_TIMER_SCLASS_NONE;
      tid.card = chip->card->number;
      tid.device = device;
      tid.subdevice = 0;
      if ((err = snd_timer_new(chip->card, "YMFPCI", &tid, &timer)) >= 0) {
            strcpy(timer->name, "YMFPCI timer");
            timer->private_data = chip;
            timer->hw = snd_ymfpci_timer_hw;
      }
      chip->timer = timer;
      return err;
}


/*
 *  proc interface
 */

static void snd_ymfpci_proc_read(struct snd_info_entry *entry, 
                         struct snd_info_buffer *buffer)
{
      struct snd_ymfpci *chip = entry->private_data;
      int i;
      
      snd_iprintf(buffer, "YMFPCI\n\n");
      for (i = 0; i <= YDSXGR_WORKBASE; i += 4)
            snd_iprintf(buffer, "%04x: %04x\n", i, snd_ymfpci_readl(chip, i));
}

static int __devinit snd_ymfpci_proc_init(struct snd_card *card, struct snd_ymfpci *chip)
{
      struct snd_info_entry *entry;
      
      if (! snd_card_proc_new(card, "ymfpci", &entry))
            snd_info_set_text_ops(entry, chip, snd_ymfpci_proc_read);
      return 0;
}

/*
 *  initialization routines
 */

static void snd_ymfpci_aclink_reset(struct pci_dev * pci)
{
      u8 cmd;

      pci_read_config_byte(pci, PCIR_DSXG_CTRL, &cmd);
#if 0 // force to reset
      if (cmd & 0x03) {
#endif
            pci_write_config_byte(pci, PCIR_DSXG_CTRL, cmd & 0xfc);
            pci_write_config_byte(pci, PCIR_DSXG_CTRL, cmd | 0x03);
            pci_write_config_byte(pci, PCIR_DSXG_CTRL, cmd & 0xfc);
            pci_write_config_word(pci, PCIR_DSXG_PWRCTRL1, 0);
            pci_write_config_word(pci, PCIR_DSXG_PWRCTRL2, 0);
#if 0
      }
#endif
}

static void snd_ymfpci_enable_dsp(struct snd_ymfpci *chip)
{
      snd_ymfpci_writel(chip, YDSXGR_CONFIG, 0x00000001);
}

static void snd_ymfpci_disable_dsp(struct snd_ymfpci *chip)
{
      u32 val;
      int timeout = 1000;

      val = snd_ymfpci_readl(chip, YDSXGR_CONFIG);
      if (val)
            snd_ymfpci_writel(chip, YDSXGR_CONFIG, 0x00000000);
      while (timeout-- > 0) {
            val = snd_ymfpci_readl(chip, YDSXGR_STATUS);
            if ((val & 0x00000002) == 0)
                  break;
      }
}

#ifdef CONFIG_SND_YMFPCI_FIRMWARE_IN_KERNEL

#include "ymfpci_image.h"

static struct firmware snd_ymfpci_dsp_microcode = {
      .size = YDSXG_DSPLENGTH,
      .data = (u8 *)DspInst,
};
static struct firmware snd_ymfpci_controller_microcode = {
      .size = YDSXG_CTRLLENGTH,
      .data = (u8 *)CntrlInst,
};
static struct firmware snd_ymfpci_controller_1e_microcode = {
      .size = YDSXG_CTRLLENGTH,
      .data = (u8 *)CntrlInst1E,
};
#endif

#ifdef CONFIG_SND_YMFPCI_FIRMWARE_IN_KERNEL
static int snd_ymfpci_request_firmware(struct snd_ymfpci *chip)
{
      chip->dsp_microcode = &snd_ymfpci_dsp_microcode;
      if (chip->device_id == PCI_DEVICE_ID_YAMAHA_724F ||
          chip->device_id == PCI_DEVICE_ID_YAMAHA_740C ||
          chip->device_id == PCI_DEVICE_ID_YAMAHA_744 ||
          chip->device_id == PCI_DEVICE_ID_YAMAHA_754)
            chip->controller_microcode =
                  &snd_ymfpci_controller_1e_microcode;
      else
            chip->controller_microcode =
                  &snd_ymfpci_controller_microcode;
      return 0;
}

