Logo Search packages:      
Sourcecode: alsa-driver version File versions  Download package

ca0106_main.c

/*
 *  Copyright (c) 2004 James Courtier-Dutton <James@superbug.demon.co.uk>
 *  Driver CA0106 chips. e.g. Sound Blaster Audigy LS and Live 24bit
 *  Version: 0.0.25
 *
 *  FEATURES currently supported:
 *    Front, Rear and Center/LFE.
 *    Surround40 and Surround51.
 *    Capture from MIC an LINE IN input.
 *    SPDIF digital playback of PCM stereo and AC3/DTS works.
 *    (One can use a standard mono mini-jack to one RCA plugs cable.
 *     or one can use a standard stereo mini-jack to two RCA plugs cable.
 *     Plug one of the RCA plugs into the Coax input of the external decoder/receiver.)
 *    ( In theory one could output 3 different AC3 streams at once, to 3 different SPDIF outputs. )
 *    Notes on how to capture sound:
 *      The AC97 is used in the PLAYBACK direction.
 *      The output from the AC97 chip, instead of reaching the speakers, is fed into the Philips 1361T ADC.
 *      So, to record from the MIC, set the MIC Playback volume to max,
 *      unmute the MIC and turn up the MASTER Playback volume.
 *      So, to prevent feedback when capturing, minimise the "Capture feedback into Playback" volume.
 *   
 *    The only playback controls that currently do anything are: -
 *    Analog Front
 *    Analog Rear
 *    Analog Center/LFE
 *    SPDIF Front
 *    SPDIF Rear
 *    SPDIF Center/LFE
 *   
 *    For capture from Mic in or Line in.
 *    Digital/Analog ( switch must be in Analog mode for CAPTURE. )
 * 
 *    CAPTURE feedback into PLAYBACK
 * 
 *  Changelog:
 *    Support interrupts per period.
 *    Removed noise from Center/LFE channel when in Analog mode.
 *    Rename and remove mixer controls.
 *  0.0.6
 *    Use separate card based DMA buffer for periods table list.
 *  0.0.7
 *    Change remove and rename ctrls into lists.
 *  0.0.8
 *    Try to fix capture sources.
 *  0.0.9
 *    Fix AC3 output.
 *    Enable S32_LE format support.
 *  0.0.10
 *    Enable playback 48000 and 96000 rates. (Rates other that these do not work, even with "plug:front".)
 *  0.0.11
 *    Add Model name recognition.
 *  0.0.12
 *    Correct interrupt timing. interrupt at end of period, instead of in the middle of a playback period.
 *    Remove redundent "voice" handling.
 *  0.0.13
 *    Single trigger call for multi channels.
 *  0.0.14
 *    Set limits based on what the sound card hardware can do.
 *    playback periods_min=2, periods_max=8
 *    capture hw constraints require period_size = n * 64 bytes.
 *    playback hw constraints require period_size = n * 64 bytes.
 *  0.0.15
 *    Minor updates.
 *  0.0.16
 *    Implement 192000 sample rate.
 *  0.0.17
 *    Add support for SB0410 and SB0413.
 *  0.0.18
 *    Modified Copyright message.
 *  0.0.19
 *    Finally fix support for SB Live 24 bit. SB0410 and SB0413.
 *    The output codec needs resetting, otherwise all output is muted.
 *  0.0.20
 *    Merge "pci_disable_device(pci);" fixes.
 *  0.0.21
 *    Add 4 capture channels. (SPDIF only comes in on channel 0. )
 *    Add SPDIF capture using optional digital I/O module for SB Live 24bit. (Analog capture does not yet work.)
 *  0.0.22
 *    Add support for MSI K8N Diamond Motherboard with onboard SB Live 24bit without AC97. From kiksen, bug #901
 *  0.0.23
 *    Implement support for Line-in capture on SB Live 24bit.
 *  0.0.24
 *    Add support for mute control on SB Live 24bit (cards w/ SPI DAC)
 *  0.0.25
 *    Powerdown SPI DAC channels when not in use
 *
 *  BUGS:
 *    Some stability problems when unloading the snd-ca0106 kernel module.
 *    --
 *
 *  TODO:
 *    4 Capture channels, only one implemented so far.
 *    Other capture rates apart from 48khz not implemented.
 *    MIDI
 *    --
 *  GENERAL INFO:
 *    Model: SB0310
 *    P17 Chip: CA0106-DAT
 *    AC97 Codec: STAC 9721
 *    ADC: Philips 1361T (Stereo 24bit)
 *    DAC: WM8746EDS (6-channel, 24bit, 192Khz)
 *
 *  GENERAL INFO:
 *    Model: SB0410
 *    P17 Chip: CA0106-DAT
 *    AC97 Codec: None
 *    ADC: WM8775EDS (4 Channel)
 *    DAC: CS4382 (114 dB, 24-Bit, 192 kHz, 8-Channel D/A Converter with DSD Support)
 *    SPDIF Out control switches between Mic in and SPDIF out.
 *    No sound out or mic input working yet.
 * 
 *  GENERAL INFO:
 *    Model: SB0413
 *    P17 Chip: CA0106-DAT
 *    AC97 Codec: None.
 *    ADC: Unknown
 *    DAC: Unknown
 *    Trying to handle it like the SB0410.
 *
 *  This code was initally based on code from ALSA's emu10k1x.c which is:
 *  Copyright (c) by Francisco Moraes <fmoraes@nc.rr.com>
 *
 *   This program is free software; you can redistribute it and/or modify
 *   it under the terms of the GNU General Public License as published by
 *   the Free Software Foundation; either version 2 of the License, or
 *   (at your option) any later version.
 *
 *   This program is distributed in the hope that it will be useful,
 *   but WITHOUT ANY WARRANTY; without even the implied warranty of
 *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *   GNU General Public License for more details.
 *
 *   You should have received a copy of the GNU General Public License
 *   along with this program; if not, write to the Free Software
 *   Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
 *
 */
#include <linux/delay.h>
#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/pci.h>
#include <linux/slab.h>
#include <linux/moduleparam.h>
#include <linux/dma-mapping.h>
#include <sound/core.h>
#include <sound/initval.h>
#include <sound/pcm.h>
#include <sound/ac97_codec.h>
#include <sound/info.h>

MODULE_AUTHOR("James Courtier-Dutton <James@superbug.demon.co.uk>");
MODULE_DESCRIPTION("CA0106");
MODULE_LICENSE("GPL");
MODULE_SUPPORTED_DEVICE("{{Creative,SB CA0106 chip}}");

// module parameters (see "Module Parameters")
static int index[SNDRV_CARDS] = SNDRV_DEFAULT_IDX;
static char *id[SNDRV_CARDS] = SNDRV_DEFAULT_STR;
static int enable[SNDRV_CARDS] = SNDRV_DEFAULT_ENABLE_PNP;
static uint subsystem[SNDRV_CARDS]; /* Force card subsystem model */

module_param_array(index, int, NULL, 0444);
MODULE_PARM_DESC(index, "Index value for the CA0106 soundcard.");
module_param_array(id, charp, NULL, 0444);
MODULE_PARM_DESC(id, "ID string for the CA0106 soundcard.");
module_param_array(enable, bool, NULL, 0444);
MODULE_PARM_DESC(enable, "Enable the CA0106 soundcard.");
module_param_array(subsystem, uint, NULL, 0444);
MODULE_PARM_DESC(subsystem, "Force card subsystem model.");

