Logo Search packages:      
Sourcecode: alsa-driver version File versions

bt87x.c

/*
 * bt87x.c - Brooktree Bt878/Bt879 driver for ALSA
 *
 * Copyright (c) Clemens Ladisch <clemens@ladisch.de>
 *
 * based on btaudio.c by Gerd Knorr <kraxel@bytesex.org>
 *
 *
 *  This driver is free software; you can redistribute it and/or modify
 *  it under the terms of the GNU General Public License as published by
 *  the Free Software Foundation; either version 2 of the License, or
 *  (at your option) any later version.
 *
 *  This driver is distributed in the hope that it will be useful,
 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *  GNU General Public License for more details.
 *
 *  You should have received a copy of the GNU General Public License
 *  along with this program; if not, write to the Free Software
 *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
 */

#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/pci.h>
#include <linux/slab.h>
#include <linux/moduleparam.h>
#include <linux/bitops.h>
#include <asm/io.h>
#include <sound/core.h>
#include <sound/pcm.h>
#include <sound/pcm_params.h>
#include <sound/control.h>
#include <sound/initval.h>

MODULE_AUTHOR("Clemens Ladisch <clemens@ladisch.de>");
MODULE_DESCRIPTION("Brooktree Bt87x audio driver");
MODULE_LICENSE("GPL");
MODULE_SUPPORTED_DEVICE("{{Brooktree,Bt878},"
            "{Brooktree,Bt879}}");

static int index[SNDRV_CARDS] = {[0 ... (SNDRV_CARDS - 1)] = -2}; /* Exclude the first card */
static char *id[SNDRV_CARDS] = SNDRV_DEFAULT_STR;     /* ID for this card */
static int enable[SNDRV_CARDS] = SNDRV_DEFAULT_ENABLE_PNP;  /* Enable this card */
static int digital_rate[SNDRV_CARDS];     /* digital input rate */
static int load_all;    /* allow to load the non-whitelisted cards */

module_param_array(index, int, NULL, 0444);
MODULE_PARM_DESC(index, "Index value for Bt87x soundcard");
module_param_array(id, charp, NULL, 0444);
MODULE_PARM_DESC(id, "ID string for Bt87x soundcard");
module_param_array(enable, bool, NULL, 0444);
MODULE_PARM_DESC(enable, "Enable Bt87x soundcard");
module_param_array(digital_rate, int, NULL, 0444);
MODULE_PARM_DESC(digital_rate, "Digital input rate for Bt87x soundcard");
module_param(load_all, bool, 0444);
MODULE_PARM_DESC(load_all, "Allow to load the non-whitelisted cards");


/* register offsets */
#define REG_INT_STAT          0x100 /* interrupt status */
#define REG_INT_MASK          0x104 /* interrupt mask */
#define REG_GPIO_DMA_CTL      0x10c /* audio control */
#define REG_PACKET_LEN        0x110 /* audio packet lengths */
#define REG_RISC_STRT_ADD     0x114 /* RISC program start address */
#define REG_RISC_COUNT        0x120 /* RISC program counter */

/* interrupt bits */
#define INT_OFLOW (1 <<  3)   /* audio A/D overflow */
#define INT_RISCI (1 << 11)   /* RISC instruction IRQ bit set */
#define INT_FBUS  (1 << 12)   /* FIFO overrun due to bus access latency */
#define INT_FTRGT (1 << 13)   /* FIFO overrun due to target latency */
#define INT_FDSR  (1 << 14)   /* FIFO data stream resynchronization */
#define INT_PPERR (1 << 15)   /* PCI parity error */
#define INT_RIPERR      (1 << 16)   /* RISC instruction parity error */
#define INT_PABORT      (1 << 17)   /* PCI master or target abort */
#define INT_OCERR (1 << 18)   /* invalid opcode */
#define INT_SCERR (1 << 19)   /* sync counter overflow */
#define INT_RISC_EN     (1 << 27)   /* DMA controller running */
#define INT_RISCS_SHIFT       28    /* RISC status bits */

/* audio control bits */
#define CTL_FIFO_ENABLE       (1 <<  0)   /* enable audio data FIFO */
#define CTL_RISC_ENABLE       (1 <<  1)   /* enable audio DMA controller */
#define CTL_PKTP_4            (0 <<  2)   /* packet mode FIFO trigger point - 4 DWORDs */
#define CTL_PKTP_8            (1 <<  2)   /* 8 DWORDs */
#define CTL_PKTP_16           (2 <<  2)   /* 16 DWORDs */
#define CTL_ACAP_EN           (1 <<  4)   /* enable audio capture */
#define CTL_DA_APP            (1 <<  5)   /* GPIO input */
#define CTL_DA_IOM_AFE        (0 <<  6)   /* audio A/D input */
#define CTL_DA_IOM_DA         (1 <<  6)   /* digital audio input */
#define CTL_DA_SDR_SHIFT             8    /* DDF first stage decimation rate */
#define CTL_DA_SDR_MASK       (0xf<< 8)
#define CTL_DA_LMT            (1 << 12)   /* limit audio data values */
#define CTL_DA_ES2            (1 << 13)   /* enable DDF stage 2 */
#define CTL_DA_SBR            (1 << 14)   /* samples rounded to 8 bits */
#define CTL_DA_DPM            (1 << 15)   /* data packet mode */
#define CTL_DA_LRD_SHIFT            16    /* ALRCK delay */
#define CTL_DA_MLB            (1 << 21)   /* MSB/LSB format */
#define CTL_DA_LRI            (1 << 22)   /* left/right indication */
#define CTL_DA_SCE            (1 << 23)   /* sample clock edge */
#define CTL_A_SEL_STV         (0 << 24)   /* TV tuner audio input */
#define CTL_A_SEL_SFM         (1 << 24)   /* FM audio input */
#define CTL_A_SEL_SML         (2 << 24)   /* mic/line audio input */
#define CTL_A_SEL_SMXC        (3 << 24)   /* MUX bypass */
#define CTL_A_SEL_SHIFT             24
#define CTL_A_SEL_MASK        (3 << 24)
#define CTL_A_PWRDN           (1 << 26)   /* analog audio power-down */
#define CTL_A_G2X       (1 << 27)   /* audio gain boost */
#define CTL_A_GAIN_SHIFT            28    /* audio input gain */
#define CTL_A_GAIN_MASK       (0xf<<28)