#else /* use fw_loader */

#ifdef __LITTLE_ENDIAN
static inline void snd_ymfpci_convert_from_le(const struct firmware *fw) { }
#else
static void snd_ymfpci_convert_from_le(const struct firmware *fw)
{
      int i;
      u32 *data = (u32 *)fw->data;

      for (i = 0; i < fw->size / 4; ++i)
            le32_to_cpus(&data[i]);
}
#endif

static int snd_ymfpci_request_firmware(struct snd_ymfpci *chip)
{
      int err, is_1e;
      const char *name;

      err = request_firmware(&chip->dsp_microcode, "yamaha/ds1_dsp.fw",
                         &chip->pci->dev);
      if (err >= 0) {
            if (chip->dsp_microcode->size == YDSXG_DSPLENGTH)
                  snd_ymfpci_convert_from_le(chip->dsp_microcode);
            else {
                  snd_printk(KERN_ERR "DSP microcode has wrong size\n");
                  err = -EINVAL;
            }
      }
      if (err < 0)
            return err;
      is_1e = chip->device_id == PCI_DEVICE_ID_YAMAHA_724F ||
            chip->device_id == PCI_DEVICE_ID_YAMAHA_740C ||
            chip->device_id == PCI_DEVICE_ID_YAMAHA_744 ||
            chip->device_id == PCI_DEVICE_ID_YAMAHA_754;
      name = is_1e ? "yamaha/ds1e_ctrl.fw" : "yamaha/ds1_ctrl.fw";
      err = request_firmware(&chip->controller_microcode, name,
                         &chip->pci->dev);
      if (err >= 0) {
            if (chip->controller_microcode->size == YDSXG_CTRLLENGTH)
                  snd_ymfpci_convert_from_le(chip->controller_microcode);
            else {
                  snd_printk(KERN_ERR "controller microcode"
                           " has wrong size\n");
                  err = -EINVAL;
            }
      }
      if (err < 0)
            return err;
      return 0;
}

MODULE_FIRMWARE("yamaha/ds1_dsp.fw");
MODULE_FIRMWARE("yamaha/ds1_ctrl.fw");
MODULE_FIRMWARE("yamaha/ds1e_ctrl.fw");

#endif

static void snd_ymfpci_download_image(struct snd_ymfpci *chip)
{
      int i;
      u16 ctrl;
      u32 *inst;

      snd_ymfpci_writel(chip, YDSXGR_NATIVEDACOUTVOL, 0x00000000);
      snd_ymfpci_disable_dsp(chip);
      snd_ymfpci_writel(chip, YDSXGR_MODE, 0x00010000);
      snd_ymfpci_writel(chip, YDSXGR_MODE, 0x00000000);
      snd_ymfpci_writel(chip, YDSXGR_MAPOFREC, 0x00000000);
      snd_ymfpci_writel(chip, YDSXGR_MAPOFEFFECT, 0x00000000);
      snd_ymfpci_writel(chip, YDSXGR_PLAYCTRLBASE, 0x00000000);
      snd_ymfpci_writel(chip, YDSXGR_RECCTRLBASE, 0x00000000);
      snd_ymfpci_writel(chip, YDSXGR_EFFCTRLBASE, 0x00000000);
      ctrl = snd_ymfpci_readw(chip, YDSXGR_GLOBALCTRL);
      snd_ymfpci_writew(chip, YDSXGR_GLOBALCTRL, ctrl & ~0x0007);

      /* setup DSP instruction code */
      inst = (u32 *)chip->dsp_microcode->data;
      for (i = 0; i < YDSXG_DSPLENGTH / 4; i++)
            snd_ymfpci_writel(chip, YDSXGR_DSPINSTRAM + (i << 2), inst[i]);

      /* setup control instruction code */
      inst = (u32 *)chip->controller_microcode->data;
      for (i = 0; i < YDSXG_CTRLLENGTH / 4; i++)
            snd_ymfpci_writel(chip, YDSXGR_CTRLINSTRAM + (i << 2), inst[i]);

      snd_ymfpci_enable_dsp(chip);
}

static int __devinit snd_ymfpci_memalloc(struct snd_ymfpci *chip)
{
      long size, playback_ctrl_size;
      int voice, bank, reg;
      u8 *ptr;
      dma_addr_t ptr_addr;

      playback_ctrl_size = 4 + 4 * YDSXG_PLAYBACK_VOICES;
      chip->bank_size_playback = snd_ymfpci_readl(chip, YDSXGR_PLAYCTRLSIZE) << 2;
      chip->bank_size_capture = snd_ymfpci_readl(chip, YDSXGR_RECCTRLSIZE) << 2;
      chip->bank_size_effect = snd_ymfpci_readl(chip, YDSXGR_EFFCTRLSIZE) << 2;
      chip->work_size = YDSXG_DEFAULT_WORK_SIZE;
      
      size = ALIGN(playback_ctrl_size, 0x100) +
             ALIGN(chip->bank_size_playback * 2 * YDSXG_PLAYBACK_VOICES, 0x100) +
             ALIGN(chip->bank_size_capture * 2 * YDSXG_CAPTURE_VOICES, 0x100) +
             ALIGN(chip->bank_size_effect * 2 * YDSXG_EFFECT_VOICES, 0x100) +
             chip->work_size;
      /* work_ptr must be aligned to 256 bytes, but it's already
         covered with the kernel page allocation mechanism */
      if (snd_dma_alloc_pages(SNDRV_DMA_TYPE_DEV, snd_dma_pci_data(chip->pci),
                        size, &chip->work_ptr) < 0) 
            return -ENOMEM;
      ptr = chip->work_ptr.area;
      ptr_addr = chip->work_ptr.addr;
      memset(ptr, 0, size);   /* for sure */

      chip->bank_base_playback = ptr;
      chip->bank_base_playback_addr = ptr_addr;
      chip->ctrl_playback = (u32 *)ptr;
      chip->ctrl_playback[0] = cpu_to_le32(YDSXG_PLAYBACK_VOICES);
      ptr += ALIGN(playback_ctrl_size, 0x100);
      ptr_addr += ALIGN(playback_ctrl_size, 0x100);
      for (voice = 0; voice < YDSXG_PLAYBACK_VOICES; voice++) {
            chip->voices[voice].number = voice;
            chip->voices[voice].bank = (struct snd_ymfpci_playback_bank *)ptr;
            chip->voices[voice].bank_addr = ptr_addr;
            for (bank = 0; bank < 2; bank++) {
                  chip->bank_playback[voice][bank] = (struct snd_ymfpci_playback_bank *)ptr;
                  ptr += chip->bank_size_playback;
                  ptr_addr += chip->bank_size_playback;
            }
      }
      ptr = (char *)ALIGN((unsigned long)ptr, 0x100);
      ptr_addr = ALIGN(ptr_addr, 0x100);
      chip->bank_base_capture = ptr;
      chip->bank_base_capture_addr = ptr_addr;
      for (voice = 0; voice < YDSXG_CAPTURE_VOICES; voice++)
            for (bank = 0; bank < 2; bank++) {
                  chip->bank_capture[voice][bank] = (struct snd_ymfpci_capture_bank *)ptr;
                  ptr += chip->bank_size_capture;
                  ptr_addr += chip->bank_size_capture;
            }
      ptr = (char *)ALIGN((unsigned long)ptr, 0x100);
      ptr_addr = ALIGN(ptr_addr, 0x100);
      chip->bank_base_effect = ptr;
      chip->bank_base_effect_addr = ptr_addr;
      for (voice = 0; voice < YDSXG_EFFECT_VOICES; voice++)
            for (bank = 0; bank < 2; bank++) {
                  chip->bank_effect[voice][bank] = (struct snd_ymfpci_effect_bank *)ptr;
                  ptr += chip->bank_size_effect;
                  ptr_addr += chip->bank_size_effect;
            }
      ptr = (char *)ALIGN((unsigned long)ptr, 0x100);
      ptr_addr = ALIGN(ptr_addr, 0x100);
      chip->work_base = ptr;
      chip->work_base_addr = ptr_addr;
      
      snd_assert(ptr + chip->work_size == chip->work_ptr.area + chip->work_ptr.bytes, );

      snd_ymfpci_writel(chip, YDSXGR_PLAYCTRLBASE, chip->bank_base_playback_addr);
      snd_ymfpci_writel(chip, YDSXGR_RECCTRLBASE, chip->bank_base_capture_addr);
      snd_ymfpci_writel(chip, YDSXGR_EFFCTRLBASE, chip->bank_base_effect_addr);
      snd_ymfpci_writel(chip, YDSXGR_WORKBASE, chip->work_base_addr);
      snd_ymfpci_writel(chip, YDSXGR_WORKSIZE, chip->work_size >> 2);

      /* S/PDIF output initialization */
      chip->spdif_bits = chip->spdif_pcm_bits = SNDRV_PCM_DEFAULT_CON_SPDIF & 0xffff;
      snd_ymfpci_writew(chip, YDSXGR_SPDIFOUTCTRL, 0);
      snd_ymfpci_writew(chip, YDSXGR_SPDIFOUTSTATUS, chip->spdif_bits);

      /* S/PDIF input initialization */
      snd_ymfpci_writew(chip, YDSXGR_SPDIFINCTRL, 0);

      /* digital mixer setup */
      for (reg = 0x80; reg < 0xc0; reg += 4)
            snd_ymfpci_writel(chip, reg, 0);
      snd_ymfpci_writel(chip, YDSXGR_NATIVEDACOUTVOL, 0x3fff3fff);
      snd_ymfpci_writel(chip, YDSXGR_ZVOUTVOL, 0x3fff3fff);
      snd_ymfpci_writel(chip, YDSXGR_SPDIFOUTVOL, 0x3fff3fff);
      snd_ymfpci_writel(chip, YDSXGR_NATIVEADCINVOL, 0x3fff3fff);
      snd_ymfpci_writel(chip, YDSXGR_NATIVEDACINVOL, 0x3fff3fff);
      snd_ymfpci_writel(chip, YDSXGR_PRIADCLOOPVOL, 0x3fff3fff);
      snd_ymfpci_writel(chip, YDSXGR_LEGACYOUTVOL, 0x3fff3fff);
      
      return 0;
}

static int snd_ymfpci_free(struct snd_ymfpci *chip)
{
      u16 ctrl;

      snd_assert(chip != NULL, return -EINVAL);

      if (chip->res_reg_area) {     /* don't touch busy hardware */
            snd_ymfpci_writel(chip, YDSXGR_NATIVEDACOUTVOL, 0);
            snd_ymfpci_writel(chip, YDSXGR_BUF441OUTVOL, 0);
            snd_ymfpci_writel(chip, YDSXGR_LEGACYOUTVOL, 0);
            snd_ymfpci_writel(chip, YDSXGR_STATUS, ~0);
            snd_ymfpci_disable_dsp(chip);
            snd_ymfpci_writel(chip, YDSXGR_PLAYCTRLBASE, 0);
            snd_ymfpci_writel(chip, YDSXGR_RECCTRLBASE, 0);
            snd_ymfpci_writel(chip, YDSXGR_EFFCTRLBASE, 0);
            snd_ymfpci_writel(chip, YDSXGR_WORKBASE, 0);
            snd_ymfpci_writel(chip, YDSXGR_WORKSIZE, 0);
            ctrl = snd_ymfpci_readw(chip, YDSXGR_GLOBALCTRL);
            snd_ymfpci_writew(chip, YDSXGR_GLOBALCTRL, ctrl & ~0x0007);
      }

      snd_ymfpci_ac3_done(chip);

      /* Set PCI device to D3 state */
#if 0
      /* FIXME: temporarily disabled, otherwise we cannot fire up
       * the chip again unless reboot.  ACPI bug?
       */
      pci_set_power_state(chip->pci, 3);
#endif

#ifdef CONFIG_PM
      vfree(chip->saved_regs);
#endif
      release_and_free_resource(chip->mpu_res);
      release_and_free_resource(chip->fm_res);
      snd_ymfpci_free_gameport(chip);
      if (chip->reg_area_virt)
            iounmap(chip->reg_area_virt);
      if (chip->work_ptr.area)
            snd_dma_free_pages(&chip->work_ptr);
      
      if (chip->irq >= 0)
            free_irq(chip->irq, chip);
      release_and_free_resource(chip->res_reg_area);

      pci_write_config_word(chip->pci, 0x40, chip->old_legacy_ctrl);
      
      pci_disable_device(chip->pci);
#ifndef CONFIG_SND_YMFPCI_FIRMWARE_IN_KERNEL
      release_firmware(chip->dsp_microcode);
      release_firmware(chip->controller_microcode);
#endif
      kfree(chip);
      return 0;
}

static int snd_ymfpci_dev_free(struct snd_device *device)
{
      struct snd_ymfpci *chip = device->device_data;
      return snd_ymfpci_free(chip);
}

#ifdef CONFIG_PM
static int saved_regs_index[] = {
      /* spdif */
      YDSXGR_SPDIFOUTCTRL,
      YDSXGR_SPDIFOUTSTATUS,
      YDSXGR_SPDIFINCTRL,
      /* volumes */
      YDSXGR_PRIADCLOOPVOL,
      YDSXGR_NATIVEDACINVOL,
      YDSXGR_NATIVEDACOUTVOL,
      YDSXGR_BUF441OUTVOL,
      YDSXGR_NATIVEADCINVOL,
      YDSXGR_SPDIFLOOPVOL,
      YDSXGR_SPDIFOUTVOL,
      YDSXGR_ZVOUTVOL,
      YDSXGR_LEGACYOUTVOL,
      /* address bases */
      YDSXGR_PLAYCTRLBASE,
      YDSXGR_RECCTRLBASE,
      YDSXGR_EFFCTRLBASE,
      YDSXGR_WORKBASE,
      /* capture set up */
      YDSXGR_MAPOFREC,
      YDSXGR_RECFORMAT,
      YDSXGR_RECSLOTSR,
      YDSXGR_ADCFORMAT,
      YDSXGR_ADCSLOTSR,
};
#define YDSXGR_NUM_SAVED_REGS ARRAY_SIZE(saved_regs_index)

int snd_ymfpci_suspend(struct pci_dev *pci, pm_message_t state)
{
      struct snd_card *card = pci_get_drvdata(pci);
      struct snd_ymfpci *chip = card->private_data;
      unsigned int i;
      
      snd_power_change_state(card, SNDRV_CTL_POWER_D3hot);
      snd_pcm_suspend_all(chip->pcm);
      snd_pcm_suspend_all(chip->pcm2);
      snd_pcm_suspend_all(chip->pcm_spdif);
      snd_pcm_suspend_all(chip->pcm_4ch);
      snd_ac97_suspend(chip->ac97);
      for (i = 0; i < YDSXGR_NUM_SAVED_REGS; i++)
            chip->saved_regs[i] = snd_ymfpci_readl(chip, saved_regs_index[i]);
      chip->saved_ydsxgr_mode = snd_ymfpci_readl(chip, YDSXGR_MODE);
      snd_ymfpci_writel(chip, YDSXGR_NATIVEDACOUTVOL, 0);
      snd_ymfpci_disable_dsp(chip);
      pci_disable_device(pci);
      pci_save_state(pci);
      pci_set_power_state(pci, pci_choose_state(pci, state));
      return 0;
}

int snd_ymfpci_resume(struct pci_dev *pci)
{
      struct snd_card *card = pci_get_drvdata(pci);
      struct snd_ymfpci *chip = card->private_data;
      unsigned int i;

      pci_set_power_state(pci, PCI_D0);
      pci_restore_state(pci);
      if (pci_enable_device(pci) < 0) {
            printk(KERN_ERR "ymfpci: pci_enable_device failed, "
                   "disabling device\n");
            snd_card_disconnect(card);
            return -EIO;
      }
      pci_set_master(pci);
      snd_ymfpci_aclink_reset(pci);
      snd_ymfpci_codec_ready(chip, 0);
      snd_ymfpci_download_image(chip);
      udelay(100);

      for (i = 0; i < YDSXGR_NUM_SAVED_REGS; i++)
            snd_ymfpci_writel(chip, saved_regs_index[i], chip->saved_regs[i]);

      snd_ac97_resume(chip->ac97);

      /* start hw again */
      if (chip->start_count > 0) {
            spin_lock_irq(&chip->reg_lock);
            snd_ymfpci_writel(chip, YDSXGR_MODE, chip->saved_ydsxgr_mode);
            chip->active_bank = snd_ymfpci_readl(chip, YDSXGR_CTRLSELECT);
            spin_unlock_irq(&chip->reg_lock);
      }
      snd_power_change_state(card, SNDRV_CTL_POWER_D0);
      return 0;
}
#endif /* CONFIG_PM */

int __devinit snd_ymfpci_create(struct snd_card *card,
                        struct pci_dev * pci,
                        unsigned short old_legacy_ctrl,
                        struct snd_ymfpci ** rchip)
{
      struct snd_ymfpci *chip;
      int err;
      static struct snd_device_ops ops = {
            .dev_free = snd_ymfpci_dev_free,
      };
      
      *rchip = NULL;

      /* enable PCI device */
      if ((err = pci_enable_device(pci)) < 0)
            return err;

      chip = kzalloc(sizeof(*chip), GFP_KERNEL);
      if (chip == NULL) {
            pci_disable_device(pci);
            return -ENOMEM;
      }
      chip->old_legacy_ctrl = old_legacy_ctrl;
      spin_lock_init(&chip->reg_lock);
      spin_lock_init(&chip->voice_lock);
      init_waitqueue_head(&chip->interrupt_sleep);
      atomic_set(&chip->interrupt_sleep_count, 0);
      chip->card = card;
      chip->pci = pci;
      chip->irq = -1;
      chip->device_id = pci->device;
      chip->rev = pci->revision;
      chip->reg_area_phys = pci_resource_start(pci, 0);
      chip->reg_area_virt = ioremap_nocache(chip->reg_area_phys, 0x8000);
      pci_set_master(pci);
      chip->src441_used = -1;

      if ((chip->res_reg_area = request_mem_region(chip->reg_area_phys, 0x8000, "YMFPCI")) == NULL) {
            snd_printk(KERN_ERR "unable to grab memory region 0x%lx-0x%lx\n", chip->reg_area_phys, chip->reg_area_phys + 0x8000 - 1);
            snd_ymfpci_free(chip);
            return -EBUSY;
      }
      if (request_irq(pci->irq, snd_ymfpci_interrupt, IRQF_SHARED,
                  "YMFPCI", chip)) {
            snd_printk(KERN_ERR "unable to grab IRQ %d\n", pci->irq);
            snd_ymfpci_free(chip);
            return -EBUSY;
      }
      chip->irq = pci->irq;

      snd_ymfpci_aclink_reset(pci);
      if (snd_ymfpci_codec_ready(chip, 0) < 0) {
            snd_ymfpci_free(chip);
            return -EIO;
      }

      err = snd_ymfpci_request_firmware(chip);
      if (err < 0) {
            snd_printk(KERN_ERR "firmware request failed: %d\n", err);
            snd_ymfpci_free(chip);
            return err;
      }
      snd_ymfpci_download_image(chip);

      udelay(100); /* seems we need a delay after downloading image.. */

      if (snd_ymfpci_memalloc(chip) < 0) {
            snd_ymfpci_free(chip);
            return -EIO;
      }

      if ((err = snd_ymfpci_ac3_init(chip)) < 0) {
            snd_ymfpci_free(chip);
            return err;
      }

#ifdef CONFIG_PM
      chip->saved_regs = vmalloc(YDSXGR_NUM_SAVED_REGS * sizeof(u32));
      if (chip->saved_regs == NULL) {
            snd_ymfpci_free(chip);
            return -ENOMEM;
      }
#endif

      if ((err = snd_device_new(card, SNDRV_DEV_LOWLEVEL, chip, &ops)) < 0) {
            snd_ymfpci_free(chip);
            return err;
      }

      snd_ymfpci_proc_init(card, chip);

      snd_card_set_dev(card, &pci->dev);

      *rchip = chip;
      return 0;
}

Generated by  Doxygen 1.6.0   Back to index