#include "ca0106.h"

static struct snd_ca0106_details ca0106_chip_details[] = {
       /* Sound Blaster X-Fi Extreme Audio. This does not have an AC97. 53SB079000000 */
       /* It is really just a normal SB Live 24bit. */
       /* Tested:
        * See ALSA bug#3251
        */
       { .serial = 0x10131102,
         .name   = "X-Fi Extreme Audio [SBxxxx]",
         .gpio_type = 1,
         .i2c_adc = 1 } ,
       /* Sound Blaster X-Fi Extreme Audio. This does not have an AC97. 53SB079000000 */
       /* It is really just a normal SB Live 24bit. */
       /*
        * CTRL:CA0111-WTLF
        * ADC: WM8775SEDS
        * DAC: CS4382-KQZ
        */
       /* Tested:
        * Playback on front, rear, center/lfe speakers
        * Capture from Mic in.
        * Not-Tested:
        * Capture from Line in.
        * Playback to digital out.
        */
       { .serial = 0x10121102,
         .name   = "X-Fi Extreme Audio [SB0790]",
         .gpio_type = 1,
         .i2c_adc = 1 } ,
       /* New Dell Sound Blaster Live! 7.1 24bit. This does not have an AC97.  */
       /* AudigyLS[SB0310] */
       { .serial = 0x10021102,
         .name   = "AudigyLS [SB0310]",
         .ac97   = 1 } , 
       /* Unknown AudigyLS that also says SB0310 on it */
       { .serial = 0x10051102,
         .name   = "AudigyLS [SB0310b]",
         .ac97   = 1 } ,
       /* New Sound Blaster Live! 7.1 24bit. This does not have an AC97. 53SB041000001 */
       { .serial = 0x10061102,
         .name   = "Live! 7.1 24bit [SB0410]",
         .gpio_type = 1,
         .i2c_adc = 1 } ,
       /* New Dell Sound Blaster Live! 7.1 24bit. This does not have an AC97.  */
       { .serial = 0x10071102,
         .name   = "Live! 7.1 24bit [SB0413]",
         .gpio_type = 1,
         .i2c_adc = 1 } ,
       /* New Audigy SE. Has a different DAC. */
       /* SB0570:
        * CTRL:CA0106-DAT
        * ADC: WM8775EDS
        * DAC: WM8768GEDS
        */
       { .serial = 0x100a1102,
         .name   = "Audigy SE [SB0570]",
         .gpio_type = 1,
         .i2c_adc = 1,
         .spi_dac = 1 } ,
       /* New Audigy LS. Has a different DAC. */
       /* SB0570:
        * CTRL:CA0106-DAT
        * ADC: WM8775EDS
        * DAC: WM8768GEDS
        */
       { .serial = 0x10111102,
         .name   = "Audigy SE OEM [SB0570a]",
         .gpio_type = 1,
         .i2c_adc = 1,
         .spi_dac = 1 } ,
       /* MSI K8N Diamond Motherboard with onboard SB Live 24bit without AC97 */
       /* SB0438
        * CTRL:CA0106-DAT
        * ADC: WM8775SEDS
        * DAC: CS4382-KQZ
        */
       { .serial = 0x10091462,
         .name   = "MSI K8N Diamond MB [SB0438]",
         .gpio_type = 2,
         .i2c_adc = 1 } ,
       /* Shuttle XPC SD31P which has an onboard Creative Labs
        * Sound Blaster Live! 24-bit EAX
        * high-definition 7.1 audio processor".
        * Added using info from andrewvegan in alsa bug #1298
        */
       { .serial = 0x30381297,
         .name   = "Shuttle XPC SD31P [SD31P]",
         .gpio_type = 1,
         .i2c_adc = 1 } ,
      /* Shuttle XPC SD11G5 which has an onboard Creative Labs
       * Sound Blaster Live! 24-bit EAX
       * high-definition 7.1 audio processor".
       * Fixes ALSA bug#1600
         */
      { .serial = 0x30411297,
        .name = "Shuttle XPC SD11G5 [SD11G5]",
        .gpio_type = 1,
        .i2c_adc = 1 } ,
       { .serial = 0,
         .name   = "AudigyLS [Unknown]" }
};

/* hardware definition */
static struct snd_pcm_hardware snd_ca0106_playback_hw = {
      .info =                 SNDRV_PCM_INFO_MMAP | 
                        SNDRV_PCM_INFO_INTERLEAVED |
                        SNDRV_PCM_INFO_BLOCK_TRANSFER |
                        SNDRV_PCM_INFO_MMAP_VALID |
                        SNDRV_PCM_INFO_SYNC_START,
      .formats =        SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_S32_LE,
      .rates =          (SNDRV_PCM_RATE_48000 | SNDRV_PCM_RATE_96000 |
                         SNDRV_PCM_RATE_192000),
      .rate_min =       48000,
      .rate_max =       192000,
      .channels_min =         2,  //1,
      .channels_max =         2,  //6,
      .buffer_bytes_max =     ((65536 - 64) * 8),
      .period_bytes_min =     64,
      .period_bytes_max =     (65536 - 64),
      .periods_min =          2,
      .periods_max =          8,
      .fifo_size =            0,
};

static struct snd_pcm_hardware snd_ca0106_capture_hw = {
      .info =                 (SNDRV_PCM_INFO_MMAP | 
                         SNDRV_PCM_INFO_INTERLEAVED |
                         SNDRV_PCM_INFO_BLOCK_TRANSFER |
                         SNDRV_PCM_INFO_MMAP_VALID),
      .formats =        SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_S32_LE,
      .rates =          (SNDRV_PCM_RATE_44100 | SNDRV_PCM_RATE_48000 |
                         SNDRV_PCM_RATE_96000 | SNDRV_PCM_RATE_192000),
      .rate_min =       44100,
      .rate_max =       192000,
      .channels_min =         2,
      .channels_max =         2,
      .buffer_bytes_max =     ((65536 - 64) * 8),
      .period_bytes_min =     64,
      .period_bytes_max =     (65536 - 64),
      .periods_min =          2,
      .periods_max =          2,
      .fifo_size =            0,
};

unsigned int snd_ca0106_ptr_read(struct snd_ca0106 * emu, 
                                unsigned int reg, 
                                unsigned int chn)
{
      unsigned long flags;
      unsigned int regptr, val;
  
      regptr = (reg << 16) | chn;

      spin_lock_irqsave(&emu->emu_lock, flags);
      outl(regptr, emu->port + PTR);
      val = inl(emu->port + DATA);
      spin_unlock_irqrestore(&emu->emu_lock, flags);
      return val;
}

void snd_ca0106_ptr_write(struct snd_ca0106 *emu, 
                           unsigned int reg, 
                           unsigned int chn, 
                           unsigned int data)
{
      unsigned int regptr;
      unsigned long flags;

      regptr = (reg << 16) | chn;

      spin_lock_irqsave(&emu->emu_lock, flags);
      outl(regptr, emu->port + PTR);
      outl(data, emu->port + DATA);
      spin_unlock_irqrestore(&emu->emu_lock, flags);
}

int snd_ca0106_spi_write(struct snd_ca0106 * emu,
                           unsigned int data)
{
      unsigned int reset, set;
      unsigned int reg, tmp;
      int n, result;
      reg = SPI;
      if (data > 0xffff) /* Only 16bit values allowed */
            return 1;
      tmp = snd_ca0106_ptr_read(emu, reg, 0);
      reset = (tmp & ~0x3ffff) | 0x20000; /* Set xxx20000 */
      set = reset | 0x10000; /* Set xxx1xxxx */
      snd_ca0106_ptr_write(emu, reg, 0, reset | data);
      tmp = snd_ca0106_ptr_read(emu, reg, 0); /* write post */
      snd_ca0106_ptr_write(emu, reg, 0, set | data);
      result = 1;
      /* Wait for status bit to return to 0 */
      for (n = 0; n < 100; n++) {
            udelay(10);
            tmp = snd_ca0106_ptr_read(emu, reg, 0);
            if (!(tmp & 0x10000)) {
                  result = 0;
                  break;
            }
      }
      if (result) /* Timed out */
            return 1;
      snd_ca0106_ptr_write(emu, reg, 0, reset | data);
      tmp = snd_ca0106_ptr_read(emu, reg, 0); /* Write post */
      return 0;
}

/* The ADC does not support i2c read, so only write is implemented */
int snd_ca0106_i2c_write(struct snd_ca0106 *emu,
                        u32 reg,
                        u32 value)
{
      u32 tmp;
      int timeout = 0;
      int status;
      int retry;
      if ((reg > 0x7f) || (value > 0x1ff)) {
            snd_printk(KERN_ERR "i2c_write: invalid values.\n");
            return -EINVAL;
      }

      tmp = reg << 25 | value << 16;
      // snd_printk("I2C-write:reg=0x%x, value=0x%x\n", reg, value);
      /* Not sure what this I2C channel controls. */
      /* snd_ca0106_ptr_write(emu, I2C_D0, 0, tmp); */

      /* This controls the I2C connected to the WM8775 ADC Codec */
      snd_ca0106_ptr_write(emu, I2C_D1, 0, tmp);

      for (retry = 0; retry < 10; retry++) {
            /* Send the data to i2c */
            //tmp = snd_ca0106_ptr_read(emu, I2C_A, 0);
            //tmp = tmp & ~(I2C_A_ADC_READ|I2C_A_ADC_LAST|I2C_A_ADC_START|I2C_A_ADC_ADD_MASK);
            tmp = 0;
            tmp = tmp | (I2C_A_ADC_LAST|I2C_A_ADC_START|I2C_A_ADC_ADD);
            snd_ca0106_ptr_write(emu, I2C_A, 0, tmp);

            /* Wait till the transaction ends */
            while (1) {
                  status = snd_ca0106_ptr_read(emu, I2C_A, 0);
                  //snd_printk("I2C:status=0x%x\n", status);
                  timeout++;
                  if ((status & I2C_A_ADC_START) == 0)
                        break;

                  if (timeout > 1000)
                        break;
            }
            //Read back and see if the transaction is successful
            if ((status & I2C_A_ADC_ABORT) == 0)
                  break;
      }

      if (retry == 10) {
            snd_printk(KERN_ERR "Writing to ADC failed!\n");
            return -EINVAL;
      }
    
      return 0;
}


static void snd_ca0106_intr_enable(struct snd_ca0106 *emu, unsigned int intrenb)
{
      unsigned long flags;
      unsigned int enable;
  
      spin_lock_irqsave(&emu->emu_lock, flags);
      enable = inl(emu->port + INTE) | intrenb;
      outl(enable, emu->port + INTE);
      spin_unlock_irqrestore(&emu->emu_lock, flags);
}

static void snd_ca0106_intr_disable(struct snd_ca0106 *emu, unsigned int intrenb)
{
      unsigned long flags;
      unsigned int enable;
  
      spin_lock_irqsave(&emu->emu_lock, flags);
      enable = inl(emu->port + INTE) & ~intrenb;
      outl(enable, emu->port + INTE);
      spin_unlock_irqrestore(&emu->emu_lock, flags);
}


static void snd_ca0106_pcm_free_substream(struct snd_pcm_runtime *runtime)
{
      kfree(runtime->private_data);
}

static const int spi_dacd_reg[] = {
      [PCM_FRONT_CHANNEL]     = SPI_DACD4_REG,
      [PCM_REAR_CHANNEL]      = SPI_DACD0_REG,
      [PCM_CENTER_LFE_CHANNEL]= SPI_DACD2_REG,
      [PCM_UNKNOWN_CHANNEL]   = SPI_DACD1_REG,
};
static const int spi_dacd_bit[] = {
      [PCM_FRONT_CHANNEL]     = SPI_DACD4_BIT,
      [PCM_REAR_CHANNEL]      = SPI_DACD0_BIT,
      [PCM_CENTER_LFE_CHANNEL]= SPI_DACD2_BIT,
      [PCM_UNKNOWN_CHANNEL]   = SPI_DACD1_BIT,
};

/* open_playback callback */
static int snd_ca0106_pcm_open_playback_channel(struct snd_pcm_substream *substream,
                                    int channel_id)
{
      struct snd_ca0106 *chip = snd_pcm_substream_chip(substream);
        struct snd_ca0106_channel *channel = &(chip->playback_channels[channel_id]);
      struct snd_ca0106_pcm *epcm;
      struct snd_pcm_runtime *runtime = substream->runtime;
      int err;

      epcm = kzalloc(sizeof(*epcm), GFP_KERNEL);

      if (epcm == NULL)
            return -ENOMEM;
      epcm->emu = chip;
      epcm->substream = substream;
        epcm->channel_id=channel_id;
  
      runtime->private_data = epcm;
      runtime->private_free = snd_ca0106_pcm_free_substream;
  
      runtime->hw = snd_ca0106_playback_hw;

        channel->emu = chip;
        channel->number = channel_id;

      channel->use = 1;
        //printk("open:channel_id=%d, chip=%p, channel=%p\n",channel_id, chip, channel);
        //channel->interrupt = snd_ca0106_pcm_channel_interrupt;
      channel->epcm = epcm;
      if ((err = snd_pcm_hw_constraint_integer(runtime, SNDRV_PCM_HW_PARAM_PERIODS)) < 0)
                return err;
      if ((err = snd_pcm_hw_constraint_step(runtime, 0, SNDRV_PCM_HW_PARAM_PERIOD_BYTES, 64)) < 0)
                return err;
      snd_pcm_set_sync(substream);

      if (chip->details->spi_dac && channel_id != PCM_FRONT_CHANNEL) {
            const int reg = spi_dacd_reg[channel_id];

            /* Power up dac */
            chip->spi_dac_reg[reg] &= ~spi_dacd_bit[channel_id];
            err = snd_ca0106_spi_write(chip, chip->spi_dac_reg[reg]);
            if (err < 0)
                  return err;
      }
      return 0;
}

/* close callback */
static int snd_ca0106_pcm_close_playback(struct snd_pcm_substream *substream)
{
      struct snd_ca0106 *chip = snd_pcm_substream_chip(substream);
      struct snd_pcm_runtime *runtime = substream->runtime;
        struct snd_ca0106_pcm *epcm = runtime->private_data;
      chip->playback_channels[epcm->channel_id].use = 0;

      if (chip->details->spi_dac && epcm->channel_id != PCM_FRONT_CHANNEL) {
            const int reg = spi_dacd_reg[epcm->channel_id];

            /* Power down DAC */
            chip->spi_dac_reg[reg] |= spi_dacd_bit[epcm->channel_id];
            snd_ca0106_spi_write(chip, chip->spi_dac_reg[reg]);
      }
      /* FIXME: maybe zero others */
      return 0;
}

static int snd_ca0106_pcm_open_playback_front(struct snd_pcm_substream *substream)
{
      return snd_ca0106_pcm_open_playback_channel(substream, PCM_FRONT_CHANNEL);
}

static int snd_ca0106_pcm_open_playback_center_lfe(struct snd_pcm_substream *substream)
{
      return snd_ca0106_pcm_open_playback_channel(substream, PCM_CENTER_LFE_CHANNEL);
}

static int snd_ca0106_pcm_open_playback_unknown(struct snd_pcm_substream *substream)
{
      return snd_ca0106_pcm_open_playback_channel(substream, PCM_UNKNOWN_CHANNEL);
}

static int snd_ca0106_pcm_open_playback_rear(struct snd_pcm_substream *substream)
{
      return snd_ca0106_pcm_open_playback_channel(substream, PCM_REAR_CHANNEL);
}

/* open_capture callback */
static int snd_ca0106_pcm_open_capture_channel(struct snd_pcm_substream *substream,
                                     int channel_id)
{
      struct snd_ca0106 *chip = snd_pcm_substream_chip(substream);
        struct snd_ca0106_channel *channel = &(chip->capture_channels[channel_id]);
      struct snd_ca0106_pcm *epcm;
      struct snd_pcm_runtime *runtime = substream->runtime;
      int err;

      epcm = kzalloc(sizeof(*epcm), GFP_KERNEL);
      if (epcm == NULL) {
            snd_printk(KERN_ERR "open_capture_channel: failed epcm alloc\n");
            return -ENOMEM;
        }
      epcm->emu = chip;
      epcm->substream = substream;
        epcm->channel_id=channel_id;
  
      runtime->private_data = epcm;
      runtime->private_free = snd_ca0106_pcm_free_substream;
  
      runtime->hw = snd_ca0106_capture_hw;

        channel->emu = chip;
        channel->number = channel_id;

      channel->use = 1;
        //printk("open:channel_id=%d, chip=%p, channel=%p\n",channel_id, chip, channel);
        //channel->interrupt = snd_ca0106_pcm_channel_interrupt;
        channel->epcm = epcm;
      if ((err = snd_pcm_hw_constraint_integer(runtime, SNDRV_PCM_HW_PARAM_PERIODS)) < 0)
                return err;
      //snd_pcm_hw_constraint_list(runtime, 0, SNDRV_PCM_HW_PARAM_PERIOD_SIZE, &hw_constraints_capture_period_sizes);
      if ((err = snd_pcm_hw_constraint_step(runtime, 0, SNDRV_PCM_HW_PARAM_PERIOD_BYTES, 64)) < 0)
                return err;
      return 0;
}

/* close callback */
static int snd_ca0106_pcm_close_capture(struct snd_pcm_substream *substream)
{
      struct snd_ca0106 *chip = snd_pcm_substream_chip(substream);
      struct snd_pcm_runtime *runtime = substream->runtime;
        struct snd_ca0106_pcm *epcm = runtime->private_data;
      chip->capture_channels[epcm->channel_id].use = 0;
      /* FIXME: maybe zero others */
      return 0;
}

static int snd_ca0106_pcm_open_0_capture(struct snd_pcm_substream *substream)
{
      return snd_ca0106_pcm_open_capture_channel(substream, 0);
}

static int snd_ca0106_pcm_open_1_capture(struct snd_pcm_substream *substream)
{
      return snd_ca0106_pcm_open_capture_channel(substream, 1);
}

static int snd_ca0106_pcm_open_2_capture(struct snd_pcm_substream *substream)
{
      return snd_ca0106_pcm_open_capture_channel(substream, 2);
}

static int snd_ca0106_pcm_open_3_capture(struct snd_pcm_substream *substream)
{
      return snd_ca0106_pcm_open_capture_channel(substream, 3);
}

/* hw_params callback */
static int snd_ca0106_pcm_hw_params_playback(struct snd_pcm_substream *substream,
                              struct snd_pcm_hw_params *hw_params)
{
      return snd_pcm_lib_malloc_pages(substream,
                              params_buffer_bytes(hw_params));
}

/* hw_free callback */
static int snd_ca0106_pcm_hw_free_playback(struct snd_pcm_substream *substream)
{
      return snd_pcm_lib_free_pages(substream);
}

/* hw_params callback */
static int snd_ca0106_pcm_hw_params_capture(struct snd_pcm_substream *substream,
                              struct snd_pcm_hw_params *hw_params)
{
      return snd_pcm_lib_malloc_pages(substream,
                              params_buffer_bytes(hw_params));
}

/* hw_free callback */
static int snd_ca0106_pcm_hw_free_capture(struct snd_pcm_substream *substream)
{
      return snd_pcm_lib_free_pages(substream);
}

/* prepare playback callback */
static int snd_ca0106_pcm_prepare_playback(struct snd_pcm_substream *substream)
{
      struct snd_ca0106 *emu = snd_pcm_substream_chip(substream);
      struct snd_pcm_runtime *runtime = substream->runtime;
      struct snd_ca0106_pcm *epcm = runtime->private_data;
      int channel = epcm->channel_id;
      u32 *table_base = (u32 *)(emu->buffer.area+(8*16*channel));
      u32 period_size_bytes = frames_to_bytes(runtime, runtime->period_size);
      u32 hcfg_mask = HCFG_PLAYBACK_S32_LE;
      u32 hcfg_set = 0x00000000;
      u32 hcfg;
      u32 reg40_mask = 0x30000 << (channel<<1);
      u32 reg40_set = 0;
      u32 reg40;
      /* FIXME: Depending on mixer selection of SPDIF out or not, select the spdif rate or the DAC rate. */
      u32 reg71_mask = 0x03030000 ; /* Global. Set SPDIF rate. We only support 44100 to spdif, not to DAC. */
      u32 reg71_set = 0;
      u32 reg71;
      int i;
      
        //snd_printk("prepare:channel_number=%d, rate=%d, format=0x%x, channels=%d, buffer_size=%ld, period_size=%ld, periods=%u, frames_to_bytes=%d\n",channel, runtime->rate, runtime->format, runtime->channels, runtime->buffer_size, runtime->period_size, runtime->periods, frames_to_bytes(runtime, 1));
        //snd_printk("dma_addr=%x, dma_area=%p, table_base=%p\n",runtime->dma_addr, runtime->dma_area, table_base);
      //snd_printk("dma_addr=%x, dma_area=%p, dma_bytes(size)=%x\n",emu->buffer.addr, emu->buffer.area, emu->buffer.bytes);
      /* Rate can be set per channel. */
      /* reg40 control host to fifo */
      /* reg71 controls DAC rate. */
      switch (runtime->rate) {
      case 44100:
            reg40_set = 0x10000 << (channel<<1);
            reg71_set = 0x01010000; 
            break;
        case 48000:
            reg40_set = 0;
            reg71_set = 0; 
            break;
      case 96000:
            reg40_set = 0x20000 << (channel<<1);
            reg71_set = 0x02020000; 
            break;
      case 192000:
            reg40_set = 0x30000 << (channel<<1);
            reg71_set = 0x03030000; 
            break;
      default:
            reg40_set = 0;
            reg71_set = 0; 
            break;
      }
      /* Format is a global setting */
      /* FIXME: Only let the first channel accessed set this. */
      switch (runtime->format) {
      case SNDRV_PCM_FORMAT_S16_LE:
            hcfg_set = 0;
            break;
      case SNDRV_PCM_FORMAT_S32_LE:
            hcfg_set = HCFG_PLAYBACK_S32_LE;
            break;
      default:
            hcfg_set = 0;
            break;
      }
      hcfg = inl(emu->port + HCFG) ;
      hcfg = (hcfg & ~hcfg_mask) | hcfg_set;
      outl(hcfg, emu->port + HCFG);
      reg40 = snd_ca0106_ptr_read(emu, 0x40, 0);
      reg40 = (reg40 & ~reg40_mask) | reg40_set;
      snd_ca0106_ptr_write(emu, 0x40, 0, reg40);
      reg71 = snd_ca0106_ptr_read(emu, 0x71, 0);
      reg71 = (reg71 & ~reg71_mask) | reg71_set;
      snd_ca0106_ptr_write(emu, 0x71, 0, reg71);

      /* FIXME: Check emu->buffer.size before actually writing to it. */
        for(i=0; i < runtime->periods; i++) {
            table_base[i*2] = runtime->dma_addr + (i * period_size_bytes);
            table_base[i*2+1] = period_size_bytes << 16;
      }
 
      snd_ca0106_ptr_write(emu, PLAYBACK_LIST_ADDR, channel, emu->buffer.addr+(8*16*channel));
      snd_ca0106_ptr_write(emu, PLAYBACK_LIST_SIZE, channel, (runtime->periods - 1) << 19);
      snd_ca0106_ptr_write(emu, PLAYBACK_LIST_PTR, channel, 0);
      snd_ca0106_ptr_write(emu, PLAYBACK_DMA_ADDR, channel, runtime->dma_addr);
      snd_ca0106_ptr_write(emu, PLAYBACK_PERIOD_SIZE, channel, frames_to_bytes(runtime, runtime->period_size)<<16); // buffer size in bytes
      /* FIXME  test what 0 bytes does. */
      snd_ca0106_ptr_write(emu, PLAYBACK_PERIOD_SIZE, channel, 0); // buffer size in bytes
      snd_ca0106_ptr_write(emu, PLAYBACK_POINTER, channel, 0);
      snd_ca0106_ptr_write(emu, 0x07, channel, 0x0);
      snd_ca0106_ptr_write(emu, 0x08, channel, 0);
        snd_ca0106_ptr_write(emu, PLAYBACK_MUTE, 0x0, 0x0); /* Unmute output */
#if 0
      snd_ca0106_ptr_write(emu, SPCS0, 0,
                         SPCS_CLKACCY_1000PPM | SPCS_SAMPLERATE_48 |
                         SPCS_CHANNELNUM_LEFT | SPCS_SOURCENUM_UNSPEC |
                         SPCS_GENERATIONSTATUS | 0x00001200 |
                         0x00000000 | SPCS_EMPHASIS_NONE | SPCS_COPYRIGHT );
      }
#endif

      return 0;
}

/* prepare capture callback */
static int snd_ca0106_pcm_prepare_capture(struct snd_pcm_substream *substream)
{
      struct snd_ca0106 *emu = snd_pcm_substream_chip(substream);
      struct snd_pcm_runtime *runtime = substream->runtime;
      struct snd_ca0106_pcm *epcm = runtime->private_data;
      int channel = epcm->channel_id;
      u32 hcfg_mask = HCFG_CAPTURE_S32_LE;
      u32 hcfg_set = 0x00000000;
      u32 hcfg;
      u32 over_sampling=0x2;
      u32 reg71_mask = 0x0000c000 ; /* Global. Set ADC rate. */
      u32 reg71_set = 0;
      u32 reg71;
      
        //snd_printk("prepare:channel_number=%d, rate=%d, format=0x%x, channels=%d, buffer_size=%ld, period_size=%ld, periods=%u, frames_to_bytes=%d\n",channel, runtime->rate, runtime->format, runtime->channels, runtime->buffer_size, runtime->period_size, runtime->periods, frames_to_bytes(runtime, 1));
        //snd_printk("dma_addr=%x, dma_area=%p, table_base=%p\n",runtime->dma_addr, runtime->dma_area, table_base);
      //snd_printk("dma_addr=%x, dma_area=%p, dma_bytes(size)=%x\n",emu->buffer.addr, emu->buffer.area, emu->buffer.bytes);
      /* reg71 controls ADC rate. */
      switch (runtime->rate) {
      case 44100:
            reg71_set = 0x00004000;
            break;
        case 48000:
            reg71_set = 0; 
            break;
      case 96000:
            reg71_set = 0x00008000;
            over_sampling=0xa;
            break;
      case 192000:
            reg71_set = 0x0000c000; 
            over_sampling=0xa;
            break;
      default:
            reg71_set = 0; 
            break;
      }
      /* Format is a global setting */
      /* FIXME: Only let the first channel accessed set this. */
      switch (runtime->format) {
      case SNDRV_PCM_FORMAT_S16_LE:
            hcfg_set = 0;
            break;
      case SNDRV_PCM_FORMAT_S32_LE:
            hcfg_set = HCFG_CAPTURE_S32_LE;
            break;
      default:
            hcfg_set = 0;
            break;
      }
      hcfg = inl(emu->port + HCFG) ;
      hcfg = (hcfg & ~hcfg_mask) | hcfg_set;
      outl(hcfg, emu->port + HCFG);
      reg71 = snd_ca0106_ptr_read(emu, 0x71, 0);
      reg71 = (reg71 & ~reg71_mask) | reg71_set;
      snd_ca0106_ptr_write(emu, 0x71, 0, reg71);
        if (emu->details->i2c_adc == 1) { /* The SB0410 and SB0413 use I2C to control ADC. */
              snd_ca0106_i2c_write(emu, ADC_MASTER, over_sampling); /* Adjust the over sampler to better suit the capture rate. */
      }


        //printk("prepare:channel_number=%d, rate=%d, format=0x%x, channels=%d, buffer_size=%ld, period_size=%ld, frames_to_bytes=%d\n",channel, runtime->rate, runtime->format, runtime->channels, runtime->buffer_size, runtime->period_size,  frames_to_bytes(runtime, 1));
      snd_ca0106_ptr_write(emu, 0x13, channel, 0);
      snd_ca0106_ptr_write(emu, CAPTURE_DMA_ADDR, channel, runtime->dma_addr);
      snd_ca0106_ptr_write(emu, CAPTURE_BUFFER_SIZE, channel, frames_to_bytes(runtime, runtime->buffer_size)<<16); // buffer size in bytes
      snd_ca0106_ptr_write(emu, CAPTURE_POINTER, channel, 0);

      return 0;
}

/* trigger_playback callback */
static int snd_ca0106_pcm_trigger_playback(struct snd_pcm_substream *substream,
                            int cmd)
{
      struct snd_ca0106 *emu = snd_pcm_substream_chip(substream);
      struct snd_pcm_runtime *runtime;
      struct snd_ca0106_pcm *epcm;
      int channel;
      int result = 0;
        struct snd_pcm_substream *s;
      u32 basic = 0;
      u32 extended = 0;
      int running=0;

      switch (cmd) {
      case SNDRV_PCM_TRIGGER_START:
            running=1;
            break;
      case SNDRV_PCM_TRIGGER_STOP:
      default:
            running=0;
            break;
      }
        snd_pcm_group_for_each_entry(s, substream) {
            if (snd_pcm_substream_chip(s) != emu ||
                s->stream != SNDRV_PCM_STREAM_PLAYBACK)
                  continue;
            runtime = s->runtime;
            epcm = runtime->private_data;
            channel = epcm->channel_id;
            //snd_printk("channel=%d\n",channel);
            epcm->running = running;
            basic |= (0x1<<channel);
            extended |= (0x10<<channel);
                snd_pcm_trigger_done(s, substream);
        }
      //snd_printk("basic=0x%x, extended=0x%x\n",basic, extended);

      switch (cmd) {
      case SNDRV_PCM_TRIGGER_START:
            snd_ca0106_ptr_write(emu, EXTENDED_INT_MASK, 0, snd_ca0106_ptr_read(emu, EXTENDED_INT_MASK, 0) | (extended));
            snd_ca0106_ptr_write(emu, BASIC_INTERRUPT, 0, snd_ca0106_ptr_read(emu, BASIC_INTERRUPT, 0)|(basic));
            break;
      case SNDRV_PCM_TRIGGER_STOP:
            snd_ca0106_ptr_write(emu, BASIC_INTERRUPT, 0, snd_ca0106_ptr_read(emu, BASIC_INTERRUPT, 0) & ~(basic));
            snd_ca0106_ptr_write(emu, EXTENDED_INT_MASK, 0, snd_ca0106_ptr_read(emu, EXTENDED_INT_MASK, 0) & ~(extended));
            break;
      default:
            result = -EINVAL;
            break;
      }
      return result;
}

/* trigger_capture callback */
static int snd_ca0106_pcm_trigger_capture(struct snd_pcm_substream *substream,
                            int cmd)
{
      struct snd_ca0106 *emu = snd_pcm_substream_chip(substream);
      struct snd_pcm_runtime *runtime = substream->runtime;
      struct snd_ca0106_pcm *epcm = runtime->private_data;
      int channel = epcm->channel_id;
      int result = 0;

      switch (cmd) {
      case SNDRV_PCM_TRIGGER_START:
            snd_ca0106_ptr_write(emu, EXTENDED_INT_MASK, 0, snd_ca0106_ptr_read(emu, EXTENDED_INT_MASK, 0) | (0x110000<<channel));
            snd_ca0106_ptr_write(emu, BASIC_INTERRUPT, 0, snd_ca0106_ptr_read(emu, BASIC_INTERRUPT, 0)|(0x100<<channel));
            epcm->running = 1;
            break;
      case SNDRV_PCM_TRIGGER_STOP:
            snd_ca0106_ptr_write(emu, BASIC_INTERRUPT, 0, snd_ca0106_ptr_read(emu, BASIC_INTERRUPT, 0) & ~(0x100<<channel));
            snd_ca0106_ptr_write(emu, EXTENDED_INT_MASK, 0, snd_ca0106_ptr_read(emu, EXTENDED_INT_MASK, 0) & ~(0x110000<<channel));
            epcm->running = 0;
            break;
      default:
            result = -EINVAL;
            break;
      }
      return result;
}

/* pointer_playback callback */
static snd_pcm_uframes_t
snd_ca0106_pcm_pointer_playback(struct snd_pcm_substream *substream)
{
      struct snd_ca0106 *emu = snd_pcm_substream_chip(substream);
      struct snd_pcm_runtime *runtime = substream->runtime;
      struct snd_ca0106_pcm *epcm = runtime->private_data;
      snd_pcm_uframes_t ptr, ptr1, ptr2,ptr3,ptr4 = 0;
      int channel = epcm->channel_id;

      if (!epcm->running)
            return 0;

      ptr3 = snd_ca0106_ptr_read(emu, PLAYBACK_LIST_PTR, channel);
      ptr1 = snd_ca0106_ptr_read(emu, PLAYBACK_POINTER, channel);
      ptr4 = snd_ca0106_ptr_read(emu, PLAYBACK_LIST_PTR, channel);
      if (ptr3 != ptr4) ptr1 = snd_ca0106_ptr_read(emu, PLAYBACK_POINTER, channel);
      ptr2 = bytes_to_frames(runtime, ptr1);
      ptr2+= (ptr4 >> 3) * runtime->period_size;
      ptr=ptr2;
        if (ptr >= runtime->buffer_size)
            ptr -= runtime->buffer_size;
      //printk("ptr1 = 0x%lx, ptr2=0x%lx, ptr=0x%lx, buffer_size = 0x%x, period_size = 0x%x, bits=%d, rate=%d\n", ptr1, ptr2, ptr, (int)runtime->buffer_size, (int)runtime->period_size, (int)runtime->frame_bits, (int)runtime->rate);

      return ptr;
}

/* pointer_capture callback */
static snd_pcm_uframes_t
snd_ca0106_pcm_pointer_capture(struct snd_pcm_substream *substream)
{
      struct snd_ca0106 *emu = snd_pcm_substream_chip(substream);
      struct snd_pcm_runtime *runtime = substream->runtime;
      struct snd_ca0106_pcm *epcm = runtime->private_data;
      snd_pcm_uframes_t ptr, ptr1, ptr2 = 0;
      int channel = channel=epcm->channel_id;

      if (!epcm->running)
            return 0;

      ptr1 = snd_ca0106_ptr_read(emu, CAPTURE_POINTER, channel);
      ptr2 = bytes_to_frames(runtime, ptr1);
      ptr=ptr2;
        if (ptr >= runtime->buffer_size)
            ptr -= runtime->buffer_size;
      //printk("ptr1 = 0x%lx, ptr2=0x%lx, ptr=0x%lx, buffer_size = 0x%x, period_size = 0x%x, bits=%d, rate=%d\n", ptr1, ptr2, ptr, (int)runtime->buffer_size, (int)runtime->period_size, (int)runtime->frame_bits, (int)runtime->rate);

      return ptr;
}

/* operators */
static struct snd_pcm_ops snd_ca0106_playback_front_ops = {
      .open =        snd_ca0106_pcm_open_playback_front,
      .close =       snd_ca0106_pcm_close_playback,
      .ioctl =       snd_pcm_lib_ioctl,
      .hw_params =   snd_ca0106_pcm_hw_params_playback,
      .hw_free =     snd_ca0106_pcm_hw_free_playback,
      .prepare =     snd_ca0106_pcm_prepare_playback,
      .trigger =     snd_ca0106_pcm_trigger_playback,
      .pointer =     snd_ca0106_pcm_pointer_playback,
};

static struct snd_pcm_ops snd_ca0106_capture_0_ops = {
      .open =        snd_ca0106_pcm_open_0_capture,
      .close =       snd_ca0106_pcm_close_capture,
      .ioctl =       snd_pcm_lib_ioctl,
      .hw_params =   snd_ca0106_pcm_hw_params_capture,
      .hw_free =     snd_ca0106_pcm_hw_free_capture,
      .prepare =     snd_ca0106_pcm_prepare_capture,
      .trigger =     snd_ca0106_pcm_trigger_capture,
      .pointer =     snd_ca0106_pcm_pointer_capture,
};

static struct snd_pcm_ops snd_ca0106_capture_1_ops = {
      .open =        snd_ca0106_pcm_open_1_capture,
      .close =       snd_ca0106_pcm_close_capture,
      .ioctl =       snd_pcm_lib_ioctl,
      .hw_params =   snd_ca0106_pcm_hw_params_capture,
      .hw_free =     snd_ca0106_pcm_hw_free_capture,
      .prepare =     snd_ca0106_pcm_prepare_capture,
      .trigger =     snd_ca0106_pcm_trigger_capture,
      .pointer =     snd_ca0106_pcm_pointer_capture,
};

static struct snd_pcm_ops snd_ca0106_capture_2_ops = {
      .open =        snd_ca0106_pcm_open_2_capture,
      .close =       snd_ca0106_pcm_close_capture,
      .ioctl =       snd_pcm_lib_ioctl,
      .hw_params =   snd_ca0106_pcm_hw_params_capture,
      .hw_free =     snd_ca0106_pcm_hw_free_capture,
      .prepare =     snd_ca0106_pcm_prepare_capture,
      .trigger =     snd_ca0106_pcm_trigger_capture,
      .pointer =     snd_ca0106_pcm_pointer_capture,
};

static struct snd_pcm_ops snd_ca0106_capture_3_ops = {
      .open =        snd_ca0106_pcm_open_3_capture,
      .close =       snd_ca0106_pcm_close_capture,
      .ioctl =       snd_pcm_lib_ioctl,
      .hw_params =   snd_ca0106_pcm_hw_params_capture,
      .hw_free =     snd_ca0106_pcm_hw_free_capture,
      .prepare =     snd_ca0106_pcm_prepare_capture,
      .trigger =     snd_ca0106_pcm_trigger_capture,
      .pointer =     snd_ca0106_pcm_pointer_capture,
};

static struct snd_pcm_ops snd_ca0106_playback_center_lfe_ops = {
        .open =         snd_ca0106_pcm_open_playback_center_lfe,
        .close =        snd_ca0106_pcm_close_playback,
        .ioctl =        snd_pcm_lib_ioctl,
        .hw_params =    snd_ca0106_pcm_hw_params_playback,
        .hw_free =      snd_ca0106_pcm_hw_free_playback,
        .prepare =      snd_ca0106_pcm_prepare_playback,     
        .trigger =      snd_ca0106_pcm_trigger_playback,  
        .pointer =      snd_ca0106_pcm_pointer_playback, 
};

static struct snd_pcm_ops snd_ca0106_playback_unknown_ops = {
        .open =         snd_ca0106_pcm_open_playback_unknown,
        .close =        snd_ca0106_pcm_close_playback,
        .ioctl =        snd_pcm_lib_ioctl,
        .hw_params =    snd_ca0106_pcm_hw_params_playback,
        .hw_free =      snd_ca0106_pcm_hw_free_playback,
        .prepare =      snd_ca0106_pcm_prepare_playback,     
        .trigger =      snd_ca0106_pcm_trigger_playback,  
        .pointer =      snd_ca0106_pcm_pointer_playback, 
};

static struct snd_pcm_ops snd_ca0106_playback_rear_ops = {
        .open =         snd_ca0106_pcm_open_playback_rear,
        .close =        snd_ca0106_pcm_close_playback,
        .ioctl =        snd_pcm_lib_ioctl,
        .hw_params =    snd_ca0106_pcm_hw_params_playback,
            .hw_free =      snd_ca0106_pcm_hw_free_playback,
        .prepare =      snd_ca0106_pcm_prepare_playback,     
        .trigger =      snd_ca0106_pcm_trigger_playback,  
        .pointer =      snd_ca0106_pcm_pointer_playback, 
};


static unsigned short snd_ca0106_ac97_read(struct snd_ac97 *ac97,
                                   unsigned short reg)
{
      struct snd_ca0106 *emu = ac97->private_data;
      unsigned long flags;
      unsigned short val;

      spin_lock_irqsave(&emu->emu_lock, flags);
      outb(reg, emu->port + AC97ADDRESS);
      val = inw(emu->port + AC97DATA);
      spin_unlock_irqrestore(&emu->emu_lock, flags);
      return val;
}

static void snd_ca0106_ac97_write(struct snd_ac97 *ac97,
                            unsigned short reg, unsigned short val)
{
      struct snd_ca0106 *emu = ac97->private_data;
      unsigned long flags;
  
      spin_lock_irqsave(&emu->emu_lock, flags);
      outb(reg, emu->port + AC97ADDRESS);
      outw(val, emu->port + AC97DATA);
      spin_unlock_irqrestore(&emu->emu_lock, flags);
}

static int snd_ca0106_ac97(struct snd_ca0106 *chip)
{
      struct snd_ac97_bus *pbus;
      struct snd_ac97_template ac97;
      int err;
      static struct snd_ac97_bus_ops ops = {
            .write = snd_ca0106_ac97_write,
            .read = snd_ca0106_ac97_read,
      };
  
      if ((err = snd_ac97_bus(chip->card, 0, &ops, NULL, &pbus)) < 0)
            return err;
      pbus->no_vra = 1; /* we don't need VRA */

      memset(&ac97, 0, sizeof(ac97));
      ac97.private_data = chip;
      ac97.scaps = AC97_SCAP_NO_SPDIF;
      return snd_ac97_mixer(pbus, &ac97, &chip->ac97);
}

static int snd_ca0106_free(struct snd_ca0106 *chip)
{
      if (chip->res_port != NULL) {    /* avoid access to already used hardware */
            // disable interrupts
            snd_ca0106_ptr_write(chip, BASIC_INTERRUPT, 0, 0);
            outl(0, chip->port + INTE);
            snd_ca0106_ptr_write(chip, EXTENDED_INT_MASK, 0, 0);
            udelay(1000);
            // disable audio
            //outl(HCFG_LOCKSOUNDCACHE, chip->port + HCFG);
            outl(0, chip->port + HCFG);
            /* FIXME: We need to stop and DMA transfers here.
             *        But as I am not sure how yet, we cannot from the dma pages.
             * So we can fix: snd-malloc: Memory leak?  pages not freed = 8
             */
      }
      // release the data
#if 1
      if (chip->buffer.area)
            snd_dma_free_pages(&chip->buffer);
#endif

      // release the i/o port
      release_and_free_resource(chip->res_port);

      // release the irq
      if (chip->irq >= 0)
            free_irq(chip->irq, chip);
      pci_disable_device(chip->pci);
      kfree(chip);
      return 0;
}

static int snd_ca0106_dev_free(struct snd_device *device)
{
      struct snd_ca0106 *chip = device->device_data;
      return snd_ca0106_free(chip);
}

static irqreturn_t snd_ca0106_interrupt(int irq, void *dev_id)
{
      unsigned int status;

      struct snd_ca0106 *chip = dev_id;
      int i;
      int mask;
        unsigned int stat76;
      struct snd_ca0106_channel *pchannel;

      status = inl(chip->port + IPR);
      if (! status)
            return IRQ_NONE;

        stat76 = snd_ca0106_ptr_read(chip, EXTENDED_INT, 0);
      //snd_printk("interrupt status = 0x%08x, stat76=0x%08x\n", status, stat76);
      //snd_printk("ptr=0x%08x\n",snd_ca0106_ptr_read(chip, PLAYBACK_POINTER, 0));
        mask = 0x11; /* 0x1 for one half, 0x10 for the other half period. */
      for(i = 0; i < 4; i++) {
            pchannel = &(chip->playback_channels[i]);
            if (stat76 & mask) {
/* FIXME: Select the correct substream for period elapsed */
                  if(pchannel->use) {
                        snd_pcm_period_elapsed(pchannel->epcm->substream);
                        //printk(KERN_INFO "interrupt [%d] used\n", i);
                        }
            }
              //printk(KERN_INFO "channel=%p\n",pchannel);
              //printk(KERN_INFO "interrupt stat76[%d] = %08x, use=%d, channel=%d\n", i, stat76, pchannel->use, pchannel->number);
            mask <<= 1;
      }
        mask = 0x110000; /* 0x1 for one half, 0x10 for the other half period. */
      for(i = 0; i < 4; i++) {
            pchannel = &(chip->capture_channels[i]);
            if (stat76 & mask) {
/* FIXME: Select the correct substream for period elapsed */
                  if(pchannel->use) {
                        snd_pcm_period_elapsed(pchannel->epcm->substream);
                        //printk(KERN_INFO "interrupt [%d] used\n", i);
                        }
            }
              //printk(KERN_INFO "channel=%p\n",pchannel);
              //printk(KERN_INFO "interrupt stat76[%d] = %08x, use=%d, channel=%d\n", i, stat76, pchannel->use, pchannel->number);
            mask <<= 1;
      }

        snd_ca0106_ptr_write(chip, EXTENDED_INT, 0, stat76);

      if (chip->midi.dev_id &&
          (status & (chip->midi.ipr_tx|chip->midi.ipr_rx))) {
            if (chip->midi.interrupt)
                  chip->midi.interrupt(&chip->midi, status);
            else
                  chip->midi.interrupt_disable(&chip->midi, chip->midi.tx_enable | chip->midi.rx_enable);
      }

      // acknowledge the interrupt if necessary
      outl(status, chip->port+IPR);

      return IRQ_HANDLED;
}

static int __devinit snd_ca0106_pcm(struct snd_ca0106 *emu, int device, struct snd_pcm **rpcm)
{
      struct snd_pcm *pcm;
      struct snd_pcm_substream *substream;
      int err;
  
      if (rpcm)
            *rpcm = NULL;
      if ((err = snd_pcm_new(emu->card, "ca0106", device, 1, 1, &pcm)) < 0)
            return err;
  
      pcm->private_data = emu;

      switch (device) {
      case 0:
        snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_ca0106_playback_front_ops);
        snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &snd_ca0106_capture_0_ops);
          break;
      case 1:
        snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_ca0106_playback_rear_ops);
        snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &snd_ca0106_capture_1_ops);
          break;
      case 2:
        snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_ca0106_playback_center_lfe_ops);
        snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &snd_ca0106_capture_2_ops);
          break;
      case 3:
        snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_ca0106_playback_unknown_ops);
        snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &snd_ca0106_capture_3_ops);
          break;
        }

      pcm->info_flags = 0;
      pcm->dev_subclass = SNDRV_PCM_SUBCLASS_GENERIC_MIX;
      strcpy(pcm->name, "CA0106");
      emu->pcm = pcm;

      for(substream = pcm->streams[SNDRV_PCM_STREAM_PLAYBACK].substream; 
          substream; 
          substream = substream->next) {
            if ((err = snd_pcm_lib_preallocate_pages(substream, 
                                           SNDRV_DMA_TYPE_DEV, 
                                           snd_dma_pci_data(emu->pci), 
                                           64*1024, 64*1024)) < 0) /* FIXME: 32*1024 for sound buffer, between 32and64 for Periods table. */
                  return err;
      }

      for (substream = pcm->streams[SNDRV_PCM_STREAM_CAPTURE].substream; 
            substream; 
            substream = substream->next) {
            if ((err = snd_pcm_lib_preallocate_pages(substream, 
                                                 SNDRV_DMA_TYPE_DEV, 
                                                 snd_dma_pci_data(emu->pci), 
                                                 64*1024, 64*1024)) < 0)
                  return err;
      }
  
      if (rpcm)
            *rpcm = pcm;
  
      return 0;
}

#define SPI_REG(reg, value)   (((reg) << SPI_REG_SHIFT) | (value))
static unsigned int spi_dac_init[] = {
      SPI_REG(SPI_LDA1_REG,   SPI_DA_BIT_0dB), /* 0dB dig. attenuation */
      SPI_REG(SPI_RDA1_REG,   SPI_DA_BIT_0dB),
      SPI_REG(SPI_PL_REG,     SPI_PL_BIT_L_L | SPI_PL_BIT_R_R | SPI_IZD_BIT),
      SPI_REG(SPI_FMT_REG,    SPI_FMT_BIT_I2S | SPI_IWL_BIT_24),
      SPI_REG(SPI_LDA2_REG,   SPI_DA_BIT_0dB),
      SPI_REG(SPI_RDA2_REG,   SPI_DA_BIT_0dB),
      SPI_REG(SPI_LDA3_REG,   SPI_DA_BIT_0dB),
      SPI_REG(SPI_RDA3_REG,   SPI_DA_BIT_0dB),
      SPI_REG(SPI_MASTDA_REG, SPI_DA_BIT_0dB),
      SPI_REG(9,        0x00),
      SPI_REG(SPI_MS_REG,     SPI_DACD0_BIT | SPI_DACD1_BIT | SPI_DACD2_BIT),
      SPI_REG(12,       0x00),
      SPI_REG(SPI_LDA4_REG,   SPI_DA_BIT_0dB),
      SPI_REG(SPI_RDA4_REG,   SPI_DA_BIT_0dB | SPI_DA_BIT_UPDATE),
      SPI_REG(SPI_DACD4_REG,  0x00),
};

static unsigned int i2c_adc_init[][2] = {
      { 0x17, 0x00 }, /* Reset */
      { 0x07, 0x00 }, /* Timeout */
      { 0x0b, 0x22 },  /* Interface control */
      { 0x0c, 0x22 },  /* Master mode control */
      { 0x0d, 0x08 },  /* Powerdown control */
      { 0x0e, 0xcf },  /* Attenuation Left  0x01 = -103dB, 0xff = 24dB */
      { 0x0f, 0xcf },  /* Attenuation Right 0.5dB steps */
      { 0x10, 0x7b },  /* ALC Control 1 */
      { 0x11, 0x00 },  /* ALC Control 2 */
      { 0x12, 0x32 },  /* ALC Control 3 */
      { 0x13, 0x00 },  /* Noise gate control */
      { 0x14, 0xa6 },  /* Limiter control */
      { 0x15, ADC_MUX_LINEIN },  /* ADC Mixer control */
};

static int __devinit snd_ca0106_create(int dev, struct snd_card *card,
                               struct pci_dev *pci,
                               struct snd_ca0106 **rchip)
{
      struct snd_ca0106 *chip;
      struct snd_ca0106_details *c;
      int err;
      int ch;
      static struct snd_device_ops ops = {
            .dev_free = snd_ca0106_dev_free,
      };
  
      *rchip = NULL;
  
      if ((err = pci_enable_device(pci)) < 0)
            return err;
      if (pci_set_dma_mask(pci, DMA_32BIT_MASK) < 0 ||
          pci_set_consistent_dma_mask(pci, DMA_32BIT_MASK) < 0) {
            printk(KERN_ERR "error to set 32bit mask DMA\n");
            pci_disable_device(pci);
            return -ENXIO;
      }
  
      chip = kzalloc(sizeof(*chip), GFP_KERNEL);
      if (chip == NULL) {
            pci_disable_device(pci);
            return -ENOMEM;
      }
  
      chip->card = card;
      chip->pci = pci;
      chip->irq = -1;

      spin_lock_init(&chip->emu_lock);
  
      chip->port = pci_resource_start(pci, 0);
      if ((chip->res_port = request_region(chip->port, 0x20,
                                   "snd_ca0106")) == NULL) { 
            snd_ca0106_free(chip);
            printk(KERN_ERR "cannot allocate the port\n");
            return -EBUSY;
      }

      if (request_irq(pci->irq, snd_ca0106_interrupt,
                  IRQF_SHARED, "snd_ca0106", chip)) {
            snd_ca0106_free(chip);
            printk(KERN_ERR "cannot grab irq\n");
            return -EBUSY;
      }
      chip->irq = pci->irq;
  
      /* This stores the periods table. */ 
      if(snd_dma_alloc_pages(SNDRV_DMA_TYPE_DEV, snd_dma_pci_data(pci), 1024, &chip->buffer) < 0) {
            snd_ca0106_free(chip);
            return -ENOMEM;
      }

      pci_set_master(pci);
      /* read serial */
      pci_read_config_dword(pci, PCI_SUBSYSTEM_VENDOR_ID, &chip->serial);
      pci_read_config_word(pci, PCI_SUBSYSTEM_ID, &chip->model);
#if 1
      printk(KERN_INFO "snd-ca0106: Model %04x Rev %08x Serial %08x\n", chip->model,
             pci->revision, chip->serial);
#endif
      strcpy(card->driver, "CA0106");
      strcpy(card->shortname, "CA0106");

      for (c = ca0106_chip_details; c->serial; c++) {
            if (subsystem[dev]) {
                  if (c->serial == subsystem[dev])
                        break;
            } else if (c->serial == chip->serial)
                  break;
      }
      chip->details = c;
      if (subsystem[dev]) {
            printk(KERN_INFO "snd-ca0106: Sound card name=%s, subsystem=0x%x. Forced to subsystem=0x%x\n",
                        c->name, chip->serial, subsystem[dev]);
      }

      sprintf(card->longname, "%s at 0x%lx irq %i",
            c->name, chip->port, chip->irq);

      outl(0, chip->port + INTE);

      /*
       *  Init to 0x02109204 :
       *  Clock accuracy    = 0     (1000ppm)
       *  Sample Rate       = 2     (48kHz)
       *  Audio Channel     = 1     (Left of 2)
       *  Source Number     = 0     (Unspecified)
       *  Generation Status = 1     (Original for Cat Code 12)
       *  Cat Code          = 12    (Digital Signal Mixer)
       *  Mode              = 0     (Mode 0)
       *  Emphasis          = 0     (None)
       *  CP                = 1     (Copyright unasserted)
       *  AN                = 0     (Audio data)
       *  P                 = 0     (Consumer)
       */
      snd_ca0106_ptr_write(chip, SPCS0, 0,
                        chip->spdif_bits[0] =
                        SPCS_CLKACCY_1000PPM | SPCS_SAMPLERATE_48 |
                        SPCS_CHANNELNUM_LEFT | SPCS_SOURCENUM_UNSPEC |
                        SPCS_GENERATIONSTATUS | 0x00001200 |
                        0x00000000 | SPCS_EMPHASIS_NONE | SPCS_COPYRIGHