Logo Search packages:      
Sourcecode: alsa-driver version File versions

cmipci.c

/*
 * Driver for C-Media CMI8338 and 8738 PCI soundcards.
 * Copyright (c) 2000 by Takashi Iwai <tiwai@suse.de>
 *
 *   This program is free software; you can redistribute it and/or modify
 *   it under the terms of the GNU General Public License as published by
 *   the Free Software Foundation; either version 2 of the License, or
 *   (at your option) any later version.
 *
 *   This program is distributed in the hope that it will be useful,
 *   but WITHOUT ANY WARRANTY; without even the implied warranty of
 *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *   GNU General Public License for more details.
 *
 *   You should have received a copy of the GNU General Public License
 *   along with this program; if not, write to the Free Software
 *   Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
 */
 
/* Does not work. Warning may block system in capture mode */
/* #define USE_VAR48KRATE */

#include <asm/io.h>
#include <linux/delay.h>
#include <linux/interrupt.h>
#include <linux/init.h>
#include <linux/pci.h>
#include <linux/slab.h>
#include <linux/gameport.h>
#include <linux/moduleparam.h>
#include <linux/mutex.h>
#include <sound/core.h>
#include <sound/info.h>
#include <sound/control.h>
#include <sound/pcm.h>
#include <sound/rawmidi.h>
#include <sound/mpu401.h>
#include <sound/opl3.h>
#include <sound/sb.h>
#include <sound/asoundef.h>
#include <sound/initval.h>

MODULE_AUTHOR("Takashi Iwai <tiwai@suse.de>");
MODULE_DESCRIPTION("C-Media CMI8x38 PCI");
MODULE_LICENSE("GPL");
MODULE_SUPPORTED_DEVICE("{{C-Media,CMI8738},"
            "{C-Media,CMI8738B},"
            "{C-Media,CMI8338A},"
            "{C-Media,CMI8338B}}");

#if defined(CONFIG_GAMEPORT) || (defined(MODULE) && defined(CONFIG_GAMEPORT_MODULE))
#define SUPPORT_JOYSTICK 1
#endif

static int index[SNDRV_CARDS] = SNDRV_DEFAULT_IDX;    /* Index 0-MAX */
static char *id[SNDRV_CARDS] = SNDRV_DEFAULT_STR;     /* ID for this card */
static int enable[SNDRV_CARDS] = SNDRV_DEFAULT_ENABLE_PNP;  /* Enable switches */
static long mpu_port[SNDRV_CARDS];
static long fm_port[SNDRV_CARDS] = {[0 ... (SNDRV_CARDS-1)]=1};
static int soft_ac3[SNDRV_CARDS] = {[0 ... (SNDRV_CARDS-1)]=1};
#ifdef SUPPORT_JOYSTICK
static int joystick_port[SNDRV_CARDS];
#endif

module_param_array(index, int, NULL, 0444);
MODULE_PARM_DESC(index, "Index value for C-Media PCI soundcard.");
module_param_array(id, charp, NULL, 0444);
MODULE_PARM_DESC(id, "ID string for C-Media PCI soundcard.");
module_param_array(enable, bool, NULL, 0444);
MODULE_PARM_DESC(enable, "Enable C-Media PCI soundcard.");
module_param_array(mpu_port, long, NULL, 0444);
MODULE_PARM_DESC(mpu_port, "MPU-401 port.");
module_param_array(fm_port, long, NULL, 0444);
MODULE_PARM_DESC(fm_port, "FM port.");
module_param_array(soft_ac3, bool, NULL, 0444);
MODULE_PARM_DESC(soft_ac3, "Sofware-conversion of raw SPDIF packets (model 033 only).");
#ifdef SUPPORT_JOYSTICK
module_param_array(joystick_port, int, NULL, 0444);
MODULE_PARM_DESC(joystick_port, "Joystick port address.");
#endif

/*
 * CM8x38 registers definition
 */

#define CM_REG_FUNCTRL0       0x00
#define CM_RST_CH1            0x00080000
#define CM_RST_CH0            0x00040000
#define CM_CHEN1        0x00020000  /* ch1: enable */
#define CM_CHEN0        0x00010000  /* ch0: enable */
#define CM_PAUSE1       0x00000008  /* ch1: pause */
#define CM_PAUSE0       0x00000004  /* ch0: pause */
#define CM_CHADC1       0x00000002  /* ch1, 0:playback, 1:record */
#define CM_CHADC0       0x00000001  /* ch0, 0:playback, 1:record */

#define CM_REG_FUNCTRL1       0x04
#define CM_DSFC_MASK          0x0000E000  /* channel 1 (DAC?) sampling frequency */
#define CM_DSFC_SHIFT         13
#define CM_ASFC_MASK          0x00001C00  /* channel 0 (ADC?) sampling frequency */
#define CM_ASFC_SHIFT         10
#define CM_SPDF_1       0x00000200  /* SPDIF IN/OUT at channel B */
#define CM_SPDF_0       0x00000100  /* SPDIF OUT only channel A */
#define CM_SPDFLOOP           0x00000080  /* ext. SPDIIF/IN -> OUT loopback */
#define CM_SPDO2DAC           0x00000040  /* SPDIF/OUT can be heard from internal DAC */
#define CM_INTRM        0x00000020  /* master control block (MCB) interrupt enabled */
#define CM_BREQ               0x00000010  /* bus master enabled */
#define CM_VOICE_EN           0x00000008  /* legacy voice (SB16,FM) */
#define CM_UART_EN            0x00000004  /* legacy UART */
#define CM_JYSTK_EN           0x00000002  /* legacy joystick */
#define CM_ZVPORT       0x00000001  /* ZVPORT */

#define CM_REG_CHFORMAT       0x08

#define CM_CHB3D5C            0x80000000  /* 5,6 channels */
#define CM_FMOFFSET2          0x40000000  /* initial FM PCM offset 2 when Fmute=1 */
#define CM_CHB3D        0x20000000  /* 4 channels */

#define CM_CHIP_MASK1         0x1f000000
#define CM_CHIP_037           0x01000000
#define CM_SETLAT48           0x00800000  /* set latency timer 48h */
#define CM_EDGEIRQ            0x00400000  /* emulated edge trigger legacy IRQ */
#define CM_SPD24SEL39         0x00200000  /* 24-bit spdif: model 039 */
#define CM_AC3EN1       0x00100000  /* enable AC3: model 037 */
#define CM_SPDIF_SELECT1      0x00080000  /* for model <= 037 ? */
#define CM_SPD24SEL           0x00020000  /* 24bit spdif: model 037 */
/* #define CM_SPDIF_INVERSE   0x00010000 */ /* ??? */

#define CM_ADCBITLEN_MASK     0x0000C000  
#define CM_ADCBITLEN_16       0x00000000
#define CM_ADCBITLEN_15       0x00004000
#define CM_ADCBITLEN_14       0x00008000
#define CM_ADCBITLEN_13       0x0000C000

#define CM_ADCDACLEN_MASK     0x00003000  /* model 037 */
#define CM_ADCDACLEN_060      0x00000000
#define CM_ADCDACLEN_066      0x00001000
#define CM_ADCDACLEN_130      0x00002000
#define CM_ADCDACLEN_280      0x00003000

#define CM_ADCDLEN_MASK       0x00003000  /* model 039 */
#define CM_ADCDLEN_ORIGINAL   0x00000000
#define CM_ADCDLEN_EXTRA      0x00001000
#define CM_ADCDLEN_24K        0x00002000
#define CM_ADCDLEN_WEIGHT     0x00003000

#define CM_CH1_SRATE_176K     0x00000800
#define CM_CH1_SRATE_96K      0x00000800  /* model 055? */
#define CM_CH1_SRATE_88K      0x00000400
#define CM_CH0_SRATE_176K     0x00000200
#define CM_CH0_SRATE_96K      0x00000200  /* model 055? */
#define CM_CH0_SRATE_88K      0x00000100
#define CM_CH0_SRATE_128K     0x00000300
#define CM_CH0_SRATE_MASK     0x00000300

#define CM_SPDIF_INVERSE2     0x00000080  /* model 055? */
#define CM_DBLSPDS            0x00000040  /* double SPDIF sample rate 88.2/96 */
#define CM_POLVALID           0x00000020  /* inverse SPDIF/IN valid bit */
#define CM_SPDLOCKED          0x00000010

#define CM_CH1FMT_MASK        0x0000000C  /* bit 3: 16 bits, bit 2: stereo */
#define CM_CH1FMT_SHIFT       2
#define CM_CH0FMT_MASK        0x00000003  /* bit 1: 16 bits, bit 0: stereo */
#define CM_CH0FMT_SHIFT       0

#define CM_REG_INT_HLDCLR     0x0C
#define CM_CHIP_MASK2         0xff000000
#define CM_CHIP_8768          0x20000000
#define CM_CHIP_055           0x08000000
#define CM_CHIP_039           0x04000000
#define CM_CHIP_039_6CH       0x01000000
#define CM_UNKNOWN_INT_EN     0x00080000  /* ? */
#define CM_TDMA_INT_EN        0x00040000
#define CM_CH1_INT_EN         0x00020000
#define CM_CH0_INT_EN         0x00010000

#define CM_REG_INT_STATUS     0x10
#define CM_INTR               0x80000000
#define CM_VCO                0x08000000  /* Voice Control? CMI8738 */
#define CM_MCBINT       0x04000000  /* Master Control Block abort cond.? */
#define CM_UARTINT            0x00010000
#define CM_LTDMAINT           0x00008000
#define CM_HTDMAINT           0x00004000
#define CM_XDO46        0x00000080  /* Modell 033? Direct programming EEPROM (read data register) */
#define CM_LHBTOG       0x00000040  /* High/Low status from DMA ctrl register */
#define CM_LEG_HDMA           0x00000020  /* Legacy is in High DMA channel */
#define CM_LEG_STEREO         0x00000010  /* Legacy is in Stereo mode */
#define CM_CH1BUSY            0x00000008
#define CM_CH0BUSY            0x00000004
#define CM_CHINT1       0x00000002
#define CM_CHINT0       0x00000001

#define CM_REG_LEGACY_CTRL    0x14
#define CM_NXCHG        0x80000000  /* don't map base reg dword->sample */
#define CM_VMPU_MASK          0x60000000  /* MPU401 i/o port address */
#define CM_VMPU_330           0x00000000
#define CM_VMPU_320           0x20000000
#define CM_VMPU_310           0x40000000
#define CM_VMPU_300           0x60000000
#define CM_ENWR8237           0x10000000  /* enable bus master to write 8237 base reg */
#define CM_VSBSEL_MASK        0x0C000000  /* SB16 base address */
#define CM_VSBSEL_220         0x00000000
#define CM_VSBSEL_240         0x04000000
#define CM_VSBSEL_260         0x08000000
#define CM_VSBSEL_280         0x0C000000
#define CM_FMSEL_MASK         0x03000000  /* FM OPL3 base address */
#define CM_FMSEL_388          0x00000000
#define CM_FMSEL_3C8          0x01000000
#define CM_FMSEL_3E0          0x02000000
#define CM_FMSEL_3E8          0x03000000
#define CM_ENSPDOUT           0x00800000  /* enable XSPDIF/OUT to I/O interface */
#define CM_SPDCOPYRHT         0x00400000  /* spdif in/out copyright bit */
#define CM_DAC2SPDO           0x00200000  /* enable wave+fm_midi -> SPDIF/OUT */
#define CM_INVIDWEN           0x00100000  /* internal vendor ID write enable, model 039? */
#define CM_SETRETRY           0x00100000  /* 0: legacy i/o wait (default), 1: legacy i/o bus retry */
#define CM_C_EEACCESS         0x00080000  /* direct programming eeprom regs */
#define CM_C_EECS       0x00040000
#define CM_C_EEDI46           0x00020000
#define CM_C_EECK46           0x00010000
#define CM_CHB3D6C            0x00008000  /* 5.1 channels support */
#define CM_CENTR2LIN          0x00004000  /* line-in as center out */
#define CM_BASE2LIN           0x00002000  /* line-in as bass out */
#define CM_EXBASEN            0x00001000  /* external bass input enable */

#define CM_REG_MISC_CTRL      0x18
#define CM_PWD                0x80000000  /* power down */
#define CM_RESET        0x40000000
#define CM_SFIL_MASK          0x30000000  /* filter control at front end DAC, model 037? */
#define CM_VMGAIN       0x10000000  /* analog master amp +6dB, model 039? */
#define CM_TXVX               0x08000000  /* model 037? */
#define CM_N4SPK3D            0x04000000  /* copy front to rear */
#define CM_SPDO5V       0x02000000  /* 5V spdif output (1 = 0.5v (coax)) */
#define CM_SPDIF48K           0x01000000  /* write */
#define CM_SPATUS48K          0x01000000  /* read */
#define CM_ENDBDAC            0x00800000  /* enable double dac */
#define CM_XCHGDAC            0x00400000  /* 0: front=ch0, 1: front=ch1 */
#define CM_SPD32SEL           0x00200000  /* 0: 16bit SPDIF, 1: 32bit */
#define CM_SPDFLOOPI          0x00100000  /* int. SPDIF-OUT -> int. IN */
#define CM_FM_EN        0x00080000  /* enable legacy FM */
#define CM_AC3EN2       0x00040000  /* enable AC3: model 039 */
#define CM_ENWRASID           0x00010000  /* choose writable internal SUBID (audio) */
#define CM_VIDWPDSB           0x00010000  /* model 037? */
#define CM_SPDF_AC97          0x00008000  /* 0: SPDIF/OUT 44.1K, 1: 48K */
#define CM_MASK_EN            0x00004000  /* activate channel mask on legacy DMA */
#define CM_ENWRMSID           0x00002000  /* choose writable internal SUBID (modem) */
#define CM_VIDWPPRT           0x00002000  /* model 037? */
#define CM_SFILENB            0x00001000  /* filter stepping at front end DAC, model 037? */
#define CM_MMODE_MASK         0x00000E00  /* model DAA interface mode */
#define CM_SPDIF_SELECT2      0x00000100  /* for model > 039 ? */
#define CM_ENCENTER           0x00000080
#define CM_FLINKON            0x00000040  /* force modem link detection on, model 037 */
#define CM_MUTECH1            0x00000040  /* mute PCI ch1 to DAC */
#define CM_FLINKOFF           0x00000020  /* force modem link detection off, model 037 */
#define CM_MIDSMP       0x00000010  /* 1/2 interpolation at front end DAC */
#define CM_UPDDMA_MASK        0x0000000C  /* TDMA position update notification */
#define CM_UPDDMA_2048        0x00000000
#define CM_UPDDMA_1024        0x00000004
#define CM_UPDDMA_512         0x00000008
#define CM_UPDDMA_256         0x0000000C        
#define CM_TWAIT_MASK         0x00000003  /* model 037 */
#define CM_TWAIT1       0x00000002  /* FM i/o cycle, 0: 48, 1: 64 PCICLKs */
#define CM_TWAIT0       0x00000001  /* i/o cycle, 0: 4, 1: 6 PCICLKs */

#define CM_REG_TDMA_POSITION  0x1C
#define CM_TDMA_CNT_MASK      0xFFFF0000  /* current byte/word count */
#define CM_TDMA_ADR_MASK      0x0000FFFF  /* current address */

      /* byte */
#define CM_REG_MIXER0         0x20
#define CM_REG_SBVR           0x20        /* write: sb16 version */
#define CM_REG_DEV            0x20        /* read: hardware device version */

#define CM_REG_MIXER21        0x21
#define CM_UNKNOWN_21_MASK    0x78        /* ? */
#define CM_X_ADPCM            0x04        /* SB16 ADPCM enable */
#define CM_PROINV       0x02        /* SBPro left/right channel switching */
#define CM_X_SB16       0x01        /* SB16 compatible */

#define CM_REG_SB16_DATA      0x22
#define CM_REG_SB16_ADDR      0x23

#define CM_REFFREQ_XIN        (315*1000*1000)/22      /* 14.31818 Mhz reference clock frequency pin XIN */
#define CM_ADCMULT_XIN        512               /* Guessed (487 best for 44.1kHz, not for 88/176kHz) */
#define CM_TOLERANCE_RATE     0.001             /* Tolerance sample rate pitch (1000ppm) */
#define CM_MAXIMUM_RATE       80000000          /* Note more than 80MHz */

#define CM_REG_MIXER1         0x24
#define CM_FMMUTE       0x80  /* mute FM */
#define CM_FMMUTE_SHIFT       7
#define CM_WSMUTE       0x40  /* mute PCM */
#define CM_WSMUTE_SHIFT       6
#define CM_REAR2LIN           0x20  /* lin-in -> rear line out */
#define CM_REAR2LIN_SHIFT     5
#define CM_REAR2FRONT         0x10  /* exchange rear/front */
#define CM_REAR2FRONT_SHIFT   4
#define CM_WAVEINL            0x08  /* digital wave rec. left chan */
#define CM_WAVEINL_SHIFT      3
#define CM_WAVEINR            0x04  /* digical wave rec. right */
#define CM_WAVEINR_SHIFT      2
#define CM_X3DEN        0x02  /* 3D surround enable */
#define CM_X3DEN_SHIFT        1
#define CM_CDPLAY       0x01  /* enable SPDIF/IN PCM -> DAC */
#define CM_CDPLAY_SHIFT       0

#define CM_REG_MIXER2         0x25
#define CM_RAUXREN            0x80  /* AUX right capture */
#define CM_RAUXREN_SHIFT      7
#define CM_RAUXLEN            0x40  /* AUX left capture */
#define CM_RAUXLEN_SHIFT      6
#define CM_VAUXRM       0x20  /* AUX right mute */
#define CM_VAUXRM_SHIFT       5
#define CM_VAUXLM       0x10  /* AUX left mute */
#define CM_VAUXLM_SHIFT       4
#define CM_VADMIC_MASK        0x0e  /* mic gain level (0-3) << 1 */
#define CM_VADMIC_SHIFT       1
#define CM_MICGAINZ           0x01  /* mic boost */
#define CM_MICGAINZ_SHIFT     0

#define CM_REG_MIXER3         0x24
#define CM_REG_AUX_VOL        0x26
#define CM_VAUXL_MASK         0xf0
#define CM_VAUXR_MASK         0x0f

#define CM_REG_MISC           0x27
#define CM_UNKNOWN_27_MASK    0xd8  /* ? */
#define CM_XGPO1        0x20
// #define CM_XGPBIO          0x04
#define CM_MIC_CENTER_LFE     0x04  /* mic as center/lfe out? (model 039 or later?) */
#define CM_SPDIF_INVERSE      0x04  /* spdif input phase inverse (model 037) */
#define CM_SPDVALID           0x02  /* spdif input valid check */
#define CM_DMAUTO       0x01  /* SB16 DMA auto detect */

#define CM_REG_AC97           0x28  /* hmmm.. do we have ac97 link? */
/*
 * For CMI-8338 (0x28 - 0x2b) .. is this valid for CMI-8738
 * or identical with AC97 codec?
 */
#define CM_REG_EXTERN_CODEC   CM_REG_AC97

/*
 * MPU401 pci port index address 0x40 - 0x4f (CMI-8738 spec ver. 0.6)
 */
#define CM_REG_MPU_PCI        0x40

/*
 * FM pci port index address 0x50 - 0x5f (CMI-8738 spec ver. 0.6)
 */
#define CM_REG_FM_PCI         0x50

/*
 * access from SB-mixer port
 */
#define CM_REG_EXTENT_IND     0xf0
#define CM_VPHONE_MASK        0xe0  /* Phone volume control (0-3) << 5 */
#define CM_VPHONE_SHIFT       5
#define CM_VPHOM        0x10  /* Phone mute control */
#define CM_VSPKM        0x08  /* Speaker mute control, default high */
#define CM_RLOOPREN           0x04    /* Rec. R-channel enable */
#define CM_RLOOPLEN           0x02  /* Rec. L-channel enable */
#define CM_VADMIC3            0x01  /* Mic record boost */

/*
 * CMI-8338 spec ver 0.5 (this is not valid for CMI-8738):
 * the 8 registers 0xf8 - 0xff are used for programming m/n counter by the PLL
 * unit (readonly?).
 */
#define CM_REG_PLL            0xf8

/*
 * extended registers
 */
#define CM_REG_CH0_FRAME1     0x80  /* write: base address */
#define CM_REG_CH0_FRAME2     0x84  /* read: current address */
#define CM_REG_CH1_FRAME1     0x88  /* 0-15: count of samples at bus master; buffer size */
#define CM_REG_CH1_FRAME2     0x8C  /* 16-31: count of samples at codec; fragment size */

#define CM_REG_EXT_MISC       0x90
#define CM_ADC48K44K          0x10000000  /* ADC parameters group, 0: 44k, 1: 48k */
#define CM_CHB3D8C            0x00200000  /* 7.1 channels support */
#define CM_SPD32FMT           0x00100000  /* SPDIF/IN 32k sample rate */
#define CM_ADC2SPDIF          0x00080000  /* ADC output to SPDIF/OUT */
#define CM_SHAREADC           0x00040000  /* DAC in ADC as Center/LFE */
#define CM_REALTCMP           0x00020000  /* monitor the CMPL/CMPR of ADC */
#define CM_INVLRCK            0x00010000  /* invert ZVPORT's LRCK */
#define CM_UNKNOWN_90_MASK    0x0000FFFF  /* ? */

/*
 * size of i/o region
 */
#define CM_EXTENT_CODEC   0x100
#define CM_EXTENT_MIDI    0x2
#define CM_EXTENT_SYNTH   0x4


/*
 * channels for playback / capture
 */
#define CM_CH_PLAY      0
#define CM_CH_CAPT      1

/*
 * flags to check device open/close
 */
#define CM_OPEN_NONE    0
#define CM_OPEN_CH_MASK 0x01
#define CM_OPEN_DAC     0x10
#define CM_OPEN_ADC     0x20
#define CM_OPEN_SPDIF   0x40
#define CM_OPEN_MCHAN   0x80
#define CM_OPEN_PLAYBACK      (CM_CH_PLAY | CM_OPEN_DAC)
#define CM_OPEN_PLAYBACK2     (CM_CH_CAPT | CM_OPEN_DAC)
#define CM_OPEN_PLAYBACK_MULTI      (CM_CH_PLAY | CM_OPEN_DAC | CM_OPEN_MCHAN)
#define CM_OPEN_CAPTURE       (CM_CH_CAPT | CM_OPEN_ADC)
#define CM_OPEN_SPDIF_PLAYBACK      (CM_CH_PLAY | CM_OPEN_DAC | CM_OPEN_SPDIF)
#define CM_OPEN_SPDIF_CAPTURE (CM_CH_CAPT | CM_OPEN_ADC | CM_OPEN_SPDIF)


#if CM_CH_PLAY == 1
#define CM_PLAYBACK_SRATE_176K      CM_CH1_SRATE_176K
#define CM_PLAYBACK_SPDF      CM_SPDF_1
#define CM_CAPTURE_SPDF       CM_SPDF_0
#else
#define CM_PLAYBACK_SRATE_176K CM_CH0_SRATE_176K
#define CM_PLAYBACK_SPDF      CM_SPDF_0
#define CM_CAPTURE_SPDF       CM_SPDF_1
#endif


/*
 * driver data
 */

struct cmipci_pcm {
      struct snd_pcm_substream *substream;
      u8 running;       /* dac/adc running? */
      u8 fmt;                 /* format bits */
      u8 is_dac;
      u8 needs_silencing;
      unsigned int dma_size;  /* in frames */
      unsigned int shift;
      unsigned int ch;  /* channel (0/1) */
      unsigned int offset;    /* physical address of the buffer */
};

/* mixer elements toggled/resumed during ac3 playback */
struct cmipci_mixer_auto_switches {
      const char *name; /* switch to toggle */
      int toggle_on;          /* value to change when ac3 mode */
};
static const struct cmipci_mixer_auto_switches cm_saved_mixer[] = {
      {"PCM Playback Switch", 0},
      {"IEC958 Output Switch", 1},
      {"IEC958 Mix Analog", 0},
      // {"IEC958 Out To DAC", 1}, // no longer used
      {"IEC958 Loop", 0},
};
#define CM_SAVED_MIXERS       ARRAY_SIZE(cm_saved_mixer)

struct cmipci {
      struct snd_card *card;

      struct pci_dev *pci;
      unsigned int device;    /* device ID */
      int irq;

      unsigned long iobase;
      unsigned int ctrl;      /* FUNCTRL0 current value */

      struct snd_pcm *pcm;          /* DAC/ADC PCM */
      struct snd_pcm *pcm2;   /* 2nd DAC */
      struct snd_pcm *pcm_spdif;    /* SPDIF */

      int chip_version;
      int max_channels;
      unsigned int can_ac3_sw: 1;
      unsigned int can_ac3_hw: 1;
      unsigned int can_multi_ch: 1;
      unsigned int can_96k: 1;      /* samplerate above 48k */
      unsigned int do_soft_ac3: 1;

      unsigned int spdif_playback_avail: 1;     /* spdif ready? */
      unsigned int spdif_playback_enabled: 1;   /* spdif switch enabled? */
      int spdif_counter;      /* for software AC3 */

      unsigned int dig_status;
      unsigned int dig_pcm_status;

      struct snd_pcm_hardware *hw_info[3]; /* for playbacks */

      int opened[2];    /* open mode */
      struct mutex open_mutex;

      unsigned int mixer_insensitive: 1;
      struct snd_kcontrol *mixer_res_ctl[CM_SAVED_MIXERS];
      int mixer_res_status[CM_SAVED_MIXERS];

      struct cmipci_pcm channel[2]; /* ch0 - DAC, ch1 - ADC or 2nd DAC */

      /* external MIDI */
      struct snd_rawmidi *rmidi;

#ifdef SUPPORT_JOYSTICK
      struct gameport *gameport;
#endif

      spinlock_t reg_lock;

#ifdef CONFIG_PM
      unsigned int saved_regs[0x20];
      unsigned char saved_mixers[0x20];
#endif
};


/* read/write operations for dword register */
static inline void snd_cmipci_write(struct cmipci *cm, unsigned int cmd, unsigned int data)
{
      outl(data, cm->iobase + cmd);
}

static inline unsigned int snd_cmipci_read(struct cmipci *cm, unsigned int cmd)
{
      return inl(cm->iobase + cmd);
}

/* read/write operations for word register */
static inline void snd_cmipci_write_w(struct cmipci *cm, unsigned int cmd, unsigned short data)
{
      outw(data, cm->iobase + cmd);
}

static inline unsigned short snd_cmipci_read_w(struct cmipci *cm, unsigned int cmd)
{
      return inw(cm->iobase + cmd);
}

/* read/write operations for byte register */
static inline void snd_cmipci_write_b(struct cmipci *cm, unsigned int cmd, unsigned char data)
{
      outb(data, cm->iobase + cmd);
}

static inline unsigned char snd_cmipci_read_b(struct cmipci *cm, unsigned int cmd)
{
      return inb(cm->iobase + cmd);
}

/* bit operations for dword register */
static int snd_cmipci_set_bit(struct cmipci *cm, unsigned int cmd, unsigned int flag)
{
      unsigned int val, oval;
      val = oval = inl(cm->iobase + cmd);
      val |= flag;
      if (val == oval)
            return 0;
      outl(val, cm->iobase + cmd);
      return 1;
}

static int snd_cmipci_clear_bit(struct cmipci *cm, unsigned int cmd, unsigned int flag)
{
      unsigned int val, oval;
      val = oval = inl(cm->iobase + cmd);
      val &= ~flag;
      if (val == oval)
            return 0;
      outl(val, cm->iobase + cmd);
      return 1;
}

/* bit operations for byte register */
static int snd_cmipci_set_bit_b(struct cmipci *cm, unsigned int cmd, unsigned char flag)
{
      unsigned char val, oval;
      val = oval = inb(cm->iobase + cmd);
      val |= flag;
      if (val == oval)
            return 0;
      outb(val, cm->iobase + cmd);
      return 1;
}

static int snd_cmipci_clear_bit_b(struct cmipci *cm, unsigned int cmd, unsigned char flag)
{
      unsigned char val, oval;
      val = oval = inb(cm->iobase + cmd);
      val &= ~flag;
      if (val == oval)
            return 0;
      outb(val, cm->iobase + cmd);
      return 1;
}


/*
 * PCM interface
 */

/*
 * calculate frequency
 */

static unsigned int rates[] = { 5512, 11025, 22050, 44100, 8000, 16000, 32000, 48000 };

static unsigned int snd_cmipci_rate_freq(unsigned int rate)
{
      unsigned int i;

      for (i = 0; i < ARRAY_SIZE(rates); i++) {
            if (rates[i] == rate)
                  return i;
      }
      snd_BUG();
      return 0;
}

#ifdef USE_VAR48KRATE
/*
 * Determine PLL values for frequency setup, maybe the CMI8338 (CMI8738???)
 * does it this way .. maybe not.  Never get any information from C-Media about
 * that <werner@suse.de>.
 */
static int snd_cmipci_pll_rmn(unsigned int rate, unsigned int adcmult, int *r, int *m, int *n)
{
      unsigned int delta, tolerance;
      int xm, xn, xr;

      for (*r = 0; rate < CM_MAXIMUM_RATE/adcmult; *r += (1<<5))
            rate <<= 1;
      *n = -1;
      if (*r > 0xff)
            goto out;
      tolerance = rate*CM_TOLERANCE_RATE;

      for (xn = (1+2); xn < (0x1f+2); xn++) {
            for (xm = (1+2); xm < (0xff+2); xm++) {
                  xr = ((CM_REFFREQ_XIN/adcmult) * xm) / xn;

                  if (xr < rate)
                        delta = rate - xr;
                  else
                        delta = xr - rate;

                  /*
                   * If we found one, remember this,
                   * and try to find a closer one
                   */
                  if (delta < tolerance) {
                        tolerance = delta;
                        *m = xm - 2;
                        *n = xn - 2;
                  }
            }
      }
out:
      return (*n > -1);
}

/*
 * Program pll register bits, I assume that the 8 registers 0xf8 upto 0xff
 * are mapped onto the 8 ADC/DAC sampling frequency which can be choosen
 * at the register CM_REG_FUNCTRL1 (0x04).
 * Problem: other ways are also possible (any information about that?)
 */
static void snd_cmipci_set_pll(struct cmipci *cm, unsigned int rate, unsigned int slot)
{
      unsigned int reg = CM_REG_PLL + slot;
      /*
       * Guess that this programs at reg. 0x04 the pos 15:13/12:10
       * for DSFC/ASFC (000 upto 111).
       */

      /* FIXME: Init (Do we've to set an other register first before programming?) */

      /* FIXME: Is this correct? Or shouldn't the m/n/r values be used for that? */
      snd_cmipci_write_b(cm, reg, rate>>8);
      snd_cmipci_write_b(cm, reg, rate&0xff);

      /* FIXME: Setup (Do we've to set an other register first to enable this?) */
}
#endif /* USE_VAR48KRATE */

static int snd_cmipci_hw_params(struct snd_pcm_substream *substream,
                        struct snd_pcm_hw_params *hw_params)
{
      return snd_pcm_lib_malloc_pages(substream, params_buffer_bytes(hw_params));
}

static int snd_cmipci_playback2_hw_params(struct snd_pcm_substream *substream,
                                struct snd_pcm_hw_params *hw_params)
{
      struct cmipci *cm = snd_pcm_substream_chip(substream);
      if (params_channels(hw_params) > 2) {
            mutex_lock(&cm->open_mutex);
            if (cm->opened[CM_CH_PLAY]) {
                  mutex_unlock(&cm->open_mutex);
                  return -EBUSY;
            }
            /* reserve the channel A */
            cm->opened[CM_CH_PLAY] = CM_OPEN_PLAYBACK_MULTI;
            mutex_unlock(&cm->open_mutex);
      }
      return snd_pcm_lib_malloc_pages(substream, params_buffer_bytes(hw_params));
}

static void snd_cmipci_ch_reset(struct cmipci *cm, int ch)
{
      int reset = CM_RST_CH0 << (cm->channel[ch].ch);
      snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl | reset);
      snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl & ~reset);
      udelay(10);
}

static int snd_cmipci_hw_free(struct snd_pcm_substream *substream)
{
      return snd_pcm_lib_free_pages(substream);
}


/*
 */

static unsigned int hw_channels[] = {1, 2, 4, 6, 8};
static struct snd_pcm_hw_constraint_list hw_constraints_channels_4 = {
      .count = 3,
      .list = hw_channels,
      .mask = 0,
};
static struct snd_pcm_hw_constraint_list hw_constraints_channels_6 = {
      .count = 4,
      .list = hw_channels,
      .mask = 0,
};
static struct snd_pcm_hw_constraint_list hw_constraints_channels_8 = {
      .count = 5,
      .list = hw_channels,
      .mask = 0,
};

static int set_dac_channels(struct cmipci *cm, struct cmipci_pcm *rec, int channels)
{
      if (channels > 2) {
            if (!cm->can_multi_ch || !rec->ch)
                  return -EINVAL;
            if (rec->fmt != 0x03) /* stereo 16bit only */
                  return -EINVAL;
      }

      if (cm->can_multi_ch) {
            spin_lock_irq(&cm->reg_lock);
            if (channels > 2) {
                  snd_cmipci_set_bit(cm, CM_REG_LEGACY_CTRL, CM_NXCHG);
                  snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_XCHGDAC);
            } else {
                  snd_cmipci_clear_bit(cm, CM_REG_LEGACY_CTRL, CM_NXCHG);
                  snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_XCHGDAC);
            }
            if (channels == 8)
                  snd_cmipci_set_bit(cm, CM_REG_EXT_MISC, CM_CHB3D8C);
            else
                  snd_cmipci_clear_bit(cm, CM_REG_EXT_MISC, CM_CHB3D8C);
            if (channels == 6) {
                  snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_CHB3D5C);
                  snd_cmipci_set_bit(cm, CM_REG_LEGACY_CTRL, CM_CHB3D6C);
            } else {
                  snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_CHB3D5C);
                  snd_cmipci_clear_bit(cm, CM_REG_LEGACY_CTRL, CM_CHB3D6C);
            }
            if (channels == 4)
                  snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_CHB3D);
            else
                  snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_CHB3D);
            spin_unlock_irq(&cm->reg_lock);
      }
      return 0;
}


/*
 * prepare playback/capture channel
 * channel to be used must have been set in rec->ch.
 */
static int snd_cmipci_pcm_prepare(struct cmipci *cm, struct cmipci_pcm *rec,
                         struct snd_pcm_substream *substream)
{
      unsigned int reg, freq, freq_ext, val;
      unsigned int period_size;
      struct snd_pcm_runtime *runtime = substream->runtime;

      rec->fmt = 0;
      rec->shift = 0;
      if (snd_pcm_format_width(runtime->format) >= 16) {
            rec->fmt |= 0x02;
            if (snd_pcm_format_width(runtime->format) > 16)
                  rec->shift++; /* 24/32bit */
      }
      if (runtime->channels > 1)
            rec->fmt |= 0x01;
      if (rec->is_dac && set_dac_channels(cm, rec, runtime->channels) < 0) {
            snd_printd("cannot set dac channels\n");
            return -EINVAL;
      }

      rec->offset = runtime->dma_addr;
      /* buffer and period sizes in frame */
      rec->dma_size = runtime->buffer_size << rec->shift;
      period_size = runtime->period_size << rec->shift;
      if (runtime->channels > 2) {
            /* multi-channels */
            rec->dma_size = (rec->dma_size * runtime->channels) / 2;
            period_size = (period_size * runtime->channels) / 2;
      }

      spin_lock_irq(&cm->reg_lock);

      /* set buffer address */
      reg = rec->ch ? CM_REG_CH1_FRAME1 : CM_REG_CH0_FRAME1;
      snd_cmipci_write(cm, reg, rec->offset);
      /* program sample counts */
      reg = rec->ch ? CM_REG_CH1_FRAME2 : CM_REG_CH0_FRAME2;
      snd_cmipci_write_w(cm, reg, rec->dma_size - 1);
      snd_cmipci_write_w(cm, reg + 2, period_size - 1);

      /* set adc/dac flag */
      val = rec->ch ? CM_CHADC1 : CM_CHADC0;
      if (rec->is_dac)
            cm->ctrl &= ~val;
      else
            cm->ctrl |= val;
      snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl);
      //snd_printd("cmipci: functrl0 = %08x\n", cm->ctrl);

      /* set sample rate */
      freq = 0;
      freq_ext = 0;
      if (runtime->rate > 48000)
            switch (runtime->rate) {
            case 88200:  freq_ext = CM_CH0_SRATE_88K; break;
            case 96000:  freq_ext = CM_CH0_SRATE_96K; break;
            case 128000: freq_ext = CM_CH0_SRATE_128K; break;
            default:     snd_BUG(); break;
            }
      else
            freq = snd_cmipci_rate_freq(runtime->rate);
      val = snd_cmipci_read(cm, CM_REG_FUNCTRL1);
      if (rec->ch) {
            val &= ~CM_DSFC_MASK;
            val |= (freq << CM_DSFC_SHIFT) & CM_DSFC_MASK;
      } else {
            val &= ~CM_ASFC_MASK;
            val |= (freq << CM_ASFC_SHIFT) & CM_ASFC_MASK;
      }
      snd_cmipci_write(cm, CM_REG_FUNCTRL1, val);
      //snd_printd("cmipci: functrl1 = %08x\n", val);

      /* set format */
      val = snd_cmipci_read(cm, CM_REG_CHFORMAT);
      if (rec->ch) {
            val &= ~CM_CH1FMT_MASK;
            val |= rec->fmt << CM_CH1FMT_SHIFT;
      } else {
            val &= ~CM_CH0FMT_MASK;
            val |= rec->fmt << CM_CH0FMT_SHIFT;
      }
      if (cm->can_96k) {
            val &= ~(CM_CH0_SRATE_MASK << (rec->ch * 2));
            val |= freq_ext << (rec->ch * 2);
      }
      snd_cmipci_write(cm, CM_REG_CHFORMAT, val);
      //snd_printd("cmipci: chformat = %08x\n", val);

      if (!rec->is_dac && cm->chip_version) {
            if (runtime->rate > 44100)
                  snd_cmipci_set_bit(cm, CM_REG_EXT_MISC, CM_ADC48K44K);
            else
                  snd_cmipci_clear_bit(cm, CM_REG_EXT_MISC, CM_ADC48K44K);
      }

      rec->running = 0;
      spin_unlock_irq(&cm->reg_lock);

      return 0;
}

/*
 * PCM trigger/stop
 */
static int snd_cmipci_pcm_trigger(struct cmipci *cm, struct cmipci_pcm *rec,
                          int cmd)
{
      unsigned int inthld, chen, reset, pause;
      int result = 0;

      inthld = CM_CH0_INT_EN << rec->ch;
      chen = CM_CHEN0 << rec->ch;
      reset = CM_RST_CH0 << rec->ch;
      pause = CM_PAUSE0 << rec->ch;

      spin_lock(&cm->reg_lock);
      switch (cmd) {
      case SNDRV_PCM_TRIGGER_START:
            rec->running = 1;
            /* set interrupt */
            snd_cmipci_set_bit(cm, CM_REG_INT_HLDCLR, inthld);
            cm->ctrl |= chen;
            /* enable channel */
            snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl);
            //snd_printd("cmipci: functrl0 = %08x\n", cm->ctrl);
            break;
      case SNDRV_PCM_TRIGGER_STOP:
            rec->running = 0;
            /* disable interrupt */
            snd_cmipci_clear_bit(cm, CM_REG_INT_HLDCLR, inthld);
            /* reset */
            cm->ctrl &= ~chen;
            snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl | reset);
            snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl & ~reset);
            rec->needs_silencing = rec->is_dac;
            break;
      case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
      case SNDRV_PCM_TRIGGER_SUSPEND:
            cm->ctrl |= pause;
            snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl);
            break;
      case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
      case SNDRV_PCM_TRIGGER_RESUME:
            cm->ctrl &= ~pause;
            snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl);
            break;
      default:
            result = -EINVAL;
            break;
      }
      spin_unlock(&cm->reg_lock);
      return result;
}

/*
 * return the current pointer
 */
static snd_pcm_uframes_t snd_cmipci_pcm_pointer(struct cmipci *cm, struct cmipci_pcm *rec,
                                    struct snd_pcm_substream *substream)
{
      size_t ptr;
      unsigned int reg;
      if (!rec->running)
            return 0;
#if 1 // this seems better..
      reg = rec->ch ? CM_REG_CH1_FRAME2 : CM_REG_CH0_FRAME2;
      ptr = rec->dma_size - (snd_cmipci_read_w(cm, reg) + 1);
      ptr >>= rec->shift;
#else
      reg = rec->ch ? CM_REG_CH1_FRAME1 : CM_REG_CH0_FRAME1;
      ptr = snd_cmipci_read(cm, reg) - rec->offset;
      ptr = bytes_to_frames(substream->runtime, ptr);
#endif
      if (substream->runtime->channels > 2)
            ptr = (ptr * 2) / substream->runtime->channels;
      return ptr;
}

/*
 * playback
 */

static int snd_cmipci_playback_trigger(struct snd_pcm_substream *substream,
                               int cmd)
{
      struct cmipci *cm = snd_pcm_substream_chip(substream);
      return snd_cmipci_pcm_trigger(cm, &cm->channel[CM_CH_PLAY], cmd);
}

static snd_pcm_uframes_t snd_cmipci_playback_pointer(struct snd_pcm_substream *substream)
{
      struct cmipci *cm = snd_pcm_substream_chip(substream);
      return snd_cmipci_pcm_pointer(cm, &cm->channel[CM_CH_PLAY], substream);
}



/*
 * capture
 */

static int snd_cmipci_capture_trigger(struct snd_pcm_substream *substream,
                             int cmd)
{
      struct cmipci *cm = snd_pcm_substream_chip(substream);
      return snd_cmipci_pcm_trigger(cm, &cm->channel[CM_CH_CAPT], cmd);
}

static snd_pcm_uframes_t snd_cmipci_capture_pointer(struct snd_pcm_substream *substream)
{
      struct cmipci *cm = snd_pcm_substream_chip(substream);
      return snd_cmipci_pcm_pointer(cm, &cm->channel[CM_CH_CAPT], substream);
}


/*
 * hw preparation for spdif
 */

static int snd_cmipci_spdif_default_info(struct snd_kcontrol *kcontrol,
                               struct snd_ctl_elem_info *uinfo)
{
      uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
      uinfo->count = 1;
      return 0;
}

static int snd_cmipci_spdif_default_get(struct snd_kcontrol *kcontrol,
                              struct snd_ctl_elem_value *ucontrol)
{
      struct cmipci *chip = snd_kcontrol_chip(kcontrol);
      int i;

      spin_lock_irq(&chip->reg_lock);
      for (i = 0; i < 4; i++)
            ucontrol->value.iec958.status[i] = (chip->dig_status >> (i * 8)) & 0xff;
      spin_unlock_irq(&chip->reg_lock);
      return 0;
}

static int snd_cmipci_spdif_default_put(struct snd_kcontrol *kcontrol,
                               struct snd_ctl_elem_value *ucontrol)
{
      struct cmipci *chip = snd_kcontrol_chip(kcontrol);
      int i, change;
      unsigned int val;

      val = 0;
      spin_lock_irq(&chip->reg_lock);
      for (i = 0; i < 4; i++)
            val |= (unsigned int)ucontrol->value.iec958.status[i] << (i * 8);
      change = val != chip->dig_status;
      chip->dig_status = val;
      spin_unlock_irq(&chip->reg_lock);
      return change;
}

static struct snd_kcontrol_new snd_cmipci_spdif_default __devinitdata =
{
      .iface =    SNDRV_CTL_ELEM_IFACE_PCM,
      .name =           SNDRV_CTL_NAME_IEC958("",PLAYBACK,DEFAULT),
      .info =           snd_cmipci_spdif_default_info,
      .get =            snd_cmipci_spdif_default_get,
      .put =            snd_cmipci_spdif_default_put
};

static int snd_cmipci_spdif_mask_info(struct snd_kcontrol *kcontrol,
                              struct snd_ctl_elem_info *uinfo)
{
      uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
      uinfo->count = 1;
      return 0;
}

static int snd_cmipci_spdif_mask_get(struct snd_kcontrol *kcontrol,
                             struct snd_ctl_elem_value *ucontrol)
{
      ucontrol->value.iec958.status[0] = 0xff;
      ucontrol->value.iec958.status[1] = 0xff;
      ucontrol->value.iec958.status[2] = 0xff;
      ucontrol->value.iec958.status[3] = 0xff;
      return 0;
}

static struct snd_kcontrol_new snd_cmipci_spdif_mask __devinitdata =
{
      .access =   SNDRV_CTL_ELEM_ACCESS_READ,
      .iface =    SNDRV_CTL_ELEM_IFACE_PCM,
      .name =           SNDRV_CTL_NAME_IEC958("",PLAYBACK,CON_MASK),
      .info =           snd_cmipci_spdif_mask_info,
      .get =            snd_cmipci_spdif_mask_get,
};

static int snd_cmipci_spdif_stream_info(struct snd_kcontrol *kcontrol,
                              struct snd_ctl_elem_info *uinfo)
{
      uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
      uinfo->count = 1;
      return 0;
}

static int snd_cmipci_spdif_stream_get(struct snd_kcontrol *kcontrol,
                               struct snd_ctl_elem_value *ucontrol)
{
      struct cmipci *chip = snd_kcontrol_chip(kcontrol);
      int i;

      spin_lock_irq(&chip->reg_lock);
      for (i = 0; i < 4; i++)
            ucontrol->value.iec958.status[i] = (chip->dig_pcm_status >> (i * 8)) & 0xff;
      spin_unlock_irq(&chip->reg_lock);
      return 0;
}

static int snd_cmipci_spdif_stream_put(struct snd_kcontrol *kcontrol,
                               struct snd_ctl_elem_value *ucontrol)
{
      struct cmipci *chip = snd_kcontrol_chip(kcontrol);
      int i, change;
      unsigned int val;

      val = 0;
      spin_lock_irq(&chip->reg_lock);
      for (i = 0; i < 4; i++)
            val |= (unsigned int)ucontrol->value.iec958.status[i] << (i * 8);
      change = val != chip->dig_pcm_status;
      chip->dig_pcm_status = val;
      spin_unlock_irq(&chip->reg_lock);
      return change;
}

static struct snd_kcontrol_new snd_cmipci_spdif_stream __devinitdata =
{
      .access =   SNDRV_CTL_ELEM_ACCESS_READWRITE | SNDRV_CTL_ELEM_ACCESS_INACTIVE,
      .iface =    SNDRV_CTL_ELEM_IFACE_PCM,
      .name =           SNDRV_CTL_NAME_IEC958("",PLAYBACK,PCM_STREAM),
      .info =           snd_cmipci_spdif_stream_info,
      .get =            snd_cmipci_spdif_stream_get,
      .put =            snd_cmipci_spdif_stream_put
};

/*
 */

/* save mixer setting and mute for AC3 playback */
static int save_mixer_state(struct cmipci *cm)
{
      if (! cm->mixer_insensitive) {
            struct snd_ctl_elem_value *val;
            unsigned int i;

            val = kmalloc(sizeof(*val), GFP_ATOMIC);
            if (!val)
                  return -ENOMEM;
            for (i = 0; i < CM_SAVED_MIXERS; i++) {
                  struct snd_kcontrol *ctl = cm->mixer_res_ctl[i];
                  if (ctl) {
                        int event;
                        memset(val, 0, sizeof(*val));
                        ctl->get(ctl, val);
                        cm->mixer_res_status[i] = val->value.integer.value[0];
                        val->value.integer.value[0] = cm_saved_mixer[i].toggle_on;
                        event = SNDRV_CTL_EVENT_MASK_INFO;
                        if (cm->mixer_res_status[i] != val->value.integer.value[0]) {
                              ctl->put(ctl, val); /* toggle */
                              event |= SNDRV_CTL_EVENT_MASK_VALUE;
                        }
                        ctl->vd[0].access |= SNDRV_CTL_ELEM_ACCESS_INACTIVE;
                        snd_ctl_notify(cm->card, event, &ctl->id);
                  }
            }
            kfree(val);
            cm->mixer_insensitive = 1;
      }
      return 0;
}


/* restore the previously saved mixer status */
static void restore_mixer_state(struct cmipci *cm)
{
      if (cm->mixer_insensitive) {
            struct snd_ctl_elem_value *val;
            unsigned int i;

            val = kmalloc(sizeof(*val), GFP_KERNEL);
            if (!val)
                  return;
            cm->mixer_insensitive = 0; /* at first clear this;
                                    otherwise the changes will be ignored */
            for (i = 0; i < CM_SAVED_MIXERS; i++) {
                  struct snd_kcontrol *ctl = cm->mixer_res_ctl[i];
                  if (ctl) {
                        int event;

                        memset(val, 0, sizeof(*val));
                        ctl->vd[0].access &= ~SNDRV_CTL_ELEM_ACCESS_INACTIVE;
                        ctl->get(ctl, val);
                        event = SNDRV_CTL_EVENT_MASK_INFO;
                        if (val->value.integer.value[0] != cm->mixer_res_status[i]) {
                              val->value.integer.value[0] = cm->mixer_res_status[i];
                              ctl->put(ctl, val);
                              event |= SNDRV_CTL_EVENT_MASK_VALUE;
                        }
                        snd_ctl_notify(cm->card, event, &ctl->id);
                  }
            }
            kfree(val);
      }
}

/* spinlock held! */
static void setup_ac3(struct cmipci *cm, struct snd_pcm_substream *subs, int do_ac3, int rate)
{
      if (do_ac3) {
            /* AC3EN for 037 */
            snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_AC3EN1);
            /* AC3EN for 039 */
            snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_AC3EN2);
      
            if (cm->can_ac3_hw) {
                  /* SPD24SEL for 037, 0x02 */
                  /* SPD24SEL for 039, 0x20, but cannot be set */
                  snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_SPD24SEL);
                  snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL);
            } else { /* can_ac3_sw */
                  /* SPD32SEL for 037 & 039, 0x20 */
                  snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL);
                  /* set 176K sample rate to fix 033 HW bug */
                  if (cm->chip_version == 33) {
                        if (rate >= 48000) {
                              snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_PLAYBACK_SRATE_176K);
                        } else {
                              snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_PLAYBACK_SRATE_176K);
                        }
                  }
            }

      } else {
            snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_AC3EN1);
            snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_AC3EN2);

            if (cm->can_ac3_hw) {
                  /* chip model >= 37 */
                  if (snd_pcm_format_width(subs->runtime->format) > 16) {
                        snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL);
                        snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_SPD24SEL);
                  } else {
                        snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL);
                        snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_SPD24SEL);
                  }
            } else {
                  snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL);
                  snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_SPD24SEL);
                  snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_PLAYBACK_SRATE_176K);
            }
      }
}

static int setup_spdif_playback(struct cmipci *cm, struct snd_pcm_substream *subs, int up, int do_ac3)
{
      int rate, err;

      rate = subs->runtime->rate;

      if (up && do_ac3)
            if ((err = save_mixer_state(cm)) < 0)
                  return err;

      spin_lock_irq(&cm->reg_lock);
      cm->spdif_playback_avail = up;
      if (up) {
            /* they are controlled via "IEC958 Output Switch" */
            /* snd_cmipci_set_bit(cm, CM_REG_LEGACY_CTRL, CM_ENSPDOUT); */
            /* snd_cmipci_set_bit(cm, CM_REG_FUNCTRL1, CM_SPDO2DAC); */
            if (cm->spdif_playback_enabled)
                  snd_cmipci_set_bit(cm, CM_REG_FUNCTRL1, CM_PLAYBACK_SPDF);
            setup_ac3(cm, subs, do_ac3, rate);

            if (rate == 48000 || rate == 96000)
                  snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_SPDIF48K | CM_SPDF_AC97);
            else
                  snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_SPDIF48K | CM_SPDF_AC97);
            if (rate > 48000)
                  snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_DBLSPDS);
            else
                  snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_DBLSPDS);
      } else {
            /* they are controlled via "IEC958 Output Switch" */
            /* snd_cmipci_clear_bit(cm, CM_REG_LEGACY_CTRL, CM_ENSPDOUT); */
            /* snd_cmipci_clear_bit(cm, CM_REG_FUNCTRL1, CM_SPDO2DAC); */
            snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_DBLSPDS);
            snd_cmipci_clear_bit(cm, CM_REG_FUNCTRL1, CM_PLAYBACK_SPDF);
            setup_ac3(cm, subs, 0, 0);
      }
      spin_unlock_irq(&cm->reg_lock);
      return 0;
}


/*
 * preparation
 */

/* playback - enable spdif only on the certain condition */
static int snd_cmipci_playback_prepare(struct snd_pcm_substream *substream)
{
      struct cmipci *cm = snd_pcm_substream_chip(substream);
      int rate = substream->runtime->rate;
      int err, do_spdif, do_ac3 = 0;

      do_spdif = (rate >= 44100 && rate <= 96000 &&
                substream->runtime->format == SNDRV_PCM_FORMAT_S16_LE &&
                substream->runtime->channels == 2);
      if (do_spdif && cm->can_ac3_hw) 
            do_ac3 = cm->dig_pcm_status & IEC958_AES0_NONAUDIO;
      if ((err = setup_spdif_playback(cm, substream, do_spdif, do_ac3)) < 0)
            return err;
      return snd_cmipci_pcm_prepare(cm, &cm->channel[CM_CH_PLAY], substream);
}

/* playback  (via device #2) - enable spdif always */
static int snd_cmipci_playback_spdif_prepare(struct snd_pcm_substream *substream)
{
      struct cmipci *cm = snd_pcm_substream_chip(substream);
      int err, do_ac3;

      if (cm->can_ac3_hw) 
            do_ac3 = cm->dig_pcm_status & IEC958_AES0_NONAUDIO;
      else
            do_ac3 = 1; /* doesn't matter */
      if ((err = setup_spdif_playback(cm, substream, 1, do_ac3)) < 0)
            return err;
      return snd_cmipci_pcm_prepare(cm, &cm->channel[CM_CH_PLAY], substream);
}

/*
 * Apparently, the samples last played on channel A stay in some buffer, even
 * after the channel is reset, and get added to the data for the rear DACs when
 * playing a multichannel stream on channel B.  This is likely to generate
 * wraparounds and thus distortions.
 * To avoid this, we play at least one zero sample after the actual stream has
 * stopped.
 */
static void snd_cmipci_silence_hack(struct cmipci *cm, struct cmipci_pcm *rec)
{
      struct snd_pcm_runtime *runtime = rec->substream->runtime;
      unsigned int reg, val;

      if (rec->needs_silencing && runtime && runtime->dma_area) {
            /* set up a small silence buffer */
            memset(runtime->dma_area, 0, PAGE_SIZE);
            reg = rec->ch ? CM_REG_CH1_FRAME2 : CM_REG_CH0_FRAME2;
            val = ((PAGE_SIZE / 4) - 1) | (((PAGE_SIZE / 4) / 2 - 1) << 16);
            snd_cmipci_write(cm, reg, val);
      
            /* configure for 16 bits, 2 channels, 8 kHz */
            if (runtime->channels > 2)
                  set_dac_channels(cm, rec, 2);
            spin_lock_irq(&cm->reg_lock);
            val = snd_cmipci_read(cm, CM_REG_FUNCTRL1);
            val &= ~(CM_ASFC_MASK << (rec->ch * 3));
            val |= (4 << CM_ASFC_SHIFT) << (rec->ch * 3);
            snd_cmipci_write(cm, CM_REG_FUNCTRL1, val);
            val = snd_cmipci_read(cm, CM_REG_CHFORMAT);
            val &= ~(CM_CH0FMT_MASK << (rec->ch * 2));
            val |= (3 << CM_CH0FMT_SHIFT) << (rec->ch * 2);
            if (cm->can_96k)
                  val &= ~(CM_CH0_SRATE_MASK << (rec->ch * 2));
            snd_cmipci_write(cm, CM_REG_CHFORMAT, val);
      
            /* start stream (we don't need interrupts) */
            cm->ctrl |= CM_CHEN0 << rec->ch;
            snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl);
            spin_unlock_irq(&cm->reg_lock);

            msleep(1);

            /* stop and reset stream */
            spin_lock_irq(&cm->reg_lock);
            cm->ctrl &= ~(CM_CHEN0 << rec->ch);
            val = CM_RST_CH0 << rec->ch;
            snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl | val);
            snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl & ~val);
            spin_unlock_irq(&cm->reg_lock);

            rec->needs_silencing = 0;
      }
}

static int snd_cmipci_playback_hw_free(struct snd_pcm_substream *substream)
{
      struct cmipci *cm = snd_pcm_substream_chip(substream);
      setup_spdif_playback(cm, substream, 0, 0);
      restore_mixer_state(cm);
      snd_cmipci_silence_hack(cm, &cm->channel[0]);
      return snd_cmipci_hw_free(substream);
}

static int snd_cmipci_playback2_hw_free(struct snd_pcm_substream *substream)
{
      struct cmipci *cm = snd_pcm_substream_chip(substream);
      snd_cmipci_silence_hack(cm, &cm->channel[1]);
      return snd_cmipci_hw_free(substream);
}

/* capture */
static int snd_cmipci_capture_prepare(struct snd_pcm_substream *substream)
{
      struct cmipci *cm = snd_pcm_substream_chip(substream);
      return snd_cmipci_pcm_prepare(cm, &cm->channel[CM_CH_CAPT], substream);
}

/* capture with spdif (via device #2) */
static int snd_cmipci_capture_spdif_prepare(struct snd_pcm_substream *substream)
{
      struct cmipci *cm = snd_pcm_substream_chip(substream);

      spin_lock_irq(&cm->reg_lock);
      snd_cmipci_set_bit(cm, CM_REG_FUNCTRL1, CM_CAPTURE_SPDF);
      if (cm->can_96k) {
            if (substream->runtime->rate > 48000)
                  snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_DBLSPDS);
            else
                  snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_DBLSPDS);
      }
      if (snd_pcm_format_width(substream->runtime->format) > 16)
            snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL);
      else
            snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL);

      spin_unlock_irq(&cm->reg_lock);

      return snd_cmipci_pcm_prepare(cm, &cm->channel[CM_CH_CAPT], substream);
}

static int snd_cmipci_capture_spdif_hw_free(struct snd_pcm_substream *subs)
{
      struct cmipci *cm = snd_pcm_substream_chip(subs);

      spin_lock_irq(&cm->reg_lock);
      snd_cmipci_clear_bit(cm, CM_REG_FUNCTRL1, CM_CAPTURE_SPDF);
      snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL);
      spin_unlock_irq(&cm->reg_lock);

      return snd_cmipci_hw_free(subs);
}


/*
 * interrupt handler
 */
static irqreturn_t snd_cmipci_interrupt(int irq, void *dev_id)
{
      struct cmipci *cm = dev_id;
      unsigned int status, mask = 0;
      
      /* fastpath out, to ease interrupt sharing */
      status = snd_cmipci_read(cm, CM_REG_INT_STATUS);
      if (!(status & CM_INTR))
            return IRQ_NONE;

      /* acknowledge interrupt */
      spin_lock(&cm->reg_lock);
      if (status & CM_CHINT0)
            mask |= CM_CH0_INT_EN;
      if (status & CM_CHINT1)
            mask |= CM_CH1_INT_EN;
      snd_cmipci_clear_bit(cm, CM_REG_INT_HLDCLR, mask);
      snd_cmipci_set_bit(cm, CM_REG_INT_HLDCLR, mask);
      spin_unlock(&cm->reg_lock);

      if (cm->rmidi && (status & CM_UARTINT))
            snd_mpu401_uart_interrupt(irq, cm->rmidi->private_data);

      if (cm->pcm) {
            if ((status & CM_CHINT0) && cm->channel[0].running)
                  snd_pcm_period_elapsed(cm->channel[0].substream);
            if ((status & CM_CHINT1) && cm->channel[1].running)
                  snd_pcm_period_elapsed(cm->channel[1].substream);
      }
      return IRQ_HANDLED;
}

/*
 * h/w infos
 */

/* playback on channel A */
static struct snd_pcm_hardware snd_cmipci_playback =
{
      .info =                 (SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED |
                         SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_PAUSE |
                         SNDRV_PCM_INFO_RESUME | SNDRV_PCM_INFO_MMAP_VALID),
      .formats =        SNDRV_PCM_FMTBIT_U8 | SNDRV_PCM_FMTBIT_S16_LE,
      .rates =          SNDRV_PCM_RATE_5512 | SNDRV_PCM_RATE_8000_48000,
      .rate_min =       5512,
      .rate_max =       48000,
      .channels_min =         1,
      .channels_max =         2,
      .buffer_bytes_max =     (128*1024),
      .period_bytes_min =     64,
      .period_bytes_max =     (128*1024),
      .periods_min =          2,
      .periods_max =          1024,
      .fifo_size =            0,
};

/* capture on channel B */
static struct snd_pcm_hardware snd_cmipci_capture =
{
      .info =                 (SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED |
                         SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_PAUSE |
                         SNDRV_PCM_INFO_RESUME | SNDRV_PCM_INFO_MMAP_VALID),
      .formats =        SNDRV_PCM_FMTBIT_U8 | SNDRV_PCM_FMTBIT_S16_LE,
      .rates =          SNDRV_PCM_RATE_5512 | SNDRV_PCM_RATE_8000_48000,
      .rate_min =       5512,
      .rate_max =       48000,
      .channels_min =         1,
      .channels_max =         2,
      .buffer_bytes_max =     (128*1024),
      .period_bytes_min =     64,
      .period_bytes_max =     (128*1024),
      .periods_min =          2,
      .periods_max =          1024,
      .fifo_size =            0,
};

/* playback on channel B - stereo 16bit only? */
static struct snd_pcm_hardware snd_cmipci_playback2 =
{
      .info =                 (SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED |
                         SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_PAUSE |
                         SNDRV_PCM_INFO_RESUME | SNDRV_PCM_INFO_MMAP_VALID),
      .formats =        SNDRV_PCM_FMTBIT_S16_LE,
      .rates =          SNDRV_PCM_RATE_5512 | SNDRV_PCM_RATE_8000_48000,
      .rate_min =       5512,
      .rate_max =       48000,
      .channels_min =         2,
      .channels_max =         2,
      .buffer_bytes_max =     (128*1024),
      .period_bytes_min =     64,
      .period_bytes_max =     (128*1024),
      .periods_min =          2,
      .periods_max =          1024,
      .fifo_size =            0,
};

/* spdif playback on channel A */
static struct snd_pcm_hardware snd_cmipci_playback_spdif =
{
      .info =                 (SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED |
                         SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_PAUSE |
                         SNDRV_PCM_INFO_RESUME | SNDRV_PCM_INFO_MMAP_VALID),
      .formats =        SNDRV_PCM_FMTBIT_S16_LE,
      .rates =          SNDRV_PCM_RATE_44100 | SNDRV_PCM_RATE_48000,
      .rate_min =       44100,
      .rate_max =       48000,
      .channels_min =         2,
      .channels_max =         2,
      .buffer_bytes_max =     (128*1024),
      .period_bytes_min =     64,
      .period_bytes_max =     (128*1024),
      .periods_min =          2,
      .periods_max =          1024,
      .fifo_size =            0,
};

/* spdif playback on channel A (32bit, IEC958 subframes) */
static struct snd_pcm_hardware snd_cmipci_playback_iec958_subframe =
{
      .info =                 (SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED |
                         SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_PAUSE |
                         SNDRV_PCM_INFO_RESUME | SNDRV_PCM_INFO_MMAP_VALID),
      .formats =        SNDRV_PCM_FMTBIT_IEC958_SUBFRAME_LE,
      .rates =          SNDRV_PCM_RATE_44100 | SNDRV_PCM_RATE_48000,
      .rate_min =       44100,
      .rate_max =       48000,
      .channels_min =         2,
      .channels_max =         2,
      .buffer_bytes_max =     (128*1024),
      .period_bytes_min =     64,
      .period_bytes_max =     (128*1024),
      .periods_min =          2,
      .periods_max =          1024,
      .fifo_size =            0,
};

/* spdif capture on channel B */
static struct snd_pcm_hardware snd_cmipci_capture_spdif =
{
      .info =                 (SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED |
                         SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_PAUSE |
                         SNDRV_PCM_INFO_RESUME | SNDRV_PCM_INFO_MMAP_VALID),
      .formats =          SNDRV_PCM_FMTBIT_S16_LE |
                        SNDRV_PCM_FMTBIT_IEC958_SUBFRAME_LE,
      .rates =          SNDRV_PCM_RATE_44100 | SNDRV_PCM_RATE_48000,
      .rate_min =       44100,
      .rate_max =       48000,
      .channels_min =         2,
      .channels_max =         2,
      .buffer_bytes_max =     (128*1024),
      .period_bytes_min =     64,
      .period_bytes_max =     (128*1024),
      .periods_min =          2,
      .periods_max =          1024,
      .fifo_size =            0,
};

static unsigned int rate_constraints[] = { 5512, 8000, 11025, 16000, 22050,
                  32000, 44100, 48000, 88200, 96000, 128000 };
static struct snd_pcm_hw_constraint_list hw_constraints_rates = {
            .count = ARRAY_SIZE(rate_constraints),
            .list = rate_constraints,
            .mask = 0,
};

/*
 * check device open/close
 */
static int open_device_check(struct cmipci *cm, int mode, struct snd_pcm_substream *subs)
{
      int ch = mode & CM_OPEN_CH_MASK;

      /* FIXME: a file should wait until the device becomes free
       * when it's opened on blocking mode.  however, since the current
       * pcm framework doesn't pass file pointer before actually opened,
       * we can't know whether blocking mode or not in open callback..
       */
      mutex_lock(&cm->open_mutex);
      if (cm->opened[ch]) {
            mutex_unlock(&cm->open_mutex);
            return -EBUSY;
      }
      cm->opened[ch] = mode;
      cm->channel[ch].substream = subs;
      if (! (mode & CM_OPEN_DAC)) {
            /* disable dual DAC mode */
            cm->channel[ch].is_dac = 0;
            spin_lock_irq(&cm->reg_lock);
            snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_ENDBDAC);
            spin_unlock_irq(&cm->reg_lock);
      }
      mutex_unlock(&cm->open_mutex);
      return 0;
}

static void close_device_check(struct cmipci *cm, int mode)
{
      int ch = mode & CM_OPEN_CH_MASK;

      mutex_lock(&cm->open_mutex);
      if (cm->opened[ch] == mode) {
            if (cm->channel[ch].substream) {
                  snd_cmipci_ch_reset(cm, ch);
                  cm->channel[ch].running = 0;
                  cm->channel[ch].substream = NULL;
            }
            cm->opened[ch] = 0;
            if (! cm->channel[ch].is_dac) {
                  /* enable dual DAC mode again */
                  cm->channel[ch].is_dac = 1;
                  spin_lock_irq(&cm->reg_lock);
                  snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_ENDBDAC);
                  spin_unlock_irq(&cm->reg_lock);
            }
      }
      mutex_unlock(&cm->open_mutex);
}

/*
 */

static int snd_cmipci_playback_open(struct snd_pcm_substream *substream)
{
      struct cmipci *cm = snd_pcm_substream_chip(substream);
      struct snd_pcm_runtime *runtime = substream->runtime;
      int err;

      if ((err = open_device_check(cm, CM_OPEN_PLAYBACK, substream)) < 0)
            return err;
      runtime->hw = snd_cmipci_playback;
      if (cm->chip_version == 68) {
            runtime->hw.rates |= SNDRV_PCM_RATE_88200 |
                             SNDRV_PCM_RATE_96000;
            runtime->hw.rate_max = 96000;
      } else if (cm->chip_version == 55) {
            err = snd_pcm_hw_constraint_list(runtime, 0,
                  SNDRV_PCM_HW_PARAM_RATE, &hw_constraints_rates);
            if (err < 0)
                  return err;
            runtime->hw.rates |= SNDRV_PCM_RATE_KNOT;
            runtime->hw.rate_max = 128000;
      }
      snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE, 0, 0x10000);
      cm->dig_pcm_status = cm->dig_status;
      return 0;
}

static int snd_cmipci_capture_open(struct snd_pcm_substream *substream)
{
      struct cmipci *cm = snd_pcm_substream_chip(substream);
      struct snd_pcm_runtime *runtime = substream->runtime;
      int err;

      if ((err = open_device_check(cm, CM_OPEN_CAPTURE, substream)) < 0)
            return err;
      runtime->hw = snd_cmipci_capture;
      if (cm->chip_version == 68) { // 8768 only supports 44k/48k recording
            runtime->hw.rate_min = 41000;
            runtime->hw.rates = SNDRV_PCM_RATE_44100 | SNDRV_PCM_RATE_48000;
      } else if (cm->chip_version == 55) {
            err = snd_pcm_hw_constraint_list(runtime, 0,
                  SNDRV_PCM_HW_PARAM_RATE, &hw_constraints_rates);
            if (err < 0)
                  return err;
            runtime->hw.rates |= SNDRV_PCM_RATE_KNOT;
            runtime->hw.rate_max = 128000;
      }
      snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE, 0, 0x10000);
      return 0;
}

static int snd_cmipci_playback2_open(struct snd_pcm_substream *substream)
{
      struct cmipci *cm = snd_pcm_substream_chip(substream);
      struct snd_pcm_runtime *runtime = substream->runtime;
      int err;

      if ((err = open_device_check(cm, CM_OPEN_PLAYBACK2, substream)) < 0) /* use channel B */
            return err;
      runtime->hw = snd_cmipci_playback2;
      mutex_lock(&cm->open_mutex);
      if (! cm->opened[CM_CH_PLAY]) {
            if (cm->can_multi_ch) {
                  runtime->hw.channels_max = cm->max_channels;
                  if (cm->max_channels == 4)
                        snd_pcm_hw_constraint_list(runtime, 0, SNDRV_PCM_HW_PARAM_CHANNELS, &hw_constraints_channels_4);
                  else if (cm->max_channels == 6)
                        snd_pcm_hw_constraint_list(runtime, 0, SNDRV_PCM_HW_PARAM_CHANNELS, &hw_constraints_channels_6);
                  else if (cm->max_channels == 8)
                        snd_pcm_hw_constraint_list(runtime, 0, SNDRV_PCM_HW_PARAM_CHANNELS, &hw_constraints_channels_8);
            }
      }
      mutex_unlock(&cm->open_mutex);
      if (cm->chip_version == 68) {
            runtime->hw.rates |= SNDRV_PCM_RATE_88200 |
                             SNDRV_PCM_RATE_96000;
            runtime->hw.rate_max = 96000;
      } else if (cm->chip_version == 55) {
            err = snd_pcm_hw_constraint_list(runtime, 0,
                  SNDRV_PCM_HW_PARAM_RATE, &hw_constraints_rates);
            if (err < 0)
                  return err;
            runtime->hw.rates |= SNDRV_PCM_RATE_KNOT;
            runtime->hw.rate_max = 128000;
      }
      snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE, 0, 0x10000);
      return 0;
}

static int snd_cmipci_playback_spdif_open(struct snd_pcm_substream *substream)
{
      struct cmipci *cm = snd_pcm_substream_chip(substream);
      struct snd_pcm_runtime *runtime = substream->runtime;
      int err;

      if ((err = open_device_check(cm, CM_OPEN_SPDIF_PLAYBACK, substream)) < 0) /* use channel A */
            return err;
      if (cm->can_ac3_hw) {
            runtime->hw = snd_cmipci_playback_spdif;
            if (cm->chip_version >= 37) {
                  runtime->hw.formats |= SNDRV_PCM_FMTBIT_S32_LE;
                  snd_pcm_hw_constraint_msbits(runtime, 0, 32, 24);
            }
            if (cm->can_96k) {
                  runtime->hw.rates |= SNDRV_PCM_RATE_88200 |
                                   SNDRV_PCM_RATE_96000;
                  runtime->hw.rate_max = 96000;
            }
      } else {
            runtime->hw = snd_cmipci_playback_iec958_subframe;
      }
      snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE, 0, 0x40000);
      cm->dig_pcm_status = cm->dig_status;
      return 0;
}

static int snd_cmipci_capture_spdif_open(struct snd_pcm_substream *substream)
{
      struct cmipci *cm = snd_pcm_substream_chip(substream);
      struct snd_pcm_runtime *runtime = substream->runtime;
      int err;

      if ((err = open_device_check(cm, CM_OPEN_SPDIF_CAPTURE, substream)) < 0) /* use channel B */
            return err;
      runtime->hw = snd_cmipci_capture_spdif;
      if (cm->can_96k && !(cm->chip_version == 68)) {
            runtime->hw.rates |= SNDRV_PCM_RATE_88200 |
                             SNDRV_PCM_RATE_96000;
            runtime->hw.rate_max = 96000;
      }
      snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE, 0, 0x40000);
      return 0;
}


/*
 */

static int snd_cmipci_playback_close(struct snd_pcm_substream *substream)
{
      struct cmipci *cm = snd_pcm_substream_chip(substream);
      close_device_check(cm, CM_OPEN_PLAYBACK);
      return 0;
}

static int snd_cmipci_capture_close(struct snd_pcm_substream *substream)
{
      struct cmipci *cm = snd_pcm_substream_chip(substream);
      close_device_check(cm, CM_OPEN_CAPTURE);
      return 0;
}

static int snd_cmipci_playback2_close(struct snd_pcm_substream *substream)
{
      struct cmipci *cm = snd_pcm_substream_chip(substream);
      close_device_check(cm, CM_OPEN_PLAYBACK2);
      close_device_check(cm, CM_OPEN_PLAYBACK_MULTI);
      return 0;
}

static int snd_cmipci_playback_spdif_close(struct snd_pcm_substream *substream)
{
      struct cmipci *cm = snd_pcm_substream_chip(substream);
      close_device_check(cm, CM_OPEN_SPDIF_PLAYBACK);
      return 0;
}

static int snd_cmipci_capture_spdif_close(struct snd_pcm_substream *substream)
{
      struct cmipci *cm = snd_pcm_substream_chip(substream);
      close_device_check(cm, CM_OPEN_SPDIF_CAPTURE);
      return 0;
}


/*
 */

static struct snd_pcm_ops snd_cmipci_playback_ops = {
      .open =           snd_cmipci_playback_open,
      .close =    snd_cmipci_playback_close,
      .ioctl =    snd_pcm_lib_ioctl,
      .hw_params =      snd_cmipci_hw_params,
      .hw_free =  snd_cmipci_playback_hw_free,
      .prepare =  snd_cmipci_playback_prepare,
      .trigger =  snd_cmipci_playback_trigger,
      .pointer =  snd_cmipci_playback_pointer,
};

static struct snd_pcm_ops snd_cmipci_capture_ops = {
      .open =           snd_cmipci_capture_open,
      .close =    snd_cmipci_capture_close,
      .ioctl =    snd_pcm_lib_ioctl,
      .hw_params =      snd_cmipci_hw_params,
      .hw_free =  snd_cmipci_hw_free,
      .prepare =  snd_cmipci_capture_prepare,
      .trigger =  snd_cmipci_capture_trigger,
      .pointer =  snd_cmipci_capture_pointer,
};

static struct snd_pcm_ops snd_cmipci_playback2_ops = {
      .open =           snd_cmipci_playback2_open,
      .close =    snd_cmipci_playback2_close,
      .ioctl =    snd_pcm_lib_ioctl,
      .hw_params =      snd_cmipci_playback2_hw_params,
      .hw_free =  snd_cmipci_playback2_hw_free,
      .prepare =  snd_cmipci_capture_prepare,   /* channel B */
      .trigger =  snd_cmipci_capture_trigger,   /* channel B */
      .pointer =  snd_cmipci_capture_pointer,   /* channel B */
};

static struct snd_pcm_ops snd_cmipci_playback_spdif_ops = {
      .open =           snd_cmipci_playback_spdif_open,
      .close =    snd_cmipci_playback_spdif_close,
      .ioctl =    snd_pcm_lib_ioctl,
      .hw_params =      snd_cmipci_hw_params,
      .hw_free =  snd_cmipci_playback_hw_free,
      .prepare =  snd_cmipci_playback_spdif_prepare,  /* set up rate */
      .trigger =  snd_cmipci_playback_trigger,
      .pointer =  snd_cmipci_playback_pointer,
};

static struct snd_pcm_ops snd_cmipci_capture_spdif_ops = {
      .open =           snd_cmipci_capture_spdif_open,
      .close =    snd_cmipci_capture_spdif_close,
      .ioctl =    snd_pcm_lib_ioctl,
      .hw_params =      snd_cmipci_hw_params,
      .hw_free =  snd_cmipci_capture_spdif_hw_free,
      .prepare =  snd_cmipci_capture_spdif_prepare,
      .trigger =  snd_cmipci_capture_trigger,
      .pointer =  snd_cmipci_capture_pointer,
};


/*
 */

static int __devinit snd_cmipci_pcm_new(struct cmipci *cm, int device)
{
      struct snd_pcm *pcm;
      int err;

      err = snd_pcm_new(cm->card, cm->card->driver, device, 1, 1, &pcm);
      if (err < 0)
            return err;

      snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_cmipci_playback_ops);
      snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &snd_cmipci_capture_ops);

      pcm->private_data = cm;
      pcm->info_flags = 0;
      strcpy(pcm->name, "C-Media PCI DAC/ADC");
      cm->pcm = pcm;

      snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_DEV,
                                    snd_dma_pci_data(cm->pci), 64*1024, 128*1024);

      return 0;
}

static int __devinit snd_cmipci_pcm2_new(struct cmipci *cm, int device)
{
      struct snd_pcm *pcm;
      int err;

      err = snd_pcm_new(cm->card, cm->card->driver, device, 1, 0, &pcm);
      if (err < 0)
            return err;

      snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_cmipci_playback2_ops);

      pcm->private_data = cm;
      pcm->info_flags = 0;
      strcpy(pcm->name, "C-Media PCI 2nd DAC");
      cm->pcm2 = pcm;

      snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_DEV,
                                    snd_dma_pci_data(cm->pci), 64*1024, 128*1024);

      return 0;
}

static int __devinit snd_cmipci_pcm_spdif_new(struct cmipci *cm, int device)
{
      struct snd_pcm *pcm;
      int err;

      err = snd_pcm_new(cm->card, cm->card->driver, device, 1, 1, &pcm);
      if (err < 0)
            return err;

      snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_cmipci_playback_spdif_ops);
      snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &snd_cmipci_capture_spdif_ops);

      pcm->private_data = cm;
      pcm->info_flags = 0;
      strcpy(pcm->name, "C-Media PCI IEC958");
      cm->pcm_spdif = pcm;

      snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_DEV,
                                    snd_dma_pci_data(cm->pci), 64*1024, 128*1024);

      return 0;
}

/*
 * mixer interface:
 * - CM8338/8738 has a compatible mixer interface with SB16, but
 *   lack of some elements like tone control, i/o gain and AGC.
 * - Access to native registers:
 *   - A 3D switch
 *   - Output mute switches
 */

static void snd_cmipci_mixer_write(struct cmipci *s, unsigned char idx, unsigned char data)
{
      outb(idx, s->iobase + CM_REG_SB16_ADDR);
      outb(data, s->iobase + CM_REG_SB16_DATA);
}

static unsigned char snd_cmipci_mixer_read(struct cmipci *s, unsigned char idx)
{
      unsigned char v;

      outb(idx, s->iobase + CM_REG_SB16_ADDR);
      v = inb(s->iobase + CM_REG_SB16_DATA);
      return v;
}

/*
 * general mixer element
 */
struct cmipci_sb_reg {
      unsigned int left_reg, right_reg;
      unsigned int left_shift, right_shift;
      unsigned int mask;
      unsigned int invert: 1;
      unsigned int stereo: 1;
};

#define COMPOSE_SB_REG(lreg,rreg,lshift,rshift,mask,invert,stereo) \
 ((lreg) | ((rreg) << 8) | (lshift << 16) | (rshift << 19) | (mask << 24) | (invert << 22) | (stereo << 23))

#define CMIPCI_DOUBLE(xname, left_reg, right_reg, left_shift, right_shift, mask, invert, stereo) \
{ .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
  .info = snd_cmipci_info_volume, \
  .get = snd_cmipci_get_volume, .put = snd_cmipci_put_volume, \
  .private_value = COMPOSE_SB_REG(left_reg, right_reg, left_shift, right_shift, mask, invert, stereo), \
}

#define CMIPCI_SB_VOL_STEREO(xname,reg,shift,mask) CMIPCI_DOUBLE(xname, reg, reg+1, shift, shift, mask, 0, 1)
#define CMIPCI_SB_VOL_MONO(xname,reg,shift,mask) CMIPCI_DOUBLE(xname, reg, reg, shift, shift, mask, 0, 0)
#define CMIPCI_SB_SW_STEREO(xname,lshift,rshift) CMIPCI_DOUBLE(xname, SB_DSP4_OUTPUT_SW, SB_DSP4_OUTPUT_SW, lshift, rshift, 1, 0, 1)
#define CMIPCI_SB_SW_MONO(xname,shift) CMIPCI_DOUBLE(xname, SB_DSP4_OUTPUT_SW, SB_DSP4_OUTPUT_SW, shift, shift, 1, 0, 0)

static void cmipci_sb_reg_decode(struct cmipci_sb_reg *r, unsigned long val)
{
      r->left_reg = val & 0xff;
      r->right_reg = (val >> 8) & 0xff;
      r->left_shift = (val >> 16) & 0x07;
      r->right_shift = (val >> 19) & 0x07;
      r->invert = (val >> 22) & 1;
      r->stereo = (val >> 23) & 1;
      r->mask = (val >> 24) & 0xff;
}

static int snd_cmipci_info_volume(struct snd_kcontrol *kcontrol,
                          struct snd_ctl_elem_info *uinfo)
{
      struct cmipci_sb_reg reg;

      cmipci_sb_reg_decode(&reg, kcontrol->private_value);
      uinfo->type = reg.mask == 1 ? SNDRV_CTL_ELEM_TYPE_BOOLEAN : SNDRV_CTL_ELEM_TYPE_INTEGER;
      uinfo->count = reg.stereo + 1;
      uinfo->value.integer.min = 0;
      uinfo->value.integer.max = reg.mask;
      return 0;
}
 
static int snd_cmipci_get_volume(struct snd_kcontrol *kcontrol,
                         struct snd_ctl_elem_value *ucontrol)
{
      struct cmipci *cm = snd_kcontrol_chip(kcontrol);
      struct cmipci_sb_reg reg;
      int val;

      cmipci_sb_reg_decode(&reg, kcontrol->private_value);
      spin_lock_irq(&cm->reg_lock);
      val = (snd_cmipci_mixer_read(cm, reg.left_reg) >> reg.left_shift) & reg.mask;
      if (reg.invert)
            val = reg.mask - val;
      ucontrol->value.integer.value[0] = val;
      if (reg.stereo) {
            val = (snd_cmipci_mixer_read(cm, reg.right_reg) >> reg.right_shift) & reg.mask;
            if (reg.invert)
                  val = reg.mask - val;
             ucontrol->value.integer.value[1] = val;
      }
      spin_unlock_irq(&cm->reg_lock);
      return 0;
}

static int snd_cmipci_put_volume(struct snd_kcontrol *kcontrol,
                         struct snd_ctl_elem_value *ucontrol)
{
      struct cmipci *cm = snd_kcontrol_chip(kcontrol);
      struct cmipci_sb_reg reg;
      int change;
      int left, right, oleft, oright;

      cmipci_sb_reg_decode(&reg, kcontrol->private_value);
      left = ucontrol->value.integer.value[0] & reg.mask;
      if (reg.invert)
            left = reg.mask - left;
      left <<= reg.left_shift;
      if (reg.stereo) {
            right = ucontrol->value.integer.value[1] & reg.mask;
            if (reg.invert)
                  right = reg.mask - right;
            right <<= reg.right_shift;
      } else
            right = 0;
      spin_lock_irq(&cm->reg_lock);
      oleft = snd_cmipci_mixer_read(cm, reg.left_reg);
      left |= oleft & ~(reg.mask << reg.left_shift);
      change = left != oleft;
      if (reg.stereo) {
            if (reg.left_reg != reg.right_reg) {
                  snd_cmipci_mixer_write(cm, reg.left_reg, left);
                  oright = snd_cmipci_mixer_read(cm, reg.right_reg);
            } else
                  oright = left;
            right |= oright & ~(reg.mask << reg.right_shift);
            change |= right != oright;
            snd_cmipci_mixer_write(cm, reg.right_reg, right);
      } else
            snd_cmipci_mixer_write(cm, reg.left_reg, left);
      spin_unlock_irq(&cm->reg_lock);
      return change;
}

/*
 * input route (left,right) -> (left,right)
 */
#define CMIPCI_SB_INPUT_SW(xname, left_shift, right_shift) \
{ .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
  .info = snd_cmipci_info_input_sw, \
  .get = snd_cmipci_get_input_sw, .put = snd_cmipci_put_input_sw, \
  .private_value = COMPOSE_SB_REG(SB_DSP4_INPUT_LEFT, SB_DSP4_INPUT_RIGHT, left_shift, right_shift, 1, 0, 1), \
}

static int snd_cmipci_info_input_sw(struct snd_kcontrol *kcontrol,
                            struct snd_ctl_elem_info *uinfo)
{
      uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
      uinfo->count = 4;
      uinfo->value.integer.min = 0;
      uinfo->value.integer.max = 1;
      return 0;
}
 
static int snd_cmipci_get_input_sw(struct snd_kcontrol *kcontrol,
                           struct snd_ctl_elem_value *ucontrol)
{
      struct cmipci *cm = snd_kcontrol_chip(kcontrol);
      struct cmipci_sb_reg reg;
      int val1, val2;

      cmipci_sb_reg_decode(&reg, kcontrol->private_value);
      spin_lock_irq(&cm->reg_lock);
      val1 = snd_cmipci_mixer_read(cm, reg.left_reg);
      val2 = snd_cmipci_mixer_read(cm, reg.right_reg);
      spin_unlock_irq(&cm->reg_lock);
      ucontrol->value.integer.value[0] = (val1 >> reg.left_shift) & 1;
      ucontrol->value.integer.value[1] = (val2 >> reg.left_shift) & 1;
      ucontrol->value.integer.value[2] = (val1 >> reg.right_shift) & 1;
      ucontrol->value.integer.value[3] = (val2 >> reg.right_shift) & 1;
      return 0;
}

static int snd_cmipci_put_input_sw(struct snd_kcontrol *kcontrol,
                           struct snd_ctl_elem_value *ucontrol)
{
      struct cmipci *cm = snd_kcontrol_chip(kcontrol);
      struct cmipci_sb_reg reg;
      int change;
      int val1, val2, oval1, oval2;

      cmipci_sb_reg_decode(&reg, kcontrol->private_value);
      spin_lock_irq(&cm->reg_lock);
      oval1 = snd_cmipci_mixer_read(cm, reg.left_reg);
      oval2 = snd_cmipci_mixer_read(cm, reg.right_reg);
      val1 = oval1 & ~((1 << reg.left_shift) | (1 << reg.right_shift));
      val2 = oval2 & ~((1 << reg.left_shift) | (1 << reg.right_shift));
      val1 |= (ucontrol->value.integer.value[0] & 1) << reg.left_shift;
      val2 |= (ucontrol->value.integer.value[1] & 1) << reg.left_shift;
      val1 |= (ucontrol->value.integer.value[2] & 1) << reg.right_shift;
      val2 |= (ucontrol->value.integer.value[3] & 1) << reg.right_shift;
      change = val1 != oval1 || val2 != oval2;
      snd_cmipci_mixer_write(cm, reg.left_reg, val1);
      snd_cmipci_mixer_write(cm, reg.right_reg, val2);
      spin_unlock_irq(&cm->reg_lock);
      return change;
}

/*
 * native mixer switches/volumes
 */

#define CMIPCI_MIXER_SW_STEREO(xname, reg, lshift, rshift, invert) \
{ .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
  .info = snd_cmipci_info_native_mixer, \
  .get = snd_cmipci_get_native_mixer, .put = snd_cmipci_put_native_mixer, \
  .private_value = COMPOSE_SB_REG(reg, reg, lshift, rshift, 1, invert, 1), \
}

#define CMIPCI_MIXER_SW_MONO(xname, reg, shift, invert) \
{ .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
  .info = snd_cmipci_info_native_mixer, \
  .get = snd_cmipci_get_native_mixer, .put = snd_cmipci_put_native_mixer, \
  .private_value = COMPOSE_SB_REG(reg, reg, shift, shift, 1, invert, 0), \
}

#define CMIPCI_MIXER_VOL_STEREO(xname, reg, lshift, rshift, mask) \
{ .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
  .info = snd_cmipci_info_native_mixer, \
  .get = snd_cmipci_get_native_mixer, .put = snd_cmipci_put_native_mixer, \
  .private_value = COMPOSE_SB_REG(reg, reg, lshift, rshift, mask, 0, 1), \
}

#define CMIPCI_MIXER_VOL_MONO(xname, reg, shift, mask) \
{ .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
  .info = snd_cmipci_info_native_mixer, \
  .get = snd_cmipci_get_native_mixer, .put = snd_cmipci_put_native_mixer, \
  .private_value = COMPOSE_SB_REG(reg, reg, shift, shift, mask, 0, 0), \
}

static int snd_cmipci_info_native_mixer(struct snd_kcontrol *kcontrol,
                              struct snd_ctl_elem_info *uinfo)
{
      struct cmipci_sb_reg reg;

      cmipci_sb_reg_decode(&reg, kcontrol->private_value);
      uinfo->type = reg.mask == 1 ? SNDRV_CTL_ELEM_TYPE_BOOLEAN : SNDRV_CTL_ELEM_TYPE_INTEGER;
      uinfo->count = reg.stereo + 1;
      uinfo->value.integer.min = 0;
      uinfo->value.integer.max = reg.mask;
      return 0;

}

static int snd_cmipci_get_native_mixer(struct snd_kcontrol *kcontrol,
                               struct snd_ctl_elem_value *ucontrol)
{
      struct cmipci *cm = snd_kcontrol_chip(kcontrol);
      struct cmipci_sb_reg reg;
      unsigned char oreg, val;

      cmipci_sb_reg_decode(&reg, kcontrol->private_value);
      spin_lock_irq(&cm->reg_lock);
      oreg = inb(cm->iobase + reg.left_reg);
      val = (oreg >> reg.left_shift) & reg.mask;
      if (reg.invert)
            val = reg.mask - val;
      ucontrol->value.integer.value[0] = val;
      if (reg.stereo) {
            val = (oreg >> reg.right_shift) & reg.mask;
            if (reg.invert)
                  val = reg.mask - val;
            ucontrol->value.integer.value[1] = val;
      }
      spin_unlock_irq(&cm->reg_lock);
      return 0;
}

static int snd_cmipci_put_native_mixer(struct snd_kcontrol *kcontrol,
                               struct snd_ctl_elem_value *ucontrol)
{
      struct cmipci *cm = snd_kcontrol_chip(kcontrol);
      struct cmipci_sb_reg reg;
      unsigned char oreg, nreg, val;

      cmipci_sb_reg_decode(&reg, kcontrol->private_value);
      spin_lock_irq(&cm->reg_lock);
      oreg = inb(cm->iobase + reg.left_reg);
      val = ucontrol->value.integer.value[0] & reg.mask;
      if (reg.invert)
            val = reg.mask - val;
      nreg = oreg & ~(reg.mask << reg.left_shift);
      nreg |= (val << reg.left_shift);
      if (reg.stereo) {
            val = ucontrol->value.integer.value[1] & reg.mask;
            if (reg.invert)
                  val = reg.mask - val;
            nreg &= ~(reg.mask << reg.right_shift);
            nreg |= (val << reg.right_shift);
      }
      outb(nreg, cm->iobase + reg.left_reg);
      spin_unlock_irq(&cm->reg_lock);
      return (nreg != oreg);
}

/*
 * special case - check mixer sensitivity
 */
static int snd_cmipci_get_native_mixer_sensitive(struct snd_kcontrol *kcontrol,
                                     struct snd_ctl_elem_value *ucontrol)
{
      //struct cmipci *cm = snd_kcontrol_chip(kcontrol);
      return snd_cmipci_get_native_mixer(kcontrol, ucontrol);
}

static int snd_cmipci_put_native_mixer_sensitive(struct snd_kcontrol *kcontrol,
                                     struct snd_ctl_elem_value *ucontrol)
{
      struct cmipci *cm = snd_kcontrol_chip(kcontrol);
      if (cm->mixer_insensitive) {
            /* ignored */
            return 0;
      }
      return snd_cmipci_put_native_mixer(kcontrol, ucontrol);
}


static struct snd_kcontrol_new snd_cmipci_mixers[] __devinitdata = {
      CMIPCI_SB_VOL_STEREO("Master Playback Volume", SB_DSP4_MASTER_DEV, 3, 31),
      CMIPCI_MIXER_SW_MONO("3D Control - Switch", CM_REG_MIXER1, CM_X3DEN_SHIFT, 0),
      CMIPCI_SB_VOL_STEREO("PCM Playback Volume", SB_DSP4_PCM_DEV, 3, 31),
      //CMIPCI_MIXER_SW_MONO("PCM Playback Switch", CM_REG_MIXER1, CM_WSMUTE_SHIFT, 1),
      { /* switch with sensitivity */
            .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
            .name = "PCM Playback Switch",
            .info = snd_cmipci_info_native_mixer,
            .get = snd_cmipci_get_native_mixer_sensitive,
            .put = snd_cmipci_put_native_mixer_sensitive,
            .private_value = COMPOSE_SB_REG(CM_REG_MIXER1, CM_REG_MIXER1, CM_WSMUTE_SHIFT, CM_WSMUTE_SHIFT, 1, 1, 0),
      },
      CMIPCI_MIXER_SW_STEREO("PCM Capture Switch", CM_REG_MIXER1, CM_WAVEINL_SHIFT, CM_WAVEINR_SHIFT, 0),
      CMIPCI_SB_VOL_STEREO("Synth Playback Volume", SB_DSP4_SYNTH_DEV, 3, 31),
      CMIPCI_MIXER_SW_MONO("Synth Playback Switch", CM_REG_MIXER1, CM_FMMUTE_SHIFT, 1),
      CMIPCI_SB_INPUT_SW("Synth Capture Route", 6, 5),
      CMIPCI_SB_VOL_STEREO("CD Playback Volume", SB_DSP4_CD_DEV, 3, 31),
      CMIPCI_SB_SW_STEREO("CD Playback Switch", 2, 1),
      CMIPCI_SB_INPUT_SW("CD Capture Route", 2, 1),
      CMIPCI_SB_VOL_STEREO("Line Playback Volume", SB_DSP4_LINE_DEV, 3, 31),
      CMIPCI_SB_SW_STEREO("Line Playback Switch", 4, 3),
      CMIPCI_SB_INPUT_SW("Line Capture Route", 4, 3),
      CMIPCI_SB_VOL_MONO("Mic Playback Volume", SB_DSP4_MIC_DEV, 3, 31),
      CMIPCI_SB_SW_MONO("Mic Playback Switch", 0),
      CMIPCI_DOUBLE("Mic Capture Switch", SB_DSP4_INPUT_LEFT, SB_DSP4_INPUT_RIGHT, 0, 0, 1, 0, 0),
      CMIPCI_SB_VOL_MONO("PC Speaker Playback Volume", SB_DSP4_SPEAKER_DEV, 6, 3),
      CMIPCI_MIXER_VOL_STEREO("Aux Playback Volume", CM_REG_AUX_VOL, 4, 0, 15),
      CMIPCI_MIXER_SW_STEREO("Aux Playback Switch", CM_REG_MIXER2, CM_VAUXLM_SHIFT, CM_VAUXRM_SHIFT, 0),
      CMIPCI_MIXER_SW_STEREO("Aux Capture Switch", CM_REG_MIXER2, CM_RAUXLEN_SHIFT, CM_RAUXREN_SHIFT, 0),
      CMIPCI_MIXER_SW_MONO("Mic Boost Playback Switch", CM_REG_MIXER2, CM_MICGAINZ_SHIFT, 1),
      CMIPCI_MIXER_VOL_MONO("Mic Capture Volume", CM_REG_MIXER2, CM_VADMIC_SHIFT, 7),
      CMIPCI_SB_VOL_MONO("Phone Playback Volume", CM_REG_EXTENT_IND, 5, 7),
      CMIPCI_DOUBLE("Phone Playback Switch", CM_REG_EXTENT_IND, CM_REG_EXTENT_IND, 4, 4, 1, 0, 0),
      CMIPCI_DOUBLE("PC Speaker Playback Switch", CM_REG_EXTENT_IND, CM_REG_EXTENT_IND, 3, 3, 1, 0, 0),
      CMIPCI_DOUBLE("Mic Boost Capture Switch", CM_REG_EXTENT_IND, CM_REG_EXTENT_IND, 0, 0, 1, 0, 0),
};

/*
 * other switches
 */

struct cmipci_switch_args {
      int reg;          /* register index */
      unsigned int mask;      /* mask bits */
      unsigned int mask_on;   /* mask bits to turn on */
      unsigned int is_byte: 1;            /* byte access? */
      unsigned int ac3_sensitive: 1;      /* access forbidden during
                               * non-audio operation?
                               */
};

#define snd_cmipci_uswitch_info           snd_ctl_boolean_mono_info

static int _snd_cmipci_uswitch_get(struct snd_kcontrol *kcontrol,
                           struct snd_ctl_elem_value *ucontrol,
                           struct cmipci_switch_args *args)
{
      unsigned int val;
      struct cmipci *cm = snd_kcontrol_chip(kcontrol);

      spin_lock_irq(&cm->reg_lock);
      if (args->ac3_sensitive && cm->mixer_insensitive) {
            ucontrol->value.integer.value[0] = 0;
            spin_unlock_irq(&cm->reg_lock);
            return 0;
      }
      if (args->is_byte)
            val = inb(cm->iobase + args->reg);
      else
            val = snd_cmipci_read(cm, args->reg);
      ucontrol->value.integer.value[0] = ((val & args->mask) == args->mask_on) ? 1 : 0;
      spin_unlock_irq(&cm->reg_lock);
      return 0;
}

static int snd_cmipci_uswitch_get(struct snd_kcontrol *kcontrol,
                          struct snd_ctl_elem_value *ucontrol)
{
      struct cmipci_switch_args *args;
      args = (struct cmipci_switch_args *)kcontrol->private_value;
      snd_assert(args != NULL, return -EINVAL);
      return _snd_cmipci_uswitch_get(kcontrol, ucontrol, args);
}

static int _snd_cmipci_uswitch_put(struct snd_kcontrol *kcontrol,
                           struct snd_ctl_elem_value *ucontrol,
                           struct cmipci_switch_args *args)
{
      unsigned int val;
      int change;
      struct cmipci *cm = snd_kcontrol_chip(kcontrol);

      spin_lock_irq(&cm->reg_lock);
      if (args->ac3_sensitive && cm->mixer_insensitive) {
            /* ignored */
            spin_unlock_irq(&cm->reg_lock);
            return 0;
      }
      if (args->is_byte)
            val = inb(cm->iobase + args->reg);
      else
            val = snd_cmipci_read(cm, args->reg);
      change = (val & args->mask) != (ucontrol->value.integer.value[0] ? 
                  args->mask_on : (args->mask & ~args->mask_on));
      if (change) {
            val &= ~args->mask;
            if (ucontrol->value.integer.value[0])
                  val |= args->mask_on;
            else
                  val |= (args->mask & ~args->mask_on);
            if (args->is_byte)
                  outb((unsigned char)val, cm->iobase + args->reg);
            else
                  snd_cmipci_write(cm, args->reg, val);
      }
      spin_unlock_irq(&cm->reg_lock);
      return change;
}

static int snd_cmipci_uswitch_put(struct snd_kcontrol *kcontrol,
                          struct snd_ctl_elem_value *ucontrol)
{
      struct cmipci_switch_args *args;
      args = (struct cmipci_switch_args *)kcontrol->private_value;
      snd_assert(args != NULL, return -EINVAL);
      return _snd_cmipci_uswitch_put(kcontrol, ucontrol, args);
}

#define DEFINE_SWITCH_ARG(sname, xreg, xmask, xmask_on, xis_byte, xac3) \
static struct cmipci_switch_args cmipci_switch_arg_##sname = { \
  .reg = xreg, \
  .mask = xmask, \
  .mask_on = xmask_on, \
  .is_byte = xis_byte, \
  .ac3_sensitive = xac3, \
}
      
#define DEFINE_BIT_SWITCH_ARG(sname, xreg, xmask, xis_byte, xac3) \
      DEFINE_SWITCH_ARG(sname, xreg, xmask, xmask, xis_byte, xac3)

#if 0 /* these will be controlled in pcm device */
DEFINE_BIT_SWITCH_ARG(spdif_in, CM_REG_FUNCTRL1, CM_SPDF_1, 0, 0);
DEFINE_BIT_SWITCH_ARG(spdif_out, CM_REG_FUNCTRL1, CM_SPDF_0, 0, 0);
#endif
DEFINE_BIT_SWITCH_ARG(spdif_in_sel1, CM_REG_CHFORMAT, CM_SPDIF_SELECT1, 0, 0);
DEFINE_BIT_SWITCH_ARG(spdif_in_sel2, CM_REG_MISC_CTRL, CM_SPDIF_SELECT2, 0, 0);
DEFINE_BIT_SWITCH_ARG(spdif_enable, CM_REG_LEGACY_CTRL, CM_ENSPDOUT, 0, 0);
DEFINE_BIT_SWITCH_ARG(spdo2dac, CM_REG_FUNCTRL1, CM_SPDO2DAC, 0, 1);
DEFINE_BIT_SWITCH_ARG(spdi_valid, CM_REG_MISC, CM_SPDVALID, 1, 0);
DEFINE_BIT_SWITCH_ARG(spdif_copyright, CM_REG_LEGACY_CTRL, CM_SPDCOPYRHT, 0, 0);
DEFINE_BIT_SWITCH_ARG(spdif_dac_out, CM_REG_LEGACY_CTRL, CM_DAC2SPDO, 0, 1);
DEFINE_SWITCH_ARG(spdo_5v, CM_REG_MISC_CTRL, CM_SPDO5V, 0, 0, 0); /* inverse: 0 = 5V */
// DEFINE_BIT_SWITCH_ARG(spdo_48k, CM_REG_MISC_CTRL, CM_SPDF_AC97|CM_SPDIF48K, 0, 1);
DEFINE_BIT_SWITCH_ARG(spdif_loop, CM_REG_FUNCTRL1, CM_SPDFLOOP, 0, 1);
DEFINE_BIT_SWITCH_ARG(spdi_monitor, CM_REG_MIXER1, CM_CDPLAY, 1, 0);
/* DEFINE_BIT_SWITCH_ARG(spdi_phase, CM_REG_CHFORMAT, CM_SPDIF_INVERSE, 0, 0); */
DEFINE_BIT_SWITCH_ARG(spdi_phase, CM_REG_MISC, CM_SPDIF_INVERSE, 1, 0);
DEFINE_BIT_SWITCH_ARG(spdi_phase2, CM_REG_CHFORMAT, CM_SPDIF_INVERSE2, 0, 0);
#if CM_CH_PLAY == 1
DEFINE_SWITCH_ARG(exchange_dac, CM_REG_MISC_CTRL, CM_XCHGDAC, 0, 0, 0); /* reversed */
#else
DEFINE_SWITCH_ARG(exchange_dac, CM_REG_MISC_CTRL, CM_XCHGDAC, CM_XCHGDAC, 0, 0);
#endif
DEFINE_BIT_SWITCH_ARG(fourch, CM_REG_MISC_CTRL, CM_N4SPK3D, 0, 0);
// DEFINE_BIT_SWITCH_ARG(line_rear, CM_REG_MIXER1, CM_REAR2LIN, 1, 0);
// DEFINE_BIT_SWITCH_ARG(line_bass, CM_REG_LEGACY_CTRL, CM_CENTR2LIN|CM_BASE2LIN, 0, 0);
// DEFINE_BIT_SWITCH_ARG(joystick, CM_REG_FUNCTRL1, CM_JYSTK_EN, 0, 0); /* now module option */
DEFINE_SWITCH_ARG(modem, CM_REG_MISC_CTRL, CM_FLINKON|CM_FLINKOFF, CM_FLINKON, 0, 0);

#define DEFINE_SWITCH(sname, stype, sarg) \
{ .name = sname, \
  .iface = stype, \
  .info = snd_cmipci_uswitch_info, \
  .get = snd_cmipci_uswitch_get, \
  .put = snd_cmipci_uswitch_put, \
  .private_value = (unsigned long)&cmipci_switch_arg_##sarg,\
}

#define DEFINE_CARD_SWITCH(sname, sarg) DEFINE_SWITCH(sname, SNDRV_CTL_ELEM_IFACE_CARD, sarg)
#define DEFINE_MIXER_SWITCH(sname, sarg) DEFINE_SWITCH(sname, SNDRV_CTL_ELEM_IFACE_MIXER, sarg)


/*
 * callbacks for spdif output switch
 * needs toggle two registers..
 */
static int snd_cmipci_spdout_enable_get(struct snd_kcontrol *kcontrol,
                              struct snd_ctl_elem_value *ucontrol)
{
      int changed;
      changed = _snd_cmipci_uswitch_get(kcontrol, ucontrol, &cmipci_switch_arg_spdif_enable);
      changed |= _snd_cmipci_uswitch_get(kcontrol, ucontrol, &cmipci_switch_arg_spdo2dac);
      return changed;
}

static int snd_cmipci_spdout_enable_put(struct snd_kcontrol *kcontrol,
                              struct snd_ctl_elem_value *ucontrol)
{
      struct cmipci *chip = snd_kcontrol_chip(kcontrol);
      int changed;
      changed = _snd_cmipci_uswitch_put(kcontrol, ucontrol, &cmipci_switch_arg_spdif_enable);
      changed |= _snd_cmipci_uswitch_put(kcontrol, ucontrol, &cmipci_switch_arg_spdo2dac);
      if (changed) {
            if (ucontrol->value.integer.value[0]) {
                  if (chip->spdif_playback_avail)
                        snd_cmipci_set_bit(chip, CM_REG_FUNCTRL1, CM_PLAYBACK_SPDF);
            } else {
                  if (chip->spdif_playback_avail)
                        snd_cmipci_clear_bit(chip, CM_REG_FUNCTRL1, CM_PLAYBACK_SPDF);
            }
      }
      chip->spdif_playback_enabled = ucontrol->value.integer.value[0];
      return changed;
}


static int snd_cmipci_line_in_mode_info(struct snd_kcontrol *kcontrol,
                              struct snd_ctl_elem_info *uinfo)
{
      struct cmipci *cm = snd_kcontrol_chip(kcontrol);
      static char *texts[3] = { "Line-In", "Rear Output", "Bass Output" };
      uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
      uinfo->count = 1;
      uinfo->value.enumerated.items = cm->chip_version >= 39 ? 3 : 2;
      if (uinfo->value.enumerated.item >= uinfo->value.enumerated.items)
            uinfo->value.enumerated.item = uinfo->value.enumerated.items - 1;
      strcpy(uinfo->value.enumerated.name, texts[uinfo->value.enumerated.item]);
      return 0;
}

static inline unsigned int get_line_in_mode(struct cmipci *cm)
{
      unsigned int val;
      if (cm->chip_version >= 39) {
            val = snd_cmipci_read(cm, CM_REG_LEGACY_CTRL);
            if (val & (CM_CENTR2LIN | CM_BASE2LIN))
                  return 2;
      }
      val = snd_cmipci_read_b(cm, CM_REG_MIXER1);
      if (val & CM_REAR2LIN)
            return 1;
      return 0;
}

static int snd_cmipci_line_in_mode_get(struct snd_kcontrol *kcontrol,
                               struct snd_ctl_elem_value *ucontrol)
{
      struct cmipci *cm = snd_kcontrol_chip(kcontrol);

      spin_lock_irq(&cm->reg_lock);
      ucontrol->value.enumerated.item[0] = get_line_in_mode(cm);
      spin_unlock_irq(&cm->reg_lock);
      return 0;
}

static int snd_cmipci_line_in_mode_put(struct snd_kcontrol *kcontrol,
                               struct snd_ctl_elem_value *ucontrol)
{
      struct cmipci *cm = snd_kcontrol_chip(kcontrol);
      int change;

      spin_lock_irq(&cm->reg_lock);
      if (ucontrol->value.enumerated.item[0] == 2)
            change = snd_cmipci_set_bit(cm, CM_REG_LEGACY_CTRL, CM_CENTR2LIN | CM_BASE2LIN);
      else
            change = snd_cmipci_clear_bit(cm, CM_REG_LEGACY_CTRL, CM_CENTR2LIN | CM_BASE2LIN);
      if (ucontrol->value.enumerated.item[0] == 1)
            change |= snd_cmipci_set_bit_b(cm, CM_REG_MIXER1, CM_REAR2LIN);
      else
            change |= snd_cmipci_clear_bit_b(cm, CM_REG_MIXER1, CM_REAR2LIN);
      spin_unlock_irq(&cm->reg_lock);
      return change;
}

static int snd_cmipci_mic_in_mode_info(struct snd_kcontrol *kcontrol,
                               struct snd_ctl_elem_info *uinfo)
{
      static char *texts[2] = { "Mic-In", "Center/LFE Output" };
      uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
      uinfo->count = 1;
      uinfo->value.enumerated.items = 2;
      if (uinfo->value.enumerated.item >= uinfo->value.enumerated.items)
            uinfo->value.enumerated.item = uinfo->value.enumerated.items - 1;
      strcpy(uinfo->value.enumerated.name, texts[uinfo->value.enumerated.item]);
      return 0;
}

static int snd_cmipci_mic_in_mode_get(struct snd_kcontrol *kcontrol,
                              struct snd_ctl_elem_value *ucontrol)
{
      struct cmipci *cm = snd_kcontrol_chip(kcontrol);
      /* same bit as spdi_phase */
      spin_lock_irq(&cm->reg_lock);
      ucontrol->value.enumerated.item[0] = 
            (snd_cmipci_read_b(cm, CM_REG_MISC) & CM_SPDIF_INVERSE) ? 1 : 0;
      spin_unlock_irq(&cm->reg_lock);
      return 0;
}

static int snd_cmipci_mic_in_mode_put(struct snd_kcontrol *kcontrol,
                              struct snd_ctl_elem_value *ucontrol)
{
      struct cmipci *cm = snd_kcontrol_chip(kcontrol);
      int change;

      spin_lock_irq(&cm->reg_lock);
      if (ucontrol->value.enumerated.item[0])
            change = snd_cmipci_set_bit_b(cm, CM_REG_MISC, CM_SPDIF_INVERSE);
      else
            change = snd_cmipci_clear_bit_b(cm, CM_REG_MISC, CM_SPDIF_INVERSE);
      spin_unlock_irq(&cm->reg_lock);
      return change;
}

/* both for CM8338/8738 */
static struct snd_kcontrol_new snd_cmipci_mixer_switches[] __devinitdata = {
      DEFINE_MIXER_SWITCH("Four Channel Mode", fourch),
      {
            .name = "Line-In Mode",
            .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
            .info = snd_cmipci_line_in_mode_info,
            .get = snd_cmipci_line_in_mode_get,
            .put = snd_cmipci_line_in_mode_put,
      },
};

/* for non-multichannel chips */
static struct snd_kcontrol_new snd_cmipci_nomulti_switch __devinitdata =
DEFINE_MIXER_SWITCH("Exchange DAC", exchange_dac);

/* only for CM8738 */
static struct snd_kcontrol_new snd_cmipci_8738_mixer_switches[] __devinitdata = {
#if 0 /* controlled in pcm device */
      DEFINE_MIXER_SWITCH("IEC958 In Record", spdif_in),
      DEFINE_MIXER_SWITCH("IEC958 Out", spdif_out),
      DEFINE_MIXER_SWITCH("IEC958 Out To DAC", spdo2dac),
#endif
      // DEFINE_MIXER_SWITCH("IEC958 Output Switch", spdif_enable),
      { .name = "IEC958 Output Switch",
        .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
        .info = snd_cmipci_uswitch_info,
        .get = snd_cmipci_spdout_enable_get,
        .put = snd_cmipci_spdout_enable_put,
      },
      DEFINE_MIXER_SWITCH("IEC958 In Valid", spdi_valid),
      DEFINE_MIXER_SWITCH("IEC958 Copyright", spdif_copyright),
      DEFINE_MIXER_SWITCH("IEC958 5V", spdo_5v),
//    DEFINE_MIXER_SWITCH("IEC958 In/Out 48KHz", spdo_48k),
      DEFINE_MIXER_SWITCH("IEC958 Loop", spdif_loop),
      DEFINE_MIXER_SWITCH("IEC958 In Monitor", spdi_monitor),
};

/* only for model 033/037 */
static struct snd_kcontrol_new snd_cmipci_old_mixer_switches[] __devinitdata = {
      DEFINE_MIXER_SWITCH("IEC958 Mix Analog", spdif_dac_out),
      DEFINE_MIXER_SWITCH("IEC958 In Phase Inverse", spdi_phase),
      DEFINE_MIXER_SWITCH("IEC958 In Select", spdif_in_sel1),
};

/* only for model 039 or later */
static struct snd_kcontrol_new snd_cmipci_extra_mixer_switches[] __devinitdata = {
      DEFINE_MIXER_SWITCH("IEC958 In Select", spdif_in_sel2),
      DEFINE_MIXER_SWITCH("IEC958 In Phase Inverse", spdi_phase2),
      {
            .name = "Mic-In Mode",
            .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
            .info = snd_cmipci_mic_in_mode_info,
            .get = snd_cmipci_mic_in_mode_get,
            .put = snd_cmipci_mic_in_mode_put,
      }
};

/* card control switches */
static struct snd_kcontrol_new snd_cmipci_modem_switch __devinitdata =
DEFINE_CARD_SWITCH("Modem", modem);


static int __devinit snd_cmipci_mixer_new(struct cmipci *cm, int pcm_spdif_device)
{
      struct snd_card *card;
      struct snd_kcontrol_new *sw;
      struct snd_kcontrol *kctl;
      unsigned int idx;
      int err;

      snd_assert(cm != NULL && cm->card != NULL, return -EINVAL);

      card = cm->card;

      strcpy(card->mixername, "CMedia PCI");

      spin_lock_irq(&cm->reg_lock);
      snd_cmipci_mixer_write(cm, 0x00, 0x00);         /* mixer reset */
      spin_unlock_irq(&cm->reg_lock);

      for (idx = 0; idx < ARRAY_SIZE(snd_cmipci_mixers); idx++) {
            if (cm->chip_version == 68) { // 8768 has no PCM volume
                  if (!strcmp(snd_cmipci_mixers[idx].name,
                        "PCM Playback Volume"))
                        continue;
            }
            if ((err = snd_ctl_add(card, snd_ctl_new1(&snd_cmipci_mixers[idx], cm))) < 0)
                  return err;
      }

      /* mixer switches */
      sw = snd_cmipci_mixer_switches;
      for (idx = 0; idx < ARRAY_SIZE(snd_cmipci_mixer_switches); idx++, sw++) {
            err = snd_ctl_add(cm->card, snd_ctl_new1(sw, cm));
            if (err < 0)
                  return err;
      }
      if (! cm->can_multi_ch) {
            err = snd_ctl_add(cm->card, snd_ctl_new1(&snd_cmipci_nomulti_switch, cm));
            if (err < 0)
                  return err;
      }
      if (cm->device == PCI_DEVICE_ID_CMEDIA_CM8738 ||
          cm->device == PCI_DEVICE_ID_CMEDIA_CM8738B) {
            sw = snd_cmipci_8738_mixer_switches;
            for (idx = 0; idx < ARRAY_SIZE(snd_cmipci_8738_mixer_switches); idx++, sw++) {
                  err = snd_ctl_add(cm->card, snd_ctl_new1(sw, cm));
                  if (err < 0)
                        return err;
            }
            if (cm->can_ac3_hw) {
                  if ((err = snd_ctl_add(card, kctl = snd_ctl_new1(&snd_cmipci_spdif_default, cm))) < 0)
                        return err;
                  kctl->id.device = pcm_spdif_device;
                  if ((err = snd_ctl_add(card, kctl = snd_ctl_new1(&snd_cmipci_spdif_mask, cm))) < 0)
                        return err;
                  kctl->id.device = pcm_spdif_device;
                  if ((err = snd_ctl_add(card, kctl = snd_ctl_new1(&snd_cmipci_spdif_stream, cm))) < 0)
                        return err;
                  kctl->id.device = pcm_spdif_device;
            }
            if (cm->chip_version <= 37) {
                  sw = snd_cmipci_old_mixer_switches;
                  for (idx = 0; idx < ARRAY_SIZE(snd_cmipci_old_mixer_switches); idx++, sw++) {
                        err = snd_ctl_add(cm->card, snd_ctl_new1(sw, cm));
                        if (err < 0)
                              return err;
                  }
            }
      }
      if (cm->chip_version >= 39) {
            sw = snd_cmipci_extra_mixer_switches;
            for (idx = 0; idx < ARRAY_SIZE(snd_cmipci_extra_mixer_switches); idx++, sw++) {
                  err = snd_ctl_add(cm->card, snd_ctl_new1(sw, cm));
                  if (err < 0)
                        return err;
            }
      }

      /* card switches */
      /*
       * newer chips don't have the register bits to force modem link
       * detection; the bit that was FLINKON now mutes CH1
       */
      if (cm->chip_version < 39) {
            err = snd_ctl_add(cm->card,
                          snd_ctl_new1(&snd_cmipci_modem_switch, cm));
            if (err < 0)
                  return err;
      }

      for (idx = 0; idx < CM_SAVED_MIXERS; idx++) {
            struct snd_ctl_elem_id id;
            struct snd_kcontrol *ctl;
            memset(&id, 0, sizeof(id));
            id.iface = SNDRV_CTL_ELEM_IFACE_MIXER;
            strcpy(id.name, cm_saved_mixer[idx].name);
            if ((ctl = snd_ctl_find_id(cm->card, &id)) != NULL)
                  cm->mixer_res_ctl[idx] = ctl;
      }

      return 0;
}


/*
 * proc interface
 */

#ifdef CONFIG_PROC_FS
static void snd_cmipci_proc_read(struct snd_info_entry *entry, 
                         struct snd_info_buffer *buffer)
{
      struct cmipci *cm = entry->private_data;
      int i, v;
      
      snd_iprintf(buffer, "%s\n", cm->card->longname);
      for (i = 0; i < 0x94; i++) {
            if (i == 0x28)
                  i = 0x90;
            v = inb(cm->iobase + i);
            if (i % 4 == 0)
                  snd_iprintf(buffer, "\n%02x:", i);
            snd_iprintf(buffer, " %02x", v);
      }
      snd_iprintf(buffer, "\n");
}

static void __devinit snd_cmipci_proc_init(struct cmipci *cm)
{
      struct snd_info_entry *entry;

      if (! snd_card_proc_new(cm->card, "cmipci", &entry))
            snd_info_set_text_ops(entry, cm, snd_cmipci_proc_read);
}
#else /* !CONFIG_PROC_FS */
static inline void snd_cmipci_proc_init(struct cmipci *cm) {}
#endif


static struct pci_device_id snd_cmipci_ids[] = {
      {PCI_VENDOR_ID_CMEDIA, PCI_DEVICE_ID_CMEDIA_CM8338A, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
      {PCI_VENDOR_ID_CMEDIA, PCI_DEVICE_ID_CMEDIA_CM8338B, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
      {PCI_VENDOR_ID_CMEDIA, PCI_DEVICE_ID_CMEDIA_CM8738, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
      {PCI_VENDOR_ID_CMEDIA, PCI_DEVICE_ID_CMEDIA_CM8738B, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
      {PCI_VENDOR_ID_AL, PCI_DEVICE_ID_CMEDIA_CM8738, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
      {0,},
};


/*
 * check chip version and capabilities
 * driver name is modified according to the chip model
 */
static void __devinit query_chip(struct cmipci *cm)
{
      unsigned int detect;

      /* check reg 0Ch, bit 24-31 */
      detect = snd_cmipci_read(cm, CM_REG_INT_HLDCLR) & CM_CHIP_MASK2;
      if (! detect) {
            /* check reg 08h, bit 24-28 */
            detect = snd_cmipci_read(cm, CM_REG_CHFORMAT) & CM_CHIP_MASK1;
            switch (detect) {
            case 0:
                  cm->chip_version = 33;
                  if (cm->do_soft_ac3)
                        cm->can_ac3_sw = 1;
                  else
                        cm->can_ac3_hw = 1;
                  break;
            case CM_CHIP_037:
                  cm->chip_version = 37;
                  cm->can_ac3_hw = 1;
                  break;
            default:
                  cm->chip_version = 39;
                  cm->can_ac3_hw = 1;
                  break;
            }
            cm->max_channels = 2;
      } else {
            if (detect & CM_CHIP_039) {
                  cm->chip_version = 39;
                  if (detect & CM_CHIP_039_6CH) /* 4 or 6 channels */
                        cm->max_channels = 6;
                  else
                        cm->max_channels = 4;
            } else if (detect & CM_CHIP_8768) {
                  cm->chip_version = 68;
                  cm->max_channels = 8;
                  cm->can_96k = 1;
            } else {
                  cm->chip_version = 55;
                  cm->max_channels = 6;
                  cm->can_96k = 1;
            }
            cm->can_ac3_hw = 1;
            cm->can_multi_ch = 1;
      }
}

#ifdef SUPPORT_JOYSTICK
static int __devinit snd_cmipci_create_gameport(struct cmipci *cm, int dev)
{
      static int ports[] = { 0x201, 0x200, 0 }; /* FIXME: majority is 0x201? */
      struct gameport *gp;
      struct resource *r = NULL;
      int i, io_port = 0;

      if (joystick_port[dev] == 0)
            return -ENODEV;

      if (joystick_port[dev] == 1) { /* auto-detect */
            for (i = 0; ports[i]; i++) {
                  io_port = ports[i];
                  r = request_region(io_port, 1, "CMIPCI gameport");
                  if (r)
                        break;
            }
      } else {
            io_port = joystick_port[dev];
            r = request_region(io_port, 1, "CMIPCI gameport");
      }

      if (!r) {
            printk(KERN_WARNING "cmipci: cannot reserve joystick ports\n");
            return -EBUSY;
      }

      cm->gameport = gp = gameport_allocate_port();
      if (!gp) {
            printk(KERN_ERR "cmipci: cannot allocate memory for gameport\n");
            release_and_free_resource(r);
            return -ENOMEM;
      }
      gameport_set_name(gp, "C-Media Gameport");
      gameport_set_phys(gp, "pci%s/gameport0", pci_name(cm->pci));
      gameport_set_dev_parent(gp, &cm->pci->dev);
      gp->io = io_port;
      gameport_set_port_data(gp, r);

      snd_cmipci_set_bit(cm, CM_REG_FUNCTRL1, CM_JYSTK_EN);

      gameport_register_port(cm->gameport);

      return 0;
}

static void snd_cmipci_free_gameport(struct cmipci *cm)
{
      if (cm->gameport) {
            struct resource *r = gameport_get_port_data(cm->gameport);

            gameport_unregister_port(cm->gameport);
            cm->gameport = NULL;

            snd_cmipci_clear_bit(cm, CM_REG_FUNCTRL1, CM_JYSTK_EN);
            release_and_free_resource(r);
      }
}
#else
static inline int snd_cmipci_create_gameport(struct cmipci *cm, int dev) { return -ENOSYS; }
static inline void snd_cmipci_free_gameport(struct cmipci *cm) { }
#endif

static int snd_cmipci_free(struct cmipci *cm)
{
      if (cm->irq >= 0) {
            snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_FM_EN);
            snd_cmipci_clear_bit(cm, CM_REG_LEGACY_CTRL, CM_ENSPDOUT);
            snd_cmipci_write(cm, CM_REG_INT_HLDCLR, 0);  /* disable ints */
            snd_cmipci_ch_reset(cm, CM_CH_PLAY);
            snd_cmipci_ch_reset(cm, CM_CH_CAPT);
            snd_cmipci_write(cm, CM_REG_FUNCTRL0, 0); /* disable channels */
            snd_cmipci_write(cm, CM_REG_FUNCTRL1, 0);

            /* reset mixer */
            snd_cmipci_mixer_write(cm, 0, 0);

            synchronize_irq(cm->irq);

            free_irq(cm->irq, cm);
      }

      snd_cmipci_free_gameport(cm);
      pci_release_regions(cm->pci);
      pci_disable_device(cm->pci);
      kfree(cm);
      return 0;
}

static int snd_cmipci_dev_free(struct snd_device *device)
{
      struct cmipci *cm = device->device_data;
      return snd_cmipci_free(cm);
}

static int __devinit snd_cmipci_create_fm(struct cmipci *cm, long fm_port)
{
      long iosynth;
      unsigned int val;
      struct snd_opl3 *opl3;
      int err;

      if (!fm_port)
            goto disable_fm;

      if (cm->chip_version >= 39) {
            /* first try FM regs in PCI port range */
            iosynth = cm->iobase + CM_REG_FM_PCI;
            err = snd_opl3_create(cm->card, iosynth, iosynth + 2,
                              OPL3_HW_OPL3, 1, &opl3);
      } else {
            err = -EIO;
      }
      if (err < 0) {
            /* then try legacy ports */
            val = snd_cmipci_read(cm, CM_REG_LEGACY_CTRL) & ~CM_FMSEL_MASK;
            iosynth = fm_port;
            switch (iosynth) {
            case 0x3E8: val |= CM_FMSEL_3E8; break;
            case 0x3E0: val |= CM_FMSEL_3E0; break;
            case 0x3C8: val |= CM_FMSEL_3C8; break;
            case 0x388: val |= CM_FMSEL_388; break;
            default:
                  goto disable_fm;
            }
            snd_cmipci_write(cm, CM_REG_LEGACY_CTRL, val);
            /* enable FM */
            snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_FM_EN);

            if (snd_opl3_create(cm->card, iosynth, iosynth + 2,
                            OPL3_HW_OPL3, 0, &opl3) < 0) {
                  printk(KERN_ERR "cmipci: no OPL device at %#lx, "
                         "skipping...\n", iosynth);
                  goto disable_fm;
            }
      }
      if ((err = snd_opl3_hwdep_new(opl3, 0, 1, NULL)) < 0) {
            printk(KERN_ERR "cmipci: cannot create OPL3 hwdep\n");
            return err;
      }
      return 0;

 disable_fm:
      snd_cmipci_clear_bit(cm, CM_REG_LEGACY_CTRL, CM_FMSEL_MASK);
      snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_FM_EN);
      return 0;
}

static int __devinit snd_cmipci_create(struct snd_card *card, struct pci_dev *pci,
                               int dev, struct cmipci **rcmipci)
{
      struct cmipci *cm;
      int err;
      static struct snd_device_ops ops = {
            .dev_free = snd_cmipci_dev_free,
      };
      unsigned int val;
      long iomidi;
      int integrated_midi = 0;
      char modelstr[16];
      int pcm_index, pcm_spdif_index;
      static struct pci_device_id intel_82437vx[] = {
            { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82437VX) },
            { },
      };

      *rcmipci = NULL;

      if ((err = pci_enable_device(pci)) < 0)
            return err;

      cm = kzalloc(sizeof(*cm), GFP_KERNEL);
      if (cm == NULL) {
            pci_disable_device(pci);
            return -ENOMEM;
      }

      spin_lock_init(&cm->reg_lock);
      mutex_init(&cm->open_mutex);
      cm->device = pci->device;
      cm->card = card;
      cm->pci = pci;
      cm->irq = -1;
      cm->channel[0].ch = 0;
      cm->channel[1].ch = 1;
      cm->channel[0].is_dac = cm->channel[1].is_dac = 1; /* dual DAC mode */

      if ((err = pci_request_regions(pci, card->driver)) < 0) {
            kfree(cm);
            pci_disable_device(pci);
            return err;
      }
      cm->iobase = pci_resource_start(pci, 0);

      if (request_irq(pci->irq, snd_cmipci_interrupt,
                  IRQF_SHARED, card->driver, cm)) {
            snd_printk(KERN_ERR "unable to grab IRQ %d\n", pci->irq);
            snd_cmipci_free(cm);
            return -EBUSY;
      }
      cm->irq = pci->irq;

      pci_set_master(cm->pci);

      /*
       * check chip version, max channels and capabilities
       */

      cm->chip_version = 0;
      cm->max_channels = 2;
      cm->do_soft_ac3 = soft_ac3[dev];

      if (pci->device != PCI_DEVICE_ID_CMEDIA_CM8338A &&
          pci->device != PCI_DEVICE_ID_CMEDIA_CM8338B)
            query_chip(cm);
      /* added -MCx suffix for chip supporting multi-channels */
      if (cm->can_multi_ch)
            sprintf(cm->card->driver + strlen(cm->card->driver),
                  "-MC%d", cm->max_channels);
      else if (cm->can_ac3_sw)
            strcpy(cm->card->driver + strlen(cm->card->driver), "-SWIEC");

      cm->dig_status = SNDRV_PCM_DEFAULT_CON_SPDIF;
      cm->dig_pcm_status = SNDRV_PCM_DEFAULT_CON_SPDIF;

#if CM_CH_PLAY == 1
      cm->ctrl = CM_CHADC0;   /* default FUNCNTRL0 */
#else
      cm->ctrl = CM_CHADC1;   /* default FUNCNTRL0 */
#endif

      /* initialize codec registers */
      snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_RESET);
      snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_RESET);
      snd_cmipci_write(cm, CM_REG_INT_HLDCLR, 0);     /* disable ints */
      snd_cmipci_ch_reset(cm, CM_CH_PLAY);
      snd_cmipci_ch_reset(cm, CM_CH_CAPT);
      snd_cmipci_write(cm, CM_REG_FUNCTRL0, 0); /* disable channels */
      snd_cmipci_write(cm, CM_REG_FUNCTRL1, 0);

      snd_cmipci_write(cm, CM_REG_CHFORMAT, 0);
      snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_ENDBDAC|CM_N4SPK3D);
#if CM_CH_PLAY == 1
      snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_XCHGDAC);
#else
      snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_XCHGDAC);
#endif
      if (cm->chip_version) {
            snd_cmipci_write_b(cm, CM_REG_EXT_MISC, 0x20); /* magic */
            snd_cmipci_write_b(cm, CM_REG_EXT_MISC + 1, 0x09); /* more magic */
      }
      /* Set Bus Master Request */
      snd_cmipci_set_bit(cm, CM_REG_FUNCTRL1, CM_BREQ);

      /* Assume TX and compatible chip set (Autodetection required for VX chip sets) */
      switch (pci->device) {
      case PCI_DEVICE_ID_CMEDIA_CM8738:
      case PCI_DEVICE_ID_CMEDIA_CM8738B:
            if (!pci_dev_present(intel_82437vx)) 
                  snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_TXVX);
            break;
      default:
            break;
      }

      if (cm->chip_version < 68) {
            val = pci->device < 0x110 ? 8338 : 8738;
      } else {
            switch (snd_cmipci_read_b(cm, CM_REG_INT_HLDCLR + 3) & 0x03) {
            case 0:
                  val = 8769;
                  break;
            case 2:
                  val = 8762;
                  break;
            default:
                  switch ((pci->subsystem_vendor << 16) |
                        pci->subsystem_device) {
                  case 0x13f69761:
                  case 0x584d3741:
                  case 0x584d3751:
                  case 0x584d3761:
                  case 0x584d3771:
                  case 0x72848384:
                        val = 8770;
                        break;
                  default:
                        val = 8768;
                        break;
                  }
            }
      }
      sprintf(card->shortname, "C-Media CMI%d", val);
      if (cm->chip_version < 68)
            sprintf(modelstr, " (model %d)", cm->chip_version);
      else
            modelstr[0] = '\0';
      sprintf(card->longname, "%s%s at %#lx, irq %i",
            card->shortname, modelstr, cm->iobase, cm->irq);

      if ((err = snd_device_new(card, SNDRV_DEV_LOWLEVEL, cm, &ops)) < 0) {
            snd_cmipci_free(cm);
            return err;
      }

      if (cm->chip_version >= 39) {
            val = snd_cmipci_read_b(cm, CM_REG_MPU_PCI + 1);
            if (val != 0x00 && val != 0xff) {
                  iomidi = cm->iobase + CM_REG_MPU_PCI;
                  integrated_midi = 1;
            }
      }
      if (!integrated_midi) {
            val = 0;
            iomidi = mpu_port[dev];
            switch (iomidi) {
            case 0x320: val = CM_VMPU_320; break;
            case 0x310: val = CM_VMPU_310; break;
            case 0x300: val = CM_VMPU_300; break;
            case 0x330: val = CM_VMPU_330; break;
            default:
                      iomidi = 0; break;
            }
            if (iomidi > 0) {
                  snd_cmipci_write(cm, CM_REG_LEGACY_CTRL, val);
                  /* enable UART */
                  snd_cmipci_set_bit(cm, CM_REG_FUNCTRL1, CM_UART_EN);
                  if (inb(iomidi + 1) == 0xff) {
                        snd_printk(KERN_ERR "cannot enable MPU-401 port"
                                 " at %#lx\n", iomidi);
                        snd_cmipci_clear_bit(cm, CM_REG_FUNCTRL1,
                                         CM_UART_EN);
                        iomidi = 0;
                  }
            }
      }

      if (cm->chip_version < 68) {
            err = snd_cmipci_create_fm(cm, fm_port[dev]);
            if (err < 0)
                  return err;
      }

      /* reset mixer */
      snd_cmipci_mixer_write(cm, 0, 0);

      snd_cmipci_proc_init(cm);

      /* create pcm devices */
      pcm_index = pcm_spdif_index = 0;
      if ((err = snd_cmipci_pcm_new(cm, pcm_index)) < 0)
            return err;
      pcm_index++;
      if ((err = snd_cmipci_pcm2_new(cm, pcm_index)) < 0)
            return err;
      pcm_index++;
      if (cm->can_ac3_hw || cm->can_ac3_sw) {
            pcm_spdif_index = pcm_index;
            if ((err = snd_cmipci_pcm_spdif_new(cm, pcm_index)) < 0)
                  return err;
      }

      /* create mixer interface & switches */
      if ((err = snd_cmipci_mixer_new(cm, pcm_spdif_index)) < 0)
            return err;

      if (iomidi > 0) {
            if ((err = snd_mpu401_uart_new(card, 0, MPU401_HW_CMIPCI,
                                     iomidi,
                                     (integrated_midi ?
                                    MPU401_INFO_INTEGRATED : 0),
                                     cm->irq, 0, &cm->rmidi)) < 0) {
                  printk(KERN_ERR "cmipci: no UART401 device at 0x%lx\n", iomidi);
            }
      }

#ifdef USE_VAR48KRATE
      for (val = 0; val < ARRAY_SIZE(rates); val++)
            snd_cmipci_set_pll(cm, rates[val], val);

      /*
       * (Re-)Enable external switch spdo_48k
       */
      snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_SPDIF48K|CM_SPDF_AC97);
#endif /* USE_VAR48KRATE */

      if (snd_cmipci_create_gameport(cm, dev) < 0)
            snd_cmipci_clear_bit(cm, CM_REG_FUNCTRL1, CM_JYSTK_EN);

      snd_card_set_dev(card, &pci->dev);

      *rcmipci = cm;
      return 0;
}

/*
 */

MODULE_DEVICE_TABLE(pci, snd_cmipci_ids);

static int __devinit snd_cmipci_probe(struct pci_dev *pci,
                              const struct pci_device_id *pci_id)
{
      static int dev;
      struct snd_card *card;
      struct cmipci *cm;
      int err;

      if (dev >= SNDRV_CARDS)
            return -ENODEV;
      if (! enable[dev]) {
            dev++;
            return -ENOENT;
      }

      card = snd_card_new(index[dev], id[dev], THIS_MODULE, 0);
      if (card == NULL)
            return -ENOMEM;
      
      switch (pci->device) {
      case PCI_DEVICE_ID_CMEDIA_CM8738:
      case PCI_DEVICE_ID_CMEDIA_CM8738B:
            strcpy(card->driver, "CMI8738");
            break;
      case PCI_DEVICE_ID_CMEDIA_CM8338A:
      case PCI_DEVICE_ID_CMEDIA_CM8338B:
            strcpy(card->driver, "CMI8338");
            break;
      default:
            strcpy(card->driver, "CMIPCI");
            break;
      }

      if ((err = snd_cmipci_create(card, pci, dev, &cm)) < 0) {
            snd_card_free(card);
            return err;
      }
      card->private_data = cm;

      if ((err = snd_card_register(card)) < 0) {
            snd_card_free(card);
            return err;
      }
      pci_set_drvdata(pci, card);
      dev++;
      return 0;

}

static void __devexit snd_cmipci_remove(struct pci_dev *pci)
{
      snd_card_free(pci_get_drvdata(pci));
      pci_set_drvdata(pci, NULL);
}


#ifdef CONFIG_PM
/*
 * power management
 */
static unsigned char saved_regs[] = {
      CM_REG_FUNCTRL1, CM_REG_CHFORMAT, CM_REG_LEGACY_CTRL, CM_REG_MISC_CTRL,
      CM_REG_MIXER0, CM_REG_MIXER1, CM_REG_MIXER2, CM_REG_MIXER3, CM_REG_PLL,
      CM_REG_CH0_FRAME1, CM_REG_CH0_FRAME2,
      CM_REG_CH1_FRAME1, CM_REG_CH1_FRAME2, CM_REG_EXT_MISC,
      CM_REG_INT_STATUS, CM_REG_INT_HLDCLR, CM_REG_FUNCTRL0,
};

static unsigned char saved_mixers[] = {
      SB_DSP4_MASTER_DEV, SB_DSP4_MASTER_DEV + 1,
      SB_DSP4_PCM_DEV, SB_DSP4_PCM_DEV + 1,
      SB_DSP4_SYNTH_DEV, SB_DSP4_SYNTH_DEV + 1,
      SB_DSP4_CD_DEV, SB_DSP4_CD_DEV + 1,
      SB_DSP4_LINE_DEV, SB_DSP4_LINE_DEV + 1,
      SB_DSP4_MIC_DEV, SB_DSP4_SPEAKER_DEV,
      CM_REG_EXTENT_IND, SB_DSP4_OUTPUT_SW,
      SB_DSP4_INPUT_LEFT, SB_DSP4_INPUT_RIGHT,
};

static int snd_cmipci_suspend(struct pci_dev *pci, pm_message_t state)
{
      struct snd_card *card = pci_get_drvdata(pci);
      struct cmipci *cm = card->private_data;
      int i;

      snd_power_change_state(card, SNDRV_CTL_POWER_D3hot);
      
      snd_pcm_suspend_all(cm->pcm);
      snd_pcm_suspend_all(cm->pcm2);
      snd_pcm_suspend_all(cm->pcm_spdif);

      /* save registers */
      for (i = 0; i < ARRAY_SIZE(saved_regs); i++)
            cm->saved_regs[i] = snd_cmipci_read(cm, saved_regs[i]);
      for (i = 0; i < ARRAY_SIZE(saved_mixers); i++)
            cm->saved_mixers[i] = snd_cmipci_mixer_read(cm, saved_mixers[i]);

      /* disable ints */
      snd_cmipci_write(cm, CM_REG_INT_HLDCLR, 0);

      pci_disable_device(pci);
      pci_save_state(pci);
      pci_set_power_state(pci, pci_choose_state(pci, state));
      return 0;
}

static int snd_cmipci_resume(struct pci_dev *pci)
{
      struct snd_card *card = pci_get_drvdata(pci);
      struct cmipci *cm = card->private_data;
      int i;

      pci_set_power_state(pci, PCI_D0);
      pci_restore_state(pci);
      if (pci_enable_device(pci) < 0) {
            printk(KERN_ERR "cmipci: pci_enable_device failed, "
                   "disabling device\n");
            snd_card_disconnect(card);
            return -EIO;
      }
      pci_set_master(pci);

      /* reset / initialize to a sane state */
      snd_cmipci_write(cm, CM_REG_INT_HLDCLR, 0);
      snd_cmipci_ch_reset(cm, CM_CH_PLAY);
      snd_cmipci_ch_reset(cm, CM_CH_CAPT);
      snd_cmipci_mixer_write(cm, 0, 0);

      /* restore registers */
      for (i = 0; i < ARRAY_SIZE(saved_regs); i++)
            snd_cmipci_write(cm, saved_regs[i], cm->saved_regs[i]);
      for (i = 0; i < ARRAY_SIZE(saved_mixers); i++)
            snd_cmipci_mixer_write(cm, saved_mixers[i], cm->saved_mixers[i]);

      snd_power_change_state(card, SNDRV_CTL_POWER_D0);
      return 0;
}
#endif /* CONFIG_PM */

static struct pci_driver driver = {
      .name = "C-Media PCI",
      .id_table = snd_cmipci_ids,
      .probe = snd_cmipci_probe,
      .remove = __devexit_p(snd_cmipci_remove),
#ifdef CONFIG_PM
      .suspend = snd_cmipci_suspend,
      .resume = snd_cmipci_resume,
#endif
};
      
static int __init alsa_card_cmipci_init(void)
{
      return pci_register_driver(&driver);
}

static void __exit alsa_card_cmipci_exit(void)
{
      pci_unregister_driver(&driver);
}

module_init(alsa_card_cmipci_init)
module_exit(alsa_card_cmipci_exit)

Generated by  Doxygen 1.6.0   Back to index