Logo Search packages:      
Sourcecode: alsa-driver version File versions

sis7019.c

/*
 *  Driver for SiS7019 Audio Accelerator
 *
 *  Copyright (C) 2004-2007, David Dillow
 *  Written by David Dillow <dave@thedillows.org>
 *  Inspired by the Trident 4D-WaveDX/NX driver.
 *
 *  All rights reserved.
 *
 *  This program is free software; you can redistribute it and/or modify
 *  it under the terms of the GNU General Public License as published by
 *  the Free Software Foundation, version 2.
 *
 *  This program is distributed in the hope that it will be useful,
 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *  GNU General Public License for more details.
 *
 *  You should have received a copy of the GNU General Public License
 *  along with this program; if not, write to the Free Software
 *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
 */

#include <linux/init.h>
#include <linux/pci.h>
#include <linux/time.h>
#include <linux/moduleparam.h>
#include <linux/interrupt.h>
#include <linux/delay.h>
#include <sound/core.h>
#include <sound/ac97_codec.h>
#include <sound/initval.h>
#include "sis7019.h"

MODULE_AUTHOR("David Dillow <dave@thedillows.org>");
MODULE_DESCRIPTION("SiS7019");
MODULE_LICENSE("GPL");
MODULE_SUPPORTED_DEVICE("{{SiS,SiS7019 Audio Accelerator}}");

static int index = SNDRV_DEFAULT_IDX1;    /* Index 0-MAX */
static char *id = SNDRV_DEFAULT_STR1;     /* ID for this card */
static int enable = 1;

module_param(index, int, 0444);
MODULE_PARM_DESC(index, "Index value for SiS7019 Audio Accelerator.");
module_param(id, charp, 0444);
MODULE_PARM_DESC(id, "ID string for SiS7019 Audio Accelerator.");
module_param(enable, bool, 0444);
MODULE_PARM_DESC(enable, "Enable SiS7019 Audio Accelerator.");

static struct pci_device_id snd_sis7019_ids[] = {
      { PCI_DEVICE(PCI_VENDOR_ID_SI, 0x7019) },
      { 0, }
};

MODULE_DEVICE_TABLE(pci, snd_sis7019_ids);

/* There are three timing modes for the voices.
 *
 * For both playback and capture, when the buffer is one or two periods long,
 * we use the hardware's built-in Mid-Loop Interrupt and End-Loop Interrupt
 * to let us know when the periods have ended.
 *
 * When performing playback with more than two periods per buffer, we set
 * the "Stop Sample Offset" and tell the hardware to interrupt us when we
 * reach it. We then update the offset and continue on until we are
 * interrupted for the next period.
 *
 * Capture channels do not have a SSO, so we allocate a playback channel to
 * use as a timer for the capture periods. We use the SSO on the playback
 * channel to clock out virtual periods, and adjust the virtual period length
 * to maintain synchronization. This algorithm came from the Trident driver.
 *
 * FIXME: It'd be nice to make use of some of the synth features in the
 * hardware, but a woeful lack of documentation is a significant roadblock.
 */
struct voice {
      u16 flags;
#define     VOICE_IN_USE            1
#define     VOICE_CAPTURE           2
#define     VOICE_SSO_TIMING  4
#define     VOICE_SYNC_TIMING 8
      u16 sync_cso;
      u16 period_size;
      u16 buffer_size;
      u16 sync_period_size;
      u16 sync_buffer_size;
      u32 sso;
      u32 vperiod;
      struct snd_pcm_substream *substream;
      struct voice *timing;
      void __iomem *ctrl_base;
      void __iomem *wave_base;
      void __iomem *sync_base;
      int num;
};

/* We need four pages to store our wave parameters during a suspend. If
 * we're not doing power management, we still need to allocate a page
 * for the silence buffer.
 */
#ifdef CONFIG_PM
#define SIS_SUSPEND_PAGES     4
#else
#define SIS_SUSPEND_PAGES     1
#endif

struct sis7019 {
      unsigned long ioport;
      void __iomem *ioaddr;
      int irq;
      int codecs_present;

      struct pci_dev *pci;
      struct snd_pcm *pcm;
      struct snd_card *card;
      struct snd_ac97 *ac97[3];

      /* Protect against more than one thread hitting the AC97
       * registers (in a more polite manner than pounding the hardware
       * semaphore)
       */
      struct mutex ac97_mutex;

      /* voice_lock protects allocation/freeing of the voice descriptions
       */
      spinlock_t voice_lock;

      struct voice voices[64];
      struct voice capture_voice;

      /* Allocate pages to store the internal wave state during
       * suspends. When we're operating, this can be used as a silence
       * buffer for a timing channel.
       */
      void *suspend_state[SIS_SUSPEND_PAGES];

      int silence_users;
      dma_addr_t silence_dma_addr;
};

#define SIS_PRIMARY_CODEC_PRESENT   0x0001
#define SIS_SECONDARY_CODEC_PRESENT 0x0002
#define SIS_TERTIARY_CODEC_PRESENT  0x0004

/* The HW offset parameters (Loop End, Stop Sample, End Sample) have a
 * documented range of 8-0xfff8 samples. Given that they are 0-based,
 * that places our period/buffer range at 9-0xfff9 samples. That makes the
 * max buffer size 0xfff9 samples * 2 channels * 2 bytes per sample, and
 * max samples / min samples gives us the max periods in a buffer.
 *
 * We'll add a constraint upon open that limits the period and buffer sample
 * size to values that are legal for the hardware.
 */
static struct snd_pcm_hardware sis_playback_hw_info = {
      .info = (SNDRV_PCM_INFO_MMAP |
             SNDRV_PCM_INFO_MMAP_VALID |
             SNDRV_PCM_INFO_INTERLEAVED |
             SNDRV_PCM_INFO_BLOCK_TRANSFER |
             SNDRV_PCM_INFO_SYNC_START |
             SNDRV_PCM_INFO_RESUME),
      .formats = (SNDRV_PCM_FMTBIT_S8 | SNDRV_PCM_FMTBIT_U8 |
                SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_U16_LE),
      .rates = SNDRV_PCM_RATE_8000_48000 | SNDRV_PCM_RATE_CONTINUOUS,
      .rate_min = 4000,
      .rate_max = 48000,
      .channels_min = 1,
      .channels_max = 2,
      .buffer_bytes_max = (0xfff9 * 4),
      .period_bytes_min = 9,
      .period_bytes_max = (0xfff9 * 4),
      .periods_min = 1,
      .periods_max = (0xfff9 / 9),
};

static struct snd_pcm_hardware sis_capture_hw_info = {
      .info = (SNDRV_PCM_INFO_MMAP |
             SNDRV_PCM_INFO_MMAP_VALID |
             SNDRV_PCM_INFO_INTERLEAVED |
             SNDRV_PCM_INFO_BLOCK_TRANSFER |
             SNDRV_PCM_INFO_SYNC_START |
             SNDRV_PCM_INFO_RESUME),
      .formats = (SNDRV_PCM_FMTBIT_S8 | SNDRV_PCM_FMTBIT_U8 |
                SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_U16_LE),
      .rates = SNDRV_PCM_RATE_48000,
      .rate_min = 4000,
      .rate_max = 48000,
      .channels_min = 1,
      .channels_max = 2,
      .buffer_bytes_max = (0xfff9 * 4),
      .period_bytes_min = 9,
      .period_bytes_max = (0xfff9 * 4),
      .periods_min = 1,
      .periods_max = (0xfff9 / 9),
};

static void sis_update_sso(struct voice *voice, u16 period)
{
      void __iomem *base = voice->ctrl_base;

      voice->sso += period;
      if (voice->sso >= voice->buffer_size)
            voice->sso -= voice->buffer_size;

      /* Enforce the documented hardware minimum offset */
      if (voice->sso < 8)
            voice->sso = 8;

      /* The SSO is in the upper 16 bits of the register. */
      writew(voice->sso & 0xffff, base + SIS_PLAY_DMA_SSO_ESO + 2);
}

static void sis_update_voice(struct voice *voice)
{
      if (voice->flags & VOICE_SSO_TIMING) {
            sis_update_sso(voice, voice->period_size);
      } else if (voice->flags & VOICE_SYNC_TIMING) {
            int sync;

            /* If we've not hit the end of the virtual period, update
             * our records and keep going.
             */
            if (voice->vperiod > voice->period_size) {
                  voice->vperiod -= voice->period_size;
                  if (voice->vperiod < voice->period_size)
                        sis_update_sso(voice, voice->vperiod);
                  else
                        sis_update_sso(voice, voice->period_size);
                  return;
            }

            /* Calculate our relative offset between the target and
             * the actual CSO value. Since we're operating in a loop,
             * if the value is more than half way around, we can
             * consider ourselves wrapped.
             */
            sync = voice->sync_cso;
            sync -= readw(voice->sync_base + SIS_CAPTURE_DMA_FORMAT_CSO);
            if (sync > (voice->sync_buffer_size / 2))
                  sync -= voice->sync_buffer_size;

            /* If sync is positive, then we interrupted too early, and
             * we'll need to come back in a few samples and try again.
             * There's a minimum wait, as it takes some time for the DMA
             * engine to startup, etc...
             */
            if (sync > 0) {
                  if (sync < 16)
                        sync = 16;
                  sis_update_sso(voice, sync);
                  return;
            }

            /* Ok, we interrupted right on time, or (hopefully) just
             * a bit late. We'll adjst our next waiting period based
             * on how close we got.
             *
             * We need to stay just behind the actual channel to ensure
             * it really is past a period when we get our interrupt --
             * otherwise we'll fall into the early code above and have
             * a minimum wait time, which makes us quite late here,
             * eating into the user's time to refresh the buffer, esp.
             * if using small periods.
             *
             * If we're less than 9 samples behind, we're on target.
             */
            if (sync > -9)
                  voice->vperiod = voice->sync_period_size + 1;
            else
                  voice->vperiod = voice->sync_period_size - 4;

            if (voice->vperiod < voice->buffer_size) {
                  sis_update_sso(voice, voice->vperiod);
                  voice->vperiod = 0;
            } else
                  sis_update_sso(voice, voice->period_size);

            sync = voice->sync_cso + voice->sync_period_size;
            if (sync >= voice->sync_buffer_size)
                  sync -= voice->sync_buffer_size;
            voice->sync_cso = sync;
      }

      snd_pcm_period_elapsed(voice->substream);
}

static void sis_voice_irq(u32 status, struct voice *voice)
{
      int bit;

      while (status) {
            bit = __ffs(status);
            status >>= bit + 1;
            voice += bit;
            sis_update_voice(voice);
            voice++;
      }
}

static irqreturn_t sis_interrupt(int irq, void *dev)
{
      struct sis7019 *sis = dev;
      unsigned long io = sis->ioport;
      struct voice *voice;
      u32 intr, status;

      /* We only use the DMA interrupts, and we don't enable any other
       * source of interrupts. But, it is possible to see an interupt
       * status that didn't actually interrupt us, so eliminate anything
       * we're not expecting to avoid falsely claiming an IRQ, and an
       * ensuing endless loop.
       */
      intr = inl(io + SIS_GISR);
      intr &= SIS_GISR_AUDIO_PLAY_DMA_IRQ_STATUS |
            SIS_GISR_AUDIO_RECORD_DMA_IRQ_STATUS;
      if (!intr)
            return IRQ_NONE;

      do {
            status = inl(io + SIS_PISR_A);
            if (status) {
                  sis_voice_irq(status, sis->voices);
                  outl(status, io + SIS_PISR_A);
            }

            status = inl(io + SIS_PISR_B);
            if (status) {
                  sis_voice_irq(status, &sis->voices[32]);
                  outl(status, io + SIS_PISR_B);
            }

            status = inl(io + SIS_RISR);
            if (status) {
                  voice = &sis->capture_voice;
                  if (!voice->timing)
                        snd_pcm_period_elapsed(voice->substream);

                  outl(status, io + SIS_RISR);
            }

            outl(intr, io + SIS_GISR);
            intr = inl(io + SIS_GISR);
            intr &= SIS_GISR_AUDIO_PLAY_DMA_IRQ_STATUS |
                  SIS_GISR_AUDIO_RECORD_DMA_IRQ_STATUS;
      } while (intr);

      return IRQ_HANDLED;
}

static u32 sis_rate_to_delta(unsigned int rate)
{
      u32 delta;

      /* This was copied from the trident driver, but it seems its gotten
       * around a bit... nevertheless, it works well.
       *
       * We special case 44100 and 8000 since rounding with the equation
       * does not give us an accurate enough value. For 11025 and 22050
       * the equation gives us the best answer. All other frequencies will
       * also use the equation. JDW
       */
      if (rate == 44100)
            delta = 0xeb3;
      else if (rate == 8000)
            delta = 0x2ab;
      else if (rate == 48000)
            delta = 0x1000;
      else
            delta = (((rate << 12) + 24000) / 48000) & 0x0000ffff;
      return delta;
}

static void __sis_map_silence(struct sis7019 *sis)
{
      /* Helper function: must hold sis->voice_lock on entry */
      if (!sis->silence_users)
            sis->silence_dma_addr = pci_map_single(sis->pci,
                                    sis->suspend_state[0],
                                    4096, PCI_DMA_TODEVICE);
      sis->silence_users++;
}

static void __sis_unmap_silence(struct sis7019 *sis)
{
      /* Helper function: must hold sis->voice_lock on entry */
      sis->silence_users--;
      if (!sis->silence_users)
            pci_unmap_single(sis->pci, sis->silence_dma_addr, 4096,
                              PCI_DMA_TODEVICE);
}

static void sis_free_voice(struct sis7019 *sis, struct voice *voice)
{
      unsigned long flags;

      spin_lock_irqsave(&sis->voice_lock, flags);
      if (voice->timing) {
            __sis_unmap_silence(sis);
            voice->timing->flags &= ~(VOICE_IN_USE | VOICE_SSO_TIMING |
                                    VOICE_SYNC_TIMING);
            voice->timing = NULL;
      }
      voice->flags &= ~(VOICE_IN_USE | VOICE_SSO_TIMING | VOICE_SYNC_TIMING);
      spin_unlock_irqrestore(&sis->voice_lock, flags);
}

static struct voice *__sis_alloc_playback_voice(struct sis7019 *sis)
{
      /* Must hold the voice_lock on entry */
      struct voice *voice;
      int i;

      for (i = 0; i < 64; i++) {
            voice = &sis->voices[i];
            if (voice->flags & VOICE_IN_USE)
                  continue;
            voice->flags |= VOICE_IN_USE;
            goto found_one;
      }
      voice = NULL;

found_one:
      return voice;
}

static struct voice *sis_alloc_playback_voice(struct sis7019 *sis)
{
      struct voice *voice;
      unsigned long flags;

      spin_lock_irqsave(&sis->voice_lock, flags);
      voice = __sis_alloc_playback_voice(sis);
      spin_unlock_irqrestore(&sis->voice_lock, flags);

      return voice;
}

static int sis_alloc_timing_voice(struct snd_pcm_substream *substream,
                              struct snd_pcm_hw_params *hw_params)
{
      struct sis7019 *sis = snd_pcm_substream_chip(substream);
      struct snd_pcm_runtime *runtime = substream->runtime;
      struct voice *voice = runtime->private_data;
      unsigned int period_size, buffer_size;
      unsigned long flags;
      int needed;

      /* If there are one or two periods per buffer, we don't need a
       * timing voice, as we can use the capture channel's interrupts
       * to clock out the periods.
       */
      period_size = params_period_size(hw_params);
      buffer_size = params_buffer_size(hw_params);
      needed = (period_size != buffer_size &&
                  period_size != (buffer_size / 2));

      if (needed && !voice->timing) {
            spin_lock_irqsave(&sis->voice_lock, flags);
            voice->timing = __sis_alloc_playback_voice(sis);
            if (voice->timing)
                  __sis_map_silence(sis);
            spin_unlock_irqrestore(&sis->voice_lock, flags);
            if (!voice->timing)
                  return -ENOMEM;
            voice->timing->substream = substream;
      } else if (!needed && voice->timing) {
            sis_free_voice(sis, voice);
            voice->timing = NULL;
      }

      return 0;
}

static int sis_playback_open(struct snd_pcm_substream *substream)
{
      struct sis7019 *sis = snd_pcm_substream_chip(substream);
      struct snd_pcm_runtime *runtime = substream->runtime;
      struct voice *voice;

      voice = sis_alloc_playback_voice(sis);
      if (!voice)
            return -EAGAIN;

      voice->substream = substream;
      runtime->private_data = voice;
      runtime->hw = sis_playback_hw_info;
      snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_PERIOD_SIZE,
                                    9, 0xfff9);
      snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE,
                                    9, 0xfff9);
      snd_pcm_set_sync(substream);
      return 0;
}

static int sis_substream_close(struct snd_pcm_substream *substream)
{
      struct sis7019 *sis = snd_pcm_substream_chip(substream);
      struct snd_pcm_runtime *runtime = substream->runtime;
      struct voice *voice = runtime->private_data;

      sis_free_voice(sis, voice);
      return 0;
}

static int sis_playback_hw_params(struct snd_pcm_substream *substream,
                              struct snd_pcm_hw_params *hw_params)
{
      return snd_pcm_lib_malloc_pages(substream,
                              params_buffer_bytes(hw_params));
}

static int sis_hw_free(struct snd_pcm_substream *substream)
{
      return snd_pcm_lib_free_pages(substream);
}

static int sis_pcm_playback_prepare(struct snd_pcm_substream *substream)
{
      struct snd_pcm_runtime *runtime = substream->runtime;
      struct voice *voice = runtime->private_data;
      void __iomem *ctrl_base = voice->ctrl_base;
      void __iomem *wave_base = voice->wave_base;
      u32 format, dma_addr, control, sso_eso, delta, reg;
      u16 leo;

      /* We rely on the PCM core to ensure that the parameters for this
       * substream do not change on us while we're programming the HW.
       */
      format = 0;
      if (snd_pcm_format_width(runtime->format) == 8)
            format |= SIS_PLAY_DMA_FORMAT_8BIT;
      if (!snd_pcm_format_signed(runtime->format))
            format |= SIS_PLAY_DMA_FORMAT_UNSIGNED;
      if (runtime->channels == 1)
            format |= SIS_PLAY_DMA_FORMAT_MONO;

      /* The baseline setup is for a single period per buffer, and
       * we add bells and whistles as needed from there.
       */
      dma_addr = runtime->dma_addr;
      leo = runtime->buffer_size - 1;
      control = leo | SIS_PLAY_DMA_LOOP | SIS_PLAY_DMA_INTR_AT_LEO;
      sso_eso = leo;

      if (runtime->period_size == (runtime->buffer_size / 2)) {
            control |= SIS_PLAY_DMA_INTR_AT_MLP;
      } else if (runtime->period_size != runtime->buffer_size) {
            voice->flags |= VOICE_SSO_TIMING;
            voice->sso = runtime->period_size - 1;
            voice->period_size = runtime->period_size;
            voice->buffer_size = runtime->buffer_size;

            control &= ~SIS_PLAY_DMA_INTR_AT_LEO;
            control |= SIS_PLAY_DMA_INTR_AT_SSO;
            sso_eso |= (runtime->period_size - 1) << 16;
      }

      delta = sis_rate_to_delta(runtime->rate);

      /* Ok, we're ready to go, set up the channel.
       */
      writel(format, ctrl_base + SIS_PLAY_DMA_FORMAT_CSO);
      writel(dma_addr, ctrl_base + SIS_PLAY_DMA_BASE);
      writel(control, ctrl_base + SIS_PLAY_DMA_CONTROL);
      writel(sso_eso, ctrl_base + SIS_PLAY_DMA_SSO_ESO);

      for (reg = 0; reg < SIS_WAVE_SIZE; reg += 4)
            writel(0, wave_base + reg);

      writel(SIS_WAVE_GENERAL_WAVE_VOLUME, wave_base + SIS_WAVE_GENERAL);
      writel(delta << 16, wave_base + SIS_WAVE_GENERAL_ARTICULATION);
      writel(SIS_WAVE_CHANNEL_CONTROL_FIRST_SAMPLE |
                  SIS_WAVE_CHANNEL_CONTROL_AMP_ENABLE |
                  SIS_WAVE_CHANNEL_CONTROL_INTERPOLATE_ENABLE,
                  wave_base + SIS_WAVE_CHANNEL_CONTROL);

      /* Force PCI writes to post. */
      readl(ctrl_base);

      return 0;
}

static int sis_pcm_trigger(struct snd_pcm_substream *substream, int cmd)
{
      struct sis7019 *sis = snd_pcm_substream_chip(substream);
      unsigned long io = sis->ioport;
      struct snd_pcm_substream *s;
      struct voice *voice;
      void *chip;
      int starting;
      u32 record = 0;
      u32 play[2] = { 0, 0 };

      /* No locks needed, as the PCM core will hold the locks on the
       * substreams, and the HW will only start/stop the indicated voices
       * without changing the state of the others.
       */
      switch (cmd) {
      case SNDRV_PCM_TRIGGER_START:
      case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
      case SNDRV_PCM_TRIGGER_RESUME:
            starting = 1;
            break;
      case SNDRV_PCM_TRIGGER_STOP:
      case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
      case SNDRV_PCM_TRIGGER_SUSPEND:
            starting = 0;
            break;
      default:
            return -EINVAL;
      }

      snd_pcm_group_for_each_entry(s, substream) {
            /* Make sure it is for us... */
            chip = snd_pcm_substream_chip(s);
            if (chip != sis)
                  continue;

            voice = s->runtime->private_data;
            if (voice->flags & VOICE_CAPTURE) {
                  record |= 1 << voice->num;
                  voice = voice->timing;
            }

            /* voice could be NULL if this a recording stream, and it
             * doesn't have an external timing channel.
             */
            if (voice)
                  play[voice->num / 32] |= 1 << (voice->num & 0x1f);

            snd_pcm_trigger_done(s, substream);
      }

      if (starting) {
            if (record)
                  outl(record, io + SIS_RECORD_START_REG);
            if (play[0])
                  outl(play[0], io + SIS_PLAY_START_A_REG);
            if (play[1])
                  outl(play[1], io + SIS_PLAY_START_B_REG);
      } else {
            if (record)
                  outl(record, io + SIS_RECORD_STOP_REG);
            if (play[0])
                  outl(play[0], io + SIS_PLAY_STOP_A_REG);
            if (play[1])
                  outl(play[1], io + SIS_PLAY_STOP_B_REG);
      }
      return 0;
}

static snd_pcm_uframes_t sis_pcm_pointer(struct snd_pcm_substream *substream)
{
      struct snd_pcm_runtime *runtime = substream->runtime;
      struct voice *voice = runtime->private_data;
      u32 cso;

      cso = readl(voice->ctrl_base + SIS_PLAY_DMA_FORMAT_CSO);
      cso &= 0xffff;
      return cso;
}

static int sis_capture_open(struct snd_pcm_substream *substream)
{
      struct sis7019 *sis = snd_pcm_substream_chip(substream);
      struct snd_pcm_runtime *runtime = substream->runtime;
      struct voice *voice = &sis->capture_voice;
      unsigned long flags;

      /* FIXME: The driver only supports recording from one channel
       * at the moment, but it could support more.
       */
      spin_lock_irqsave(&sis->voice_lock, flags);
      if (voice->flags & VOICE_IN_USE)
            voice = NULL;
      else
            voice->flags |= VOICE_IN_USE;
      spin_unlock_irqrestore(&sis->voice_lock, flags);

      if (!voice)
            return -EAGAIN;

      voice->substream = substream;
      runtime->private_data = voice;
      runtime->hw = sis_capture_hw_info;
      runtime->hw.rates = sis->ac97[0]->rates[AC97_RATES_ADC];
      snd_pcm_limit_hw_rates(runtime);
      snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_PERIOD_SIZE,
                                    9, 0xfff9);
      snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE,
                                    9, 0xfff9);
      snd_pcm_set_sync(substream);
      return 0;
}

static int sis_capture_hw_params(struct snd_pcm_substream *substream,
                              struct snd_pcm_hw_params *hw_params)
{
      struct sis7019 *sis = snd_pcm_substream_chip(substream);
      int rc;

      rc = snd_ac97_set_rate(sis->ac97[0], AC97_PCM_LR_ADC_RATE,
                                    params_rate(hw_params));
      if (rc)
            goto out;

      rc = snd_pcm_lib_malloc_pages(substream,
                              params_buffer_bytes(hw_params));
      if (rc < 0)
            goto out;

      rc = sis_alloc_timing_voice(substream, hw_params);

out:
      return rc;
}

static void sis_prepare_timing_voice(struct voice *voice,
                              struct snd_pcm_substream *substream)
{
      struct sis7019 *sis = snd_pcm_substream_chip(substream);
      struct snd_pcm_runtime *runtime = substream->runtime;
      struct voice *timing = voice->timing;
      void __iomem *play_base = timing->ctrl_base;
      void __iomem *wave_base = timing->wave_base;
      u16 buffer_size, period_size;
      u32 format, control, sso_eso, delta;
      u32 vperiod, sso, reg;

      /* Set our initial buffer and period as large as we can given a
       * single page of silence.
       */
      buffer_size = 4096 / runtime->channels;
      buffer_size /= snd_pcm_format_size(runtime->format, 1);
      period_size = buffer_size;

      /* Initially, we want to interrupt just a bit behind the end of
       * the period we're clocking out. 10 samples seems to give a good
       * delay.
       *
       * We want to spread our interrupts throughout the virtual period,
       * so that we don't end up with two interrupts back to back at the
       * end -- this helps minimize the effects of any jitter. Adjust our
       * clocking period size so that the last period is at least a fourth
       * of a full period.
       *
       * This is all moot if we don't need to use virtual periods.
       */
      vperiod = runtime->period_size + 10;
      if (vperiod > period_size) {
            u16 tail = vperiod % period_size;
            u16 quarter_period = period_size / 4;

            if (tail && tail < quarter_period) {
                  u16 loops = vperiod / period_size;

                  tail = quarter_period - tail;
                  tail += loops - 1;
                  tail /= loops;
                  period_size -= tail;
            }

            sso = period_size - 1;
      } else {
            /* The initial period will fit inside the buffer, so we
             * don't need to use virtual periods -- disable them.
             */
            period_size = runtime->period_size;
            sso = vperiod - 1;
            vperiod = 0;
      }

      /* The interrupt handler implements the timing syncronization, so
       * setup its state.
       */
      timing->flags |= VOICE_SYNC_TIMING;
      timing->sync_base = voice->ctrl_base;
      timing->sync_cso = runtime->period_size - 1;
      timing->sync_period_size = runtime->period_size;
      timing->sync_buffer_size = runtime->buffer_size;
      timing->period_size = period_size;
      timing->buffer_size = buffer_size;
      timing->sso = sso;
      timing->vperiod = vperiod;

      /* Using unsigned samples with the all-zero silence buffer
       * forces the output to the lower rail, killing playback.
       * So ignore unsigned vs signed -- it doesn't change the timing.
       */
      format = 0;
      if (snd_pcm_format_width(runtime->format) == 8)
            format = SIS_CAPTURE_DMA_FORMAT_8BIT;
      if (runtime->channels == 1)
            format |= SIS_CAPTURE_DMA_FORMAT_MONO;

      control = timing->buffer_size - 1;
      control |= SIS_PLAY_DMA_LOOP | SIS_PLAY_DMA_INTR_AT_SSO;
      sso_eso = timing->buffer_size - 1;
      sso_eso |= timing->sso << 16;

      delta = sis_rate_to_delta(runtime->rate);

      /* We've done the math, now configure the channel.
       */
      writel(format, play_base + SIS_PLAY_DMA_FORMAT_CSO);
      writel(sis->silence_dma_addr, play_base + SIS_PLAY_DMA_BASE);
      writel(control, play_base + SIS_PLAY_DMA_CONTROL);
      writel(sso_eso, play_base + SIS_PLAY_DMA_SSO_ESO);

      for (reg = 0; reg < SIS_WAVE_SIZE; reg += 4)
            writel(0, wave_base + reg);

      writel(SIS_WAVE_GENERAL_WAVE_VOLUME, wave_base + SIS_WAVE_GENERAL);
      writel(delta << 16, wave_base + SIS_WAVE_GENERAL_ARTICULATION);
      writel(SIS_WAVE_CHANNEL_CONTROL_FIRST_SAMPLE |
                  SIS_WAVE_CHANNEL_CONTROL_AMP_ENABLE |
                  SIS_WAVE_CHANNEL_CONTROL_INTERPOLATE_ENABLE,
                  wave_base + SIS_WAVE_CHANNEL_CONTROL);
}

static int sis_pcm_capture_prepare(struct snd_pcm_substream *substream)
{
      struct snd_pcm_runtime *runtime = substream->runtime;
      struct voice *voice = runtime->private_data;
      void __iomem *rec_base = voice->ctrl_base;
      u32 format, dma_addr, control;
      u16 leo;

      /* We rely on the PCM core to ensure that the parameters for this
       * substream do not change on us while we're programming the HW.
       */
      format = 0;
      if (snd_pcm_format_width(runtime->format) == 8)
            format = SIS_CAPTURE_DMA_FORMAT_8BIT;
      if (!snd_pcm_format_signed(runtime->format))
            format |= SIS_CAPTURE_DMA_FORMAT_UNSIGNED;
      if (runtime->channels == 1)
            format |= SIS_CAPTURE_DMA_FORMAT_MONO;

      dma_addr = runtime->dma_addr;
      leo = runtime->buffer_size - 1;
      control = leo | SIS_CAPTURE_DMA_LOOP;

      /* If we've got more than two periods per buffer, then we have
       * use a timing voice to clock out the periods. Otherwise, we can
       * use the capture channel's interrupts.
       */
      if (voice->timing) {
            sis_prepare_timing_voice(voice, substream);
      } else {
            control |= SIS_CAPTURE_DMA_INTR_AT_LEO;
            if (runtime->period_size != runtime->buffer_size)
                  control |= SIS_CAPTURE_DMA_INTR_AT_MLP;
      }

      writel(format, rec_base + SIS_CAPTURE_DMA_FORMAT_CSO);
      writel(dma_addr, rec_base + SIS_CAPTURE_DMA_BASE);
      writel(control, rec_base + SIS_CAPTURE_DMA_CONTROL);

      /* Force the writes to post. */
      readl(rec_base);

      return 0;
}

static struct snd_pcm_ops sis_playback_ops = {
      .open = sis_playback_open,
      .close = sis_substream_close,
      .ioctl = snd_pcm_lib_ioctl,
      .hw_params = sis_playback_hw_params,
      .hw_free = sis_hw_free,
      .prepare = sis_pcm_playback_prepare,
      .trigger = sis_pcm_trigger,
      .pointer = sis_pcm_pointer,
};

static struct snd_pcm_ops sis_capture_ops = {
      .open = sis_capture_open,
      .close = sis_substream_close,
      .ioctl = snd_pcm_lib_ioctl,
      .hw_params = sis_capture_hw_params,
      .hw_free = sis_hw_free,
      .prepare = sis_pcm_capture_prepare,
      .trigger = sis_pcm_trigger,
      .pointer = sis_pcm_pointer,
};

static int __devinit sis_pcm_create(struct sis7019 *sis)
{
      struct snd_pcm *pcm;
      int rc;

      /* We have 64 voices, and the driver currently records from
       * only one channel, though that could change in the future.
       */
      rc = snd_pcm_new(sis->card, "SiS7019", 0, 64, 1, &pcm);
      if (rc)
            return rc;

      pcm->private_data = sis;
      strcpy(pcm->name, "SiS7019");
      sis->pcm = pcm;

      snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &sis_playback_ops);
      snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &sis_capture_ops);

      /* Try to preallocate some memory, but it's not the end of the
       * world if this fails.
       */
      snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_DEV,
                        snd_dma_pci_data(sis->pci), 64*1024, 128*1024);

      return 0;
}

static unsigned short sis_ac97_rw(struct sis7019 *sis, int codec, u32 cmd)
{
      unsigned long io = sis->ioport;
      unsigned short val = 0xffff;
      u16 status;
      u16 rdy;
      int count;
      const static u16 codec_ready[3] = {
            SIS_AC97_STATUS_CODEC_READY,
            SIS_AC97_STATUS_CODEC2_READY,
            SIS_AC97_STATUS_CODEC3_READY,
      };

      rdy = codec_ready[codec];


      /* Get the AC97 semaphore -- software first, so we don't spin
       * pounding out IO reads on the hardware semaphore...
       */
      mutex_lock(&sis->ac97_mutex);

      count = 0xffff;
      while ((inw(io + SIS_AC97_SEMA) & SIS_AC97_SEMA_BUSY) && --count)
            udelay(1);

      if (!count)
            goto timeout;

      /* ... and wait for any outstanding commands to complete ...
       */
      count = 0xffff;
      do {
            status = inw(io + SIS_AC97_STATUS);
            if ((status & rdy) && !(status & SIS_AC97_STATUS_BUSY))
                  break;

            udelay(1);
      } while (--count);

      if (!count)
            goto timeout_sema;

      /* ... before sending our command and waiting for it to finish ...
       */
      outl(cmd, io + SIS_AC97_CMD);
      udelay(10);

      count = 0xffff;
      while ((inw(io + SIS_AC97_STATUS) & SIS_AC97_STATUS_BUSY) && --count)
            udelay(1);

      /* ... and reading the results (if any).
       */
      val = inl(io + SIS_AC97_CMD) >> 16;

timeout_sema:
      outl(SIS_AC97_SEMA_RELEASE, io + SIS_AC97_SEMA);
timeout:
      mutex_unlock(&sis->ac97_mutex);

      if (!count) {
            printk(KERN_ERR "sis7019: ac97 codec %d timeout cmd 0x%08x\n",
                              codec, cmd);
      }

      return val;
}

static void sis_ac97_write(struct snd_ac97 *ac97, unsigned short reg,
                        unsigned short val)
{
      const static u32 cmd[3] = {
            SIS_AC97_CMD_CODEC_WRITE,
            SIS_AC97_CMD_CODEC2_WRITE,
            SIS_AC97_CMD_CODEC3_WRITE,
      };
      sis_ac97_rw(ac97->private_data, ac97->num,
                  (val << 16) | (reg << 8) | cmd[ac97->num]);
}

static unsigned short sis_ac97_read(struct snd_ac97 *ac97, unsigned short reg)
{
      const static u32 cmd[3] = {
            SIS_AC97_CMD_CODEC_READ,
            SIS_AC97_CMD_CODEC2_READ,
            SIS_AC97_CMD_CODEC3_READ,
      };
      return sis_ac97_rw(ac97->private_data, ac97->num,
                              (reg << 8) | cmd[ac97->num]);
}

static int __devinit sis_mixer_create(struct sis7019 *sis)
{
      struct snd_ac97_bus *bus;
      struct snd_ac97_template ac97;
      static struct snd_ac97_bus_ops ops = {
            .write = sis_ac97_write,
            .read = sis_ac97_read,
      };
      int rc;

      memset(&ac97, 0, sizeof(ac97));
      ac97.private_data = sis;

      rc = snd_ac97_bus(sis->card, 0, &ops, NULL, &bus);
      if (!rc && sis->codecs_present & SIS_PRIMARY_CODEC_PRESENT)
            rc = snd_ac97_mixer(bus, &ac97, &sis->ac97[0]);
      ac97.num = 1;
      if (!rc && (sis->codecs_present & SIS_SECONDARY_CODEC_PRESENT))
            rc = snd_ac97_mixer(bus, &ac97, &sis->ac97[1]);
      ac97.num = 2;
      if (!rc && (sis->codecs_present & SIS_TERTIARY_CODEC_PRESENT))
            rc = snd_ac97_mixer(bus, &ac97, &sis->ac97[2]);

      /* If we return an error here, then snd_card_free() should
       * free up any ac97 codecs that got created, as well as the bus.
       */
      return rc;
}

static void sis_free_suspend(struct sis7019 *sis)
{
      int i;

      for (i = 0; i < SIS_SUSPEND_PAGES; i++)
            kfree(sis->suspend_state[i]);
}

static int sis_chip_free(struct sis7019 *sis)
{
      /* Reset the chip, and disable all interrputs.
       */
      outl(SIS_GCR_SOFTWARE_RESET, sis->ioport + SIS_GCR);
      udelay(10);
      outl(0, sis->ioport + SIS_GCR);
      outl(0, sis->ioport + SIS_GIER);

      /* Now, free everything we allocated.
       */
      if (sis->irq >= 0)
            free_irq(sis->irq, sis);

      if (sis->ioaddr)
            iounmap(sis->ioaddr);

      pci_release_regions(sis->pci);
      pci_disable_device(sis->pci);

      sis_free_suspend(sis);
      return 0;
}

static int sis_dev_free(struct snd_device *dev)
{
      struct sis7019 *sis = dev->device_data;
      return sis_chip_free(sis);
}

static int sis_chip_init(struct sis7019 *sis)
{
      unsigned long io = sis->ioport;
      void __iomem *ioaddr = sis->ioaddr;
      u16 status;
      int count;
      int i;

      /* Reset the audio controller
       */
      outl(SIS_GCR_SOFTWARE_RESET, io + SIS_GCR);
      udelay(10);
      outl(0, io + SIS_GCR);

      /* Get the AC-link semaphore, and reset the codecs
       */
      count = 0xffff;
      while ((inw(io + SIS_AC97_SEMA) & SIS_AC97_SEMA_BUSY) && --count)
            udelay(1);

      if (!count)
            return -EIO;

      outl(SIS_AC97_CMD_CODEC_COLD_RESET, io + SIS_AC97_CMD);
      udelay(10);

      count = 0xffff;
      while ((inw(io + SIS_AC97_STATUS) & SIS_AC97_STATUS_BUSY) && --count)
            udelay(1);

      /* Now that we've finished the reset, find out what's attached.
       */
      status = inl(io + SIS_AC97_STATUS);
      if (status & SIS_AC97_STATUS_CODEC_READY)
            sis->codecs_present |= SIS_PRIMARY_CODEC_PRESENT;
      if (status & SIS_AC97_STATUS_CODEC2_READY)
            sis->codecs_present |= SIS_SECONDARY_CODEC_PRESENT;
      if (status & SIS_AC97_STATUS_CODEC3_READY)
            sis->codecs_present |= SIS_TERTIARY_CODEC_PRESENT;

      /* All done, let go of the semaphore, and check for errors
       */
      outl(SIS_AC97_SEMA_RELEASE, io + SIS_AC97_SEMA);
      if (!sis->codecs_present || !count)
            return -EIO;

      /* Let the hardware know that the audio driver is alive,
       * and enable PCM slots on the AC-link for L/R playback (3 & 4) and
       * record channels. We're going to want to use Variable Rate Audio
       * for recording, to avoid needlessly resampling from 48kHZ.
       */
      outl(SIS_AC97_CONF_AUDIO_ALIVE, io + SIS_AC97_CONF);
      outl(SIS_AC97_CONF_AUDIO_ALIVE | SIS_AC97_CONF_PCM_LR_ENABLE |
            SIS_AC97_CONF_PCM_CAP_MIC_ENABLE |
            SIS_AC97_CONF_PCM_CAP_LR_ENABLE |
            SIS_AC97_CONF_CODEC_VRA_ENABLE, io + SIS_AC97_CONF);

      /* All AC97 PCM slots should be sourced from sub-mixer 0.
       */
      outl(0, io + SIS_AC97_PSR);

      /* There is only one valid DMA setup for a PCI environment.
       */
      outl(SIS_DMA_CSR_PCI_SETTINGS, io + SIS_DMA_CSR);

      /* Reset the syncronization groups for all of the channels
       * to be asyncronous. If we start doing SPDIF or 5.1 sound, etc.
       * we'll need to change how we handle these. Until then, we just
       * assign sub-mixer 0 to all playback channels, and avoid any
       * attenuation on the audio.
       */
      outl(0, io + SIS_PLAY_SYNC_GROUP_A);
      outl(0, io + SIS_PLAY_SYNC_GROUP_B);
      outl(0, io + SIS_PLAY_SYNC_GROUP_C);
      outl(0, io + SIS_PLAY_SYNC_GROUP_D);
      outl(0, io + SIS_MIXER_SYNC_GROUP);

      for (i = 0; i < 64; i++) {
            writel(i, SIS_MIXER_START_ADDR(ioaddr, i));
            writel(SIS_MIXER_RIGHT_NO_ATTEN | SIS_MIXER_LEFT_NO_ATTEN |
                        SIS_MIXER_DEST_0, SIS_MIXER_ADDR(ioaddr, i));
      }

      /* Don't attenuate any audio set for the wave amplifier.
       *
       * FIXME: Maximum attenuation is set for the music amp, which will
       * need to change if we start using the synth engine.
       */
      outl(0xffff0000, io + SIS_WEVCR);

      /* Ensure that the wave engine is in normal operating mode.
       */
      outl(0, io + SIS_WECCR);

      /* Go ahead and enable the DMA interrupts. They won't go live
       * until we start a channel.
       */
      outl(SIS_GIER_AUDIO_PLAY_DMA_IRQ_ENABLE |
            SIS_GIER_AUDIO_RECORD_DMA_IRQ_ENABLE, io + SIS_GIER);

      return 0;
}

#ifdef CONFIG_PM
static int sis_suspend(struct pci_dev *pci, pm_message_t state)
{
      struct snd_card *card = pci_get_drvdata(pci);
      struct sis7019 *sis = card->private_data;
      void __iomem *ioaddr = sis->ioaddr;
      int i;

      snd_power_change_state(card, SNDRV_CTL_POWER_D3hot);
      snd_pcm_suspend_all(sis->pcm);
      if (sis->codecs_present & SIS_PRIMARY_CODEC_PRESENT)
            snd_ac97_suspend(sis->ac97[0]);
      if (sis->codecs_present & SIS_SECONDARY_CODEC_PRESENT)
            snd_ac97_suspend(sis->ac97[1]);
      if (sis->codecs_present & SIS_TERTIARY_CODEC_PRESENT)
            snd_ac97_suspend(sis->ac97[2]);

      /* snd_pcm_suspend_all() stopped all channels, so we're quiescent.
       */
      if (sis->irq >= 0) {
            synchronize_irq(sis->irq);
            free_irq(sis->irq, sis);
            sis->irq = -1;
      }

      /* Save the internal state away
       */
      for (i = 0; i < 4; i++) {
            memcpy_fromio(sis->suspend_state[i], ioaddr, 4096);
            ioaddr += 4096;
      }

      pci_disable_device(pci);
      pci_save_state(pci);
      pci_set_power_state(pci, pci_choose_state(pci, state));
      return 0;
}

static int sis_resume(struct pci_dev *pci)
{
      struct snd_card *card = pci_get_drvdata(pci);
      struct sis7019 *sis = card->private_data;
      void __iomem *ioaddr = sis->ioaddr;
      int i;

      pci_set_power_state(pci, PCI_D0);
      pci_restore_state(pci);

      if (pci_enable_device(pci) < 0) {
            printk(KERN_ERR "sis7019: unable to re-enable device\n");
            goto error;
      }

      if (sis_chip_init(sis)) {
            printk(KERN_ERR "sis7019: unable to re-init controller\n");
            goto error;
      }

      if (request_irq(pci->irq, sis_interrupt, IRQF_DISABLED|IRQF_SHARED,
                        card->shortname, sis)) {
            printk(KERN_ERR "sis7019: unable to regain IRQ %d\n", pci->irq);
            goto error;
      }

      /* Restore saved state, then clear out the page we use for the
       * silence buffer.
       */
      for (i = 0; i < 4; i++) {
            memcpy_toio(ioaddr, sis->suspend_state[i], 4096);
            ioaddr += 4096;
      }

      memset(sis->suspend_state[0], 0, 4096);

      sis->irq = pci->irq;
      pci_set_master(pci);

      if (sis->codecs_present & SIS_PRIMARY_CODEC_PRESENT)
            snd_ac97_resume(sis->ac97[0]);
      if (sis->codecs_present & SIS_SECONDARY_CODEC_PRESENT)
            snd_ac97_resume(sis->ac97[1]);
      if (sis->codecs_present & SIS_TERTIARY_CODEC_PRESENT)
            snd_ac97_resume(sis->ac97[2]);

      snd_power_change_state(card, SNDRV_CTL_POWER_D0);
      return 0;

error:
      snd_card_disconnect(card);
      return -EIO;
}
#endif /* CONFIG_PM */

static int sis_alloc_suspend(struct sis7019 *sis)
{
      int i;

      /* We need 16K to store the internal wave engine state during a
       * suspend, but we don't need it to be contiguous, so play nice
       * with the memory system. We'll also use this area for a silence
       * buffer.
       */
      for (i = 0; i < SIS_SUSPEND_PAGES; i++) {
            sis->suspend_state[i] = kmalloc(4096, GFP_KERNEL);
            if (!sis->suspend_state[i])
                  return -ENOMEM;
      }
      memset(sis->suspend_state[0], 0, 4096);

      return 0;
}

static int __devinit sis_chip_create(struct snd_card *card,
                              struct pci_dev *pci)
{
      struct sis7019 *sis = card->private_data;
      struct voice *voice;
      static struct snd_device_ops ops = {
            .dev_free = sis_dev_free,
      };
      int rc;
      int i;

      rc = pci_enable_device(pci);
      if (rc)
            goto error_out;

      if (pci_set_dma_mask(pci, DMA_30BIT_MASK) < 0) {
            printk(KERN_ERR "sis7019: architecture does not support "
                              "30-bit PCI busmaster DMA");
            goto error_out_enabled;
      }

      memset(sis, 0, sizeof(*sis));
      mutex_init(&sis->ac97_mutex);
      spin_lock_init(&sis->voice_lock);
      sis->card = card;
      sis->pci = pci;
      sis->irq = -1;
      sis->ioport = pci_resource_start(pci, 0);

      rc = pci_request_regions(pci, "SiS7019");
      if (rc) {
            printk(KERN_ERR "sis7019: unable request regions\n");
            goto error_out_enabled;
      }

      rc = -EIO;
      sis->ioaddr = ioremap_nocache(pci_resource_start(pci, 1), 0x4000);
      if (!sis->ioaddr) {
            printk(KERN_ERR "sis7019: unable to remap MMIO, aborting\n");
            goto error_out_cleanup;
      }

      rc = sis_alloc_suspend(sis);
      if (rc < 0) {
            printk(KERN_ERR "sis7019: unable to allocate state storage\n");
            goto error_out_cleanup;
      }

      rc = sis_chip_init(sis);
      if (rc)
            goto error_out_cleanup;

      if (request_irq(pci->irq, sis_interrupt, IRQF_DISABLED|IRQF_SHARED,
                        card->shortname, sis)) {
            printk(KERN_ERR "unable to allocate irq %d\n", sis->irq);
            goto error_out_cleanup;
      }

      sis->irq = pci->irq;
      pci_set_master(pci);

      for (i = 0; i < 64; i++) {
            voice = &sis->voices[i];
            voice->num = i;
            voice->ctrl_base = SIS_PLAY_DMA_ADDR(sis->ioaddr, i);
            voice->wave_base = SIS_WAVE_ADDR(sis->ioaddr, i);
      }

      voice = &sis->capture_voice;
      voice->flags = VOICE_CAPTURE;
      voice->num = SIS_CAPTURE_CHAN_AC97_PCM_IN;
      voice->ctrl_base = SIS_CAPTURE_DMA_ADDR(sis->ioaddr, voice->num);

      rc = snd_device_new(card, SNDRV_DEV_LOWLEVEL, sis, &ops);
      if (rc)
            goto error_out_cleanup;

      snd_card_set_dev(card, &pci->dev);

      return 0;

error_out_cleanup:
      sis_chip_free(sis);

error_out_enabled:
      pci_disable_device(pci);

error_out:
      return rc;
}

static int __devinit snd_sis7019_probe(struct pci_dev *pci,
                              const struct pci_device_id *pci_id)
{
      struct snd_card *card;
      struct sis7019 *sis;
      int rc;

      rc = -ENOENT;
      if (!enable)
            goto error_out;

      rc = -ENOMEM;
      card = snd_card_new(index, id, THIS_MODULE, sizeof(*sis));
      if (!card)
            goto error_out;

      strcpy(card->driver, "SiS7019");
      strcpy(card->shortname, "SiS7019");
      rc = sis_chip_create(card, pci);
      if (rc)
            goto card_error_out;

      sis = card->private_data;

      rc = sis_mixer_create(sis);
      if (rc)
            goto card_error_out;

      rc = sis_pcm_create(sis);
      if (rc)
            goto card_error_out;

      snprintf(card->longname, sizeof(card->longname),
                  "%s Audio Accelerator with %s at 0x%lx, irq %d",
                  card->shortname, snd_ac97_get_short_name(sis->ac97[0]),
                  sis->ioport, sis->irq);

      rc = snd_card_register(card);
      if (rc)
            goto card_error_out;

      pci_set_drvdata(pci, card);
      return 0;

card_error_out:
      snd_card_free(card);

error_out:
      return rc;
}

static void __devexit snd_sis7019_remove(struct pci_dev *pci)
{
      snd_card_free(pci_get_drvdata(pci));
      pci_set_drvdata(pci, NULL);
}

static struct pci_driver sis7019_driver = {
      .name = "SiS7019",
      .id_table = snd_sis7019_ids,
      .probe = snd_sis7019_probe,
      .remove = __devexit_p(snd_sis7019_remove),

#ifdef CONFIG_PM
      .suspend = sis_suspend,
      .resume = sis_resume,
#endif
};

static int __init sis7019_init(void)
{
      return pci_register_driver(&sis7019_driver);
}

static void __exit sis7019_exit(void)
{
      pci_unregister_driver(&sis7019_driver);
}

module_init(sis7019_init);
module_exit(sis7019_exit);

Generated by  Doxygen 1.6.0   Back to index