/* RISC instruction opcodes */
#define RISC_WRITE      (0x1 << 28) /* write FIFO data to memory at address */
#define RISC_WRITEC     (0x5 << 28) /* write FIFO data to memory at current address */
#define RISC_SKIP (0x2 << 28) /* skip FIFO data */
#define RISC_JUMP (0x7 << 28) /* jump to address */
#define RISC_SYNC (0x8 << 28) /* synchronize with FIFO */

/* RISC instruction bits */
#define RISC_BYTES_ENABLE     (0xf << 12) /* byte enable bits */
#define RISC_RESYNC           (  1 << 15) /* disable FDSR errors */
#define RISC_SET_STATUS_SHIFT         16  /* set status bits */
#define RISC_RESET_STATUS_SHIFT             20  /* clear status bits */
#define RISC_IRQ        (  1 << 24) /* interrupt */
#define RISC_EOL        (  1 << 26) /* end of line */
#define RISC_SOL        (  1 << 27) /* start of line */

/* SYNC status bits values */
#define RISC_SYNC_FM1   0x6
#define RISC_SYNC_VRO   0xc

#define ANALOG_CLOCK 1792000
#ifdef CONFIG_SND_BT87X_OVERCLOCK
#define CLOCK_DIV_MIN 1
#else
#define CLOCK_DIV_MIN 4
#endif
#define CLOCK_DIV_MAX 15

#define ERROR_INTERRUPTS (INT_FBUS | INT_FTRGT | INT_PPERR | \
                    INT_RIPERR | INT_PABORT | INT_OCERR)
#define MY_INTERRUPTS (INT_RISCI | ERROR_INTERRUPTS)

/* SYNC, one WRITE per line, one extra WRITE per page boundary, SYNC, JUMP */
#define MAX_RISC_SIZE ((1 + 255 + (PAGE_ALIGN(255 * 4092) / PAGE_SIZE - 1) + 1 + 1) * 8)

/* Cards with configuration information */
enum snd_bt87x_boardid {
      SND_BT87X_BOARD_UNKNOWN,
      SND_BT87X_BOARD_GENERIC,      /* both an & dig interfaces, 32kHz */
      SND_BT87X_BOARD_ANALOG,       /* board with no external A/D */
      SND_BT87X_BOARD_OSPREY2x0,
      SND_BT87X_BOARD_OSPREY440,
      SND_BT87X_BOARD_AVPHONE98,
};

/* Card configuration */
struct snd_bt87x_board {
      int dig_rate;           /* Digital input sampling rate */
      u32 digital_fmt;  /* Register settings for digital input */
      unsigned no_analog:1;   /* No analog input */
      unsigned no_digital:1;  /* No digital input */
};

static __devinitdata struct snd_bt87x_board snd_bt87x_boards[] = {
      [SND_BT87X_BOARD_UNKNOWN] = {
            .dig_rate = 32000, /* just a guess */
      },
      [SND_BT87X_BOARD_GENERIC] = {
            .dig_rate = 32000,
      },
      [SND_BT87X_BOARD_ANALOG] = {
            .no_digital = 1,
      },
      [SND_BT87X_BOARD_OSPREY2x0] = {
            .dig_rate = 44100,
            .digital_fmt = CTL_DA_LRI | (1 << CTL_DA_LRD_SHIFT),
      },
      [SND_BT87X_BOARD_OSPREY440] = {
            .dig_rate = 32000,
            .digital_fmt = CTL_DA_LRI | (1 << CTL_DA_LRD_SHIFT),
            .no_analog = 1,
      },
      [SND_BT87X_BOARD_AVPHONE98] = {
            .dig_rate = 48000,
      },
};

struct snd_bt87x {
      struct snd_card *card;
      struct pci_dev *pci;
      struct snd_bt87x_board board;

      void __iomem *mmio;
      int irq;

      spinlock_t reg_lock;
      unsigned long opened;
      struct snd_pcm_substream *substream;

      struct snd_dma_buffer dma_risc;
      unsigned int line_bytes;
      unsigned int lines;

      u32 reg_control;
      u32 interrupt_mask;

      int current_line;

      int pci_parity_errors;
};

enum { DEVICE_DIGITAL, DEVICE_ANALOG };

static inline u32 snd_bt87x_readl(struct snd_bt87x *chip, u32 reg)
{
      return readl(chip->mmio + reg);
}

static inline void snd_bt87x_writel(struct snd_bt87x *chip, u32 reg, u32 value)
{
      writel(value, chip->mmio + reg);
}

static int snd_bt87x_create_risc(struct snd_bt87x *chip, struct snd_pcm_substream *substream,
                               unsigned int periods, unsigned int period_bytes)
{
      struct snd_sg_buf *sgbuf = snd_pcm_substream_sgbuf(substream);
      unsigned int i, offset;
      u32 *risc;

      if (chip->dma_risc.area == NULL) {
            if (snd_dma_alloc_pages(SNDRV_DMA_TYPE_DEV, snd_dma_pci_data(chip->pci),
                              PAGE_ALIGN(MAX_RISC_SIZE), &chip->dma_risc) < 0)
                  return -ENOMEM;
      }
      risc = (u32 *)chip->dma_risc.area;
      offset = 0;
      *risc++ = cpu_to_le32(RISC_SYNC | RISC_SYNC_FM1);
      *risc++ = cpu_to_le32(0);
      for (i = 0; i < periods; ++i) {
            u32 rest;

            rest = period_bytes;
            do {
                  u32 cmd, len;

                  len = PAGE_SIZE - (offset % PAGE_SIZE);
                  if (len > rest)
                        len = rest;
                  cmd = RISC_WRITE | len;
                  if (rest == period_bytes) {
                        u32 block = i * 16 / periods;
                        cmd |= RISC_SOL;
                        cmd |= block << RISC_SET_STATUS_SHIFT;
                        cmd |= (~block & 0xf) << RISC_RESET_STATUS_SHIFT;
                  }
                  if (len == rest)
                        cmd |= RISC_EOL | RISC_IRQ;
                  *risc++ = cpu_to_le32(cmd);
                  *risc++ = cpu_to_le32((u32)snd_pcm_sgbuf_get_addr(sgbuf, offset));
                  offset += len;
                  rest -= len;
            } while (rest > 0);
      }
      *risc++ = cpu_to_le32(RISC_SYNC | RISC_SYNC_VRO);
      *risc++ = cpu_to_le32(0);
      *risc++ = cpu_to_le32(RISC_JUMP);
      *risc++ = cpu_to_le32(chip->dma_risc.addr);
      chip->line_bytes = period_bytes;
      chip->lines = periods;
      return 0;
}

static void snd_bt87x_free_risc(struct snd_bt87x *chip)
{
      if (chip->dma_risc.area) {
            snd_dma_free_pages(&chip->dma_risc);
            chip->dma_risc.area = NULL;
      }
}

static void snd_bt87x_pci_error(struct snd_bt87x *chip, unsigned int status)
{
      u16 pci_status;

      pci_read_config_word(chip->pci, PCI_STATUS, &pci_status);
      pci_status &= PCI_STATUS_PARITY | PCI_STATUS_SIG_TARGET_ABORT |
            PCI_STATUS_REC_TARGET_ABORT | PCI_STATUS_REC_MASTER_ABORT |
            PCI_STATUS_SIG_SYSTEM_ERROR | PCI_STATUS_DETECTED_PARITY;
      pci_write_config_word(chip->pci, PCI_STATUS, pci_status);
      if (pci_status != PCI_STATUS_DETECTED_PARITY)
            snd_printk(KERN_ERR "Aieee - PCI error! status %#08x, PCI status %#04x\n",
                     status & ERROR_INTERRUPTS, pci_status);
      else {
            snd_printk(KERN_ERR "Aieee - PCI parity error detected!\n");
            /* error 'handling' similar to aic7xxx_pci.c: */
            chip->pci_parity_errors++;
            if (chip->pci_parity_errors > 20) {
                  snd_printk(KERN_ERR "Too many PCI parity errors observed.\n");
                  snd_printk(KERN_ERR "Some device on this bus is generating bad parity.\n");
                  snd_printk(KERN_ERR "This is an error *observed by*, not *generated by*, this card.\n");
                  snd_printk(KERN_ERR "PCI parity error checking has been disabled.\n");
                  chip->interrupt_mask &= ~(INT_PPERR | INT_RIPERR);
                  snd_bt87x_writel(chip, REG_INT_MASK, chip->interrupt_mask);
            }
      }
}

static irqreturn_t snd_bt87x_interrupt(int irq, void *dev_id)
{
      struct snd_bt87x *chip = dev_id;
      unsigned int status, irq_status;

      status = snd_bt87x_readl(chip, REG_INT_STAT);
      irq_status = status & chip->interrupt_mask;
      if (!irq_status)
            return IRQ_NONE;
      snd_bt87x_writel(chip, REG_INT_STAT, irq_status);

      if (irq_status & ERROR_INTERRUPTS) {
            if (irq_status & (INT_FBUS | INT_FTRGT))
                  snd_printk(KERN_WARNING "FIFO overrun, status %#08x\n", status);
            if (irq_status & INT_OCERR)
                  snd_printk(KERN_ERR "internal RISC error, status %#08x\n", status);
            if (irq_status & (INT_PPERR | INT_RIPERR | INT_PABORT))
                  snd_bt87x_pci_error(chip, irq_status);
      }
      if ((irq_status & INT_RISCI) && (chip->reg_control & CTL_ACAP_EN)) {
            int current_block, irq_block;

            /* assume that exactly one line has been recorded */
            chip->current_line = (chip->current_line + 1) % chip->lines;
            /* but check if some interrupts have been skipped */
            current_block = chip->current_line * 16 / chip->lines;
            irq_block = status >> INT_RISCS_SHIFT;
            if (current_block != irq_block)
                  chip->current_line = (irq_block * chip->lines + 15) / 16;

            snd_pcm_period_elapsed(chip->substream);
      }
      return IRQ_HANDLED;
}

static struct snd_pcm_hardware snd_bt87x_digital_hw = {
      .info = SNDRV_PCM_INFO_MMAP |
            SNDRV_PCM_INFO_INTERLEAVED |
            SNDRV_PCM_INFO_BLOCK_TRANSFER |
            SNDRV_PCM_INFO_MMAP_VALID,
      .formats = SNDRV_PCM_FMTBIT_S16_LE,
      .rates = 0, /* set at runtime */
      .channels_min = 2,
      .channels_max = 2,
      .buffer_bytes_max = 255 * 4092,
      .period_bytes_min = 32,
      .period_bytes_max = 4092,
      .periods_min = 2,
      .periods_max = 255,
};

static struct snd_pcm_hardware snd_bt87x_analog_hw = {
      .info = SNDRV_PCM_INFO_MMAP |
            SNDRV_PCM_INFO_INTERLEAVED |
            SNDRV_PCM_INFO_BLOCK_TRANSFER |
            SNDRV_PCM_INFO_MMAP_VALID,
      .formats = SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_S8,
      .rates = SNDRV_PCM_RATE_KNOT,
      .rate_min = ANALOG_CLOCK / CLOCK_DIV_MAX,
      .rate_max = ANALOG_CLOCK / CLOCK_DIV_MIN,
      .channels_min = 1,
      .channels_max = 1,
      .buffer_bytes_max = 255 * 4092,
      .period_bytes_min = 32,
      .period_bytes_max = 4092,
      .periods_min = 2,
      .periods_max = 255,
};

static int snd_bt87x_set_digital_hw(struct snd_bt87x *chip, struct snd_pcm_runtime *runtime)
{
      chip->reg_control |= CTL_DA_IOM_DA | CTL_A_PWRDN;
      runtime->hw = snd_bt87x_digital_hw;
      runtime->hw.rates = snd_pcm_rate_to_rate_bit(chip->board.dig_rate);
      runtime->hw.rate_min = chip->board.dig_rate;
      runtime->hw.rate_max = chip->board.dig_rate;
      return 0;
}

static int snd_bt87x_set_analog_hw(struct snd_bt87x *chip, struct snd_pcm_runtime *runtime)
{
      static struct snd_ratnum analog_clock = {
            .num = ANALOG_CLOCK,
            .den_min = CLOCK_DIV_MIN,
            .den_max = CLOCK_DIV_MAX,
            .den_step = 1
      };
      static struct snd_pcm_hw_constraint_ratnums constraint_rates = {
            .nrats = 1,
            .rats = &analog_clock
      };

      chip->reg_control &= ~(CTL_DA_IOM_DA | CTL_A_PWRDN);
      runtime->hw = snd_bt87x_analog_hw;
      return snd_pcm_hw_constraint_ratnums(runtime, 0, SNDRV_PCM_HW_PARAM_RATE,
                                   &constraint_rates);
}

static int snd_bt87x_pcm_open(struct snd_pcm_substream *substream)
{
      struct snd_bt87x *chip = snd_pcm_substream_chip(substream);
      struct snd_pcm_runtime *runtime = substream->runtime;
      int err;

      if (test_and_set_bit(0, &chip->opened))
            return -EBUSY;

      if (substream->pcm->device == DEVICE_DIGITAL)
            err = snd_bt87x_set_digital_hw(chip, runtime);
      else
            err = snd_bt87x_set_analog_hw(chip, runtime);
      if (err < 0)
            goto _error;

      err = snd_pcm_hw_constraint_integer(runtime, SNDRV_PCM_HW_PARAM_PERIODS);
      if (err < 0)
            goto _error;

      chip->substream = substream;
      return 0;

_error:
      clear_bit(0, &chip->opened);
      smp_mb__after_clear_bit();
      return err;
}

static int snd_bt87x_close(struct snd_pcm_substream *substream)
{
      struct snd_bt87x *chip = snd_pcm_substream_chip(substream);

      spin_lock_irq(&chip->reg_lock);
      chip->reg_control |= CTL_A_PWRDN;
      snd_bt87x_writel(chip, REG_GPIO_DMA_CTL, chip->reg_control);
      spin_unlock_irq(&chip->reg_lock);

      chip->substream = NULL;
      clear_bit(0, &chip->opened);
      smp_mb__after_clear_bit();
      return 0;
}

static int snd_bt87x_hw_params(struct snd_pcm_substream *substream,
                         struct snd_pcm_hw_params *hw_params)
{
      struct snd_bt87x *chip = snd_pcm_substream_chip(substream);
      int err;

      err = snd_pcm_lib_malloc_pages(substream,
                               params_buffer_bytes(hw_params));
      if (err < 0)
            return err;
      return snd_bt87x_create_risc(chip, substream,
                             params_periods(hw_params),
                             params_period_bytes(hw_params));
}

static int snd_bt87x_hw_free(struct snd_pcm_substream *substream)
{
      struct snd_bt87x *chip = snd_pcm_substream_chip(substream);

      snd_bt87x_free_risc(chip);
      snd_pcm_lib_free_pages(substream);
      return 0;
}

static int snd_bt87x_prepare(struct snd_pcm_substream *substream)
{
      struct snd_bt87x *chip = snd_pcm_substream_chip(substream);
      struct snd_pcm_runtime *runtime = substream->runtime;
      int decimation;

      spin_lock_irq(&chip->reg_lock);
      chip->reg_control &= ~(CTL_DA_SDR_MASK | CTL_DA_SBR);
      decimation = (ANALOG_CLOCK + runtime->rate / 4) / runtime->rate;
      chip->reg_control |= decimation << CTL_DA_SDR_SHIFT;
      if (runtime->format == SNDRV_PCM_FORMAT_S8)
            chip->reg_control |= CTL_DA_SBR;
      snd_bt87x_writel(chip, REG_GPIO_DMA_CTL, chip->reg_control);
      spin_unlock_irq(&chip->reg_lock);
      return 0;
}

static int snd_bt87x_start(struct snd_bt87x *chip)
{
      spin_lock(&chip->reg_lock);
      chip->current_line = 0;
      chip->reg_control |= CTL_FIFO_ENABLE | CTL_RISC_ENABLE | CTL_ACAP_EN;
      snd_bt87x_writel(chip, REG_RISC_STRT_ADD, chip->dma_risc.addr);
      snd_bt87x_writel(chip, REG_PACKET_LEN,
                   chip->line_bytes | (chip->lines << 16));
      snd_bt87x_writel(chip, REG_INT_MASK, chip->interrupt_mask);
      snd_bt87x_writel(chip, REG_GPIO_DMA_CTL, chip->reg_control);
      spin_unlock(&chip->reg_lock);
      return 0;
}

static int snd_bt87x_stop(struct snd_bt87x *chip)
{
      spin_lock(&chip->reg_lock);
      chip->reg_control &= ~(CTL_FIFO_ENABLE | CTL_RISC_ENABLE | CTL_ACAP_EN);
      snd_bt87x_writel(chip, REG_GPIO_DMA_CTL, chip->reg_control);
      snd_bt87x_writel(chip, REG_INT_MASK, 0);
      snd_bt87x_writel(chip, REG_INT_STAT, MY_INTERRUPTS);
      spin_unlock(&chip->reg_lock);
      return 0;
}

static int snd_bt87x_trigger(struct snd_pcm_substream *substream, int cmd)
{
      struct snd_bt87x *chip = snd_pcm_substream_chip(substream);

      switch (cmd) {
      case SNDRV_PCM_TRIGGER_START:
            return snd_bt87x_start(chip);
      case SNDRV_PCM_TRIGGER_STOP:
            return snd_bt87x_stop(chip);
      default:
            return -EINVAL;
      }
}

static snd_pcm_uframes_t snd_bt87x_pointer(struct snd_pcm_substream *substream)
{
      struct snd_bt87x *chip = snd_pcm_substream_chip(substream);
      struct snd_pcm_runtime *runtime = substream->runtime;

      return (snd_pcm_uframes_t)bytes_to_frames(runtime, chip->current_line * chip->line_bytes);
}

static struct snd_pcm_ops snd_bt87x_pcm_ops = {
      .open = snd_bt87x_pcm_open,
      .close = snd_bt87x_close,
      .ioctl = snd_pcm_lib_ioctl,
      .hw_params = snd_bt87x_hw_params,
      .hw_free = snd_bt87x_hw_free,
      .prepare = snd_bt87x_prepare,
      .trigger = snd_bt87x_trigger,
      .pointer = snd_bt87x_pointer,
      .page = snd_pcm_sgbuf_ops_page,
};

static int snd_bt87x_capture_volume_info(struct snd_kcontrol *kcontrol,
                               struct snd_ctl_elem_info *info)
{
      info->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
      info->count = 1;
      info->value.integer.min = 0;
      info->value.integer.max = 15;
      return 0;
}

static int snd_bt87x_capture_volume_get(struct snd_kcontrol *kcontrol,
                              struct snd_ctl_elem_value *value)
{
      struct snd_bt87x *chip = snd_kcontrol_chip(kcontrol);

      value->value.integer.value[0] = (chip->reg_control & CTL_A_GAIN_MASK) >> CTL_A_GAIN_SHIFT;
      return 0;
}

static int snd_bt87x_capture_volume_put(struct snd_kcontrol *kcontrol,
                              struct snd_ctl_elem_value *value)
{
      struct snd_bt87x *chip = snd_kcontrol_chip(kcontrol);
      u32 old_control;
      int changed;

      spin_lock_irq(&chip->reg_lock);
      old_control = chip->reg_control;
      chip->reg_control = (chip->reg_control & ~CTL_A_GAIN_MASK)
            | (value->value.integer.value[0] << CTL_A_GAIN_SHIFT);
      snd_bt87x_writel(chip, REG_GPIO_DMA_CTL, chip->reg_control);
      changed = old_control != chip->reg_control;
      spin_unlock_irq(&chip->reg_lock);
      return changed;
}

static struct snd_kcontrol_new snd_bt87x_capture_volume = {
      .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
      .name = "Capture Volume",
      .info = snd_bt87x_capture_volume_info,
      .get = snd_bt87x_capture_volume_get,
      .put = snd_bt87x_capture_volume_put,
};

#define snd_bt87x_capture_boost_info      snd_ctl_boolean_mono_info

static int snd_bt87x_capture_boost_get(struct snd_kcontrol *kcontrol,
                               struct snd_ctl_elem_value *value)
{
      struct snd_bt87x *chip = snd_kcontrol_chip(kcontrol);

      value->value.integer.value[0] = !! (chip->reg_control & CTL_A_G2X);
      return 0;
}

static int snd_bt87x_capture_boost_put(struct snd_kcontrol *kcontrol,
                               struct snd_ctl_elem_value *value)
{
      struct snd_bt87x *chip = snd_kcontrol_chip(kcontrol);
      u32 old_control;
      int changed;

      spin_lock_irq(&chip->reg_lock);
      old_control = chip->reg_control;
      chip->reg_control = (chip->reg_control & ~CTL_A_G2X)
            | (value->value.integer.value[0] ? CTL_A_G2X : 0);
      snd_bt87x_writel(chip, REG_GPIO_DMA_CTL, chip->reg_control);
      changed = chip->reg_control != old_control;
      spin_unlock_irq(&chip->reg_lock);
      return changed;
}

static struct snd_kcontrol_new snd_bt87x_capture_boost = {
      .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
      .name = "Capture Boost",
      .info = snd_bt87x_capture_boost_info,
      .get = snd_bt87x_capture_boost_get,
      .put = snd_bt87x_capture_boost_put,
};

static int snd_bt87x_capture_source_info(struct snd_kcontrol *kcontrol,
                               struct snd_ctl_elem_info *info)
{
      static char *texts[3] = {"TV Tuner", "FM", "Mic/Line"};

      info->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
      info->count = 1;
      info->value.enumerated.items = 3;
      if (info->value.enumerated.item > 2)
            info->value.enumerated.item = 2;
      strcpy(info->value.enumerated.name, texts[info->value.enumerated.item]);
      return 0;
}

static int snd_bt87x_capture_source_get(struct snd_kcontrol *kcontrol,
                              struct snd_ctl_elem_value *value)
{
      struct snd_bt87x *chip = snd_kcontrol_chip(kcontrol);

      value->value.enumerated.item[0] = (chip->reg_control & CTL_A_SEL_MASK) >> CTL_A_SEL_SHIFT;
      return 0;
}

static int snd_bt87x_capture_source_put(struct snd_kcontrol *kcontrol,
                              struct snd_ctl_elem_value *value)
{
      struct snd_bt87x *chip = snd_kcontrol_chip(kcontrol);
      u32 old_control;
      int changed;

      spin_lock_irq(&chip->reg_lock);
      old_control = chip->reg_control;
      chip->reg_control = (chip->reg_control & ~CTL_A_SEL_MASK)
            | (value->value.enumerated.item[0] << CTL_A_SEL_SHIFT);
      snd_bt87x_writel(chip, REG_GPIO_DMA_CTL, chip->reg_control);
      changed = chip->reg_control != old_control;
      spin_unlock_irq(&chip->reg_lock);
      return changed;
}

static struct snd_kcontrol_new snd_bt87x_capture_source = {
      .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
      .name = "Capture Source",
      .info = snd_bt87x_capture_source_info,
      .get = snd_bt87x_capture_source_get,
      .put = snd_bt87x_capture_source_put,
};

static int snd_bt87x_free(struct snd_bt87x *chip)
{
      if (chip->mmio) {
            snd_bt87x_stop(chip);
            if (chip->irq >= 0)
                  synchronize_irq(chip->irq);

            iounmap(chip->mmio);
      }
      if (chip->irq >= 0)
            free_irq(chip->irq, chip);
      pci_release_regions(chip->pci);
      pci_disable_device(chip->pci);
      kfree(chip);
      return 0;
}

static int snd_bt87x_dev_free(struct snd_device *device)
{
      struct snd_bt87x *chip = device->device_data;
      return snd_bt87x_free(chip);
}

static int __devinit snd_bt87x_pcm(struct snd_bt87x *chip, int device, char *name)
{
      int err;
      struct snd_pcm *pcm;

      err = snd_pcm_new(chip->card, name, device, 0, 1, &pcm);
      if (err < 0)
            return err;
      pcm->private_data = chip;
      strcpy(pcm->name, name);
      snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &snd_bt87x_pcm_ops);
      return snd_pcm_lib_preallocate_pages_for_all(pcm,
                                         SNDRV_DMA_TYPE_DEV_SG,
                                         snd_dma_pci_data(chip->pci),
                                          128 * 1024,
                                          ALIGN(255 * 4092, 1024));
}

static int __devinit snd_bt87x_create(struct snd_card *card,
                              struct pci_dev *pci,
                              struct snd_bt87x **rchip)
{
      struct snd_bt87x *chip;
      int err;
      static struct snd_device_ops ops = {
            .dev_free = snd_bt87x_dev_free
      };

      *rchip = NULL;

      err = pci_enable_device(pci);
      if (err < 0)
            return err;

      chip = kzalloc(sizeof(*chip), GFP_KERNEL);
      if (!chip) {
            pci_disable_device(pci);
            return -ENOMEM;
      }
      chip->card = card;
      chip->pci = pci;
      chip->irq = -1;
      spin_lock_init(&chip->reg_lock);

      if ((err = pci_request_regions(pci, "Bt87x audio")) < 0) {
            kfree(chip);
            pci_disable_device(pci);
            return err;
      }
      chip->mmio = ioremap_nocache(pci_resource_start(pci, 0),
                             pci_resource_len(pci, 0));
      if (!chip->mmio) {
            snd_printk(KERN_ERR "cannot remap io memory\n");
            err = -ENOMEM;
            goto fail;
      }

      chip->reg_control = CTL_A_PWRDN | CTL_DA_ES2 |
                      CTL_PKTP_16 | (15 << CTL_DA_SDR_SHIFT);
      chip->interrupt_mask = MY_INTERRUPTS;
      snd_bt87x_writel(chip, REG_GPIO_DMA_CTL, chip->reg_control);
      snd_bt87x_writel(chip, REG_INT_MASK, 0);
      snd_bt87x_writel(chip, REG_INT_STAT, MY_INTERRUPTS);

      err = request_irq(pci->irq, snd_bt87x_interrupt, IRQF_SHARED,
                    "Bt87x audio", chip);
      if (err < 0) {
            snd_printk(KERN_ERR "cannot grab irq %d\n", pci->irq);
            goto fail;
      }
      chip->irq = pci->irq;
      pci_set_master(pci);
      synchronize_irq(chip->irq);

      err = snd_device_new(card, SNDRV_DEV_LOWLEVEL, chip, &ops);
      if (err < 0)
            goto fail;

      snd_card_set_dev(card, &pci->dev);
      *rchip = chip;
      return 0;

fail:
      snd_bt87x_free(chip);
      return err;
}

#define BT_DEVICE(chip, subvend, subdev, id) \
      { .vendor = PCI_VENDOR_ID_BROOKTREE, \
        .device = chip, \
        .subvendor = subvend, .subdevice = subdev, \
        .driver_data = SND_BT87X_BOARD_ ## id }
/* driver_data is the card id for that device */

static struct pci_device_id snd_bt87x_ids[] = {
      /* Hauppauge WinTV series */
      BT_DEVICE(PCI_DEVICE_ID_BROOKTREE_878, 0x0070, 0x13eb, GENERIC),
      /* Hauppauge WinTV series */
      BT_DEVICE(PCI_DEVICE_ID_BROOKTREE_879, 0x0070, 0x13eb, GENERIC),
      /* Viewcast Osprey 200 */
      BT_DEVICE(PCI_DEVICE_ID_BROOKTREE_878, 0x0070, 0xff01, OSPREY2x0),
      /* Viewcast Osprey 440 (rate is configurable via gpio) */
      BT_DEVICE(PCI_DEVICE_ID_BROOKTREE_878, 0x0070, 0xff07, OSPREY440),
      /* ATI TV-Wonder */
      BT_DEVICE(PCI_DEVICE_ID_BROOKTREE_878, 0x1002, 0x0001, GENERIC),
      /* Leadtek Winfast tv 2000xp delux */
      BT_DEVICE(PCI_DEVICE_ID_BROOKTREE_878, 0x107d, 0x6606, GENERIC),
      /* Voodoo TV 200 */
      BT_DEVICE(PCI_DEVICE_ID_BROOKTREE_878, 0x121a, 0x3000, GENERIC),
      /* AVerMedia Studio No. 103, 203, ...? */
      BT_DEVICE(PCI_DEVICE_ID_BROOKTREE_878, 0x1461, 0x0003, AVPHONE98),
      /* Prolink PixelView PV-M4900 */
      BT_DEVICE(PCI_DEVICE_ID_BROOKTREE_878, 0x1554, 0x4011, GENERIC),
      /* Pinnacle  Studio PCTV rave */
      BT_DEVICE(PCI_DEVICE_ID_BROOKTREE_878, 0xbd11, 0x1200, GENERIC),
      { }
};
MODULE_DEVICE_TABLE(pci, snd_bt87x_ids);

/* cards known not to have audio
 * (DVB cards use the audio function to transfer MPEG data) */
static struct {
      unsigned short subvendor, subdevice;
} blacklist[] __devinitdata = {
      {0x0071, 0x0101}, /* Nebula Electronics DigiTV */
      {0x11bd, 0x001c}, /* Pinnacle PCTV Sat */
      {0x11bd, 0x0026}, /* Pinnacle PCTV SAT CI */
      {0x1461, 0x0761}, /* AVermedia AverTV DVB-T */
      {0x1461, 0x0771}, /* AVermedia DVB-T 771 */
      {0x1822, 0x0001}, /* Twinhan VisionPlus DVB-T */
      {0x18ac, 0xd500}, /* DVICO FusionHDTV 5 Lite */
      {0x18ac, 0xdb10}, /* DVICO FusionHDTV DVB-T Lite */
      {0x18ac, 0xdb11}, /* Ultraview DVB-T Lite */
      {0x270f, 0xfc00}, /* Chaintech Digitop DST-1000 DVB-S */
      {0x7063, 0x2000}, /* pcHDTV HD-2000 TV */
};

static struct pci_driver driver;

/* return the id of the card, or a negative value if it's blacklisted */
static int __devinit snd_bt87x_detect_card(struct pci_dev *pci)
{
      int i;
      const struct pci_device_id *supported;

      supported = pci_match_id(snd_bt87x_ids, pci);
      if (supported && supported->driver_data > 0)
            return supported->driver_data;

      for (i = 0; i < ARRAY_SIZE(blacklist); ++i)
            if (blacklist[i].subvendor == pci->subsystem_vendor &&
                blacklist[i].subdevice == pci->subsystem_device) {
                  snd_printdd(KERN_INFO "card %#04x-%#04x:%#04x has no audio\n",
                            pci->device, pci->subsystem_vendor, pci->subsystem_device);
                  return -EBUSY;
            }

      snd_printk(KERN_INFO "unknown card %#04x-%#04x:%#04x\n",
               pci->device, pci->subsystem_vendor, pci->subsystem_device);
      snd_printk(KERN_DEBUG "please mail id, board name, and, "
               "if it works, the correct digital_rate option to "
               "<alsa-devel@alsa-project.org>\n");
      return SND_BT87X_BOARD_UNKNOWN;
}

static int __devinit snd_bt87x_probe(struct pci_dev *pci,
                             const struct pci_device_id *pci_id)
{
      static int dev;
      struct snd_card *card;
      struct snd_bt87x *chip;
      int err;
      enum snd_bt87x_boardid boardid;

      if (!pci_id->driver_data) {
            err = snd_bt87x_detect_card(pci);
            if (err < 0)
                  return -ENODEV;
            boardid = err;
      } else
            boardid = pci_id->driver_data;

      if (dev >= SNDRV_CARDS)
            return -ENODEV;
      if (!enable[dev]) {
            ++dev;
            return -ENOENT;
      }

      card = snd_card_new(index[dev], id[dev], THIS_MODULE, 0);
      if (!card)
            return -ENOMEM;

      err = snd_bt87x_create(card, pci, &chip);
      if (err < 0)
            goto _error;

      memcpy(&chip->board, &snd_bt87x_boards[boardid], sizeof(chip->board));

      if (!chip->board.no_digital) {
            if (digital_rate[dev] > 0)
                  chip->board.dig_rate = digital_rate[dev];

            chip->reg_control |= chip->board.digital_fmt;

            err = snd_bt87x_pcm(chip, DEVICE_DIGITAL, "Bt87x Digital");
            if (err < 0)
                  goto _error;
      }
      if (!chip->board.no_analog) {
            err = snd_bt87x_pcm(chip, DEVICE_ANALOG, "Bt87x Analog");
            if (err < 0)
                  goto _error;
            err = snd_ctl_add(card, snd_ctl_new1(
                          &snd_bt87x_capture_volume, chip));
            if (err < 0)
                  goto _error;
            err = snd_ctl_add(card, snd_ctl_new1(
                          &snd_bt87x_capture_boost, chip));
            if (err < 0)
                  goto _error;
            err = snd_ctl_add(card, snd_ctl_new1(
                          &snd_bt87x_capture_source, chip));
            if (err < 0)
                  goto _error;
      }
      snd_printk(KERN_INFO "bt87x%d: Using board %d, %sanalog, %sdigital "
               "(rate %d Hz)\n", dev, boardid,
               chip->board.no_analog ? "no " : "",
               chip->board.no_digital ? "no " : "", chip->board.dig_rate);

      strcpy(card->driver, "Bt87x");
      sprintf(card->shortname, "Brooktree Bt%x", pci->device);
      sprintf(card->longname, "%s at %#llx, irq %i",
            card->shortname, (unsigned long long)pci_resource_start(pci, 0),
            chip->irq);
      strcpy(card->mixername, "Bt87x");

      err = snd_card_register(card);
      if (err < 0)
            goto _error;

      pci_set_drvdata(pci, card);
      ++dev;
      return 0;

_error:
      snd_card_free(card);
      return err;
}

static void __devexit snd_bt87x_remove(struct pci_dev *pci)
{
      snd_card_free(pci_get_drvdata(pci));
      pci_set_drvdata(pci, NULL);
}

/* default entries for all Bt87x cards - it's not exported */
/* driver_data is set to 0 to call detection */
static struct pci_device_id snd_bt87x_default_ids[] __devinitdata = {
      BT_DEVICE(PCI_DEVICE_ID_BROOKTREE_878, PCI_ANY_ID, PCI_ANY_ID, UNKNOWN),
      BT_DEVICE(PCI_DEVICE_ID_BROOKTREE_879, PCI_ANY_ID, PCI_ANY_ID, UNKNOWN),
      { }
};

static struct pci_driver driver = {
      .name = "Bt87x",
      .id_table = snd_bt87x_ids,
      .probe = snd_bt87x_probe,
      .remove = __devexit_p(snd_bt87x_remove),
};

static int __init alsa_card_bt87x_init(void)
{
      if (load_all)
            driver.id_table = snd_bt87x_default_ids;
      return pci_register_driver(&driver);
}

static void __exit alsa_card_bt87x_exit(void)
{
      pci_unregister_driver(&driver);
}

module_init(alsa_card_bt87x_init)
module_exit(alsa_card_bt87x_exit)

Generated by  Doxygen 1.6.0   Back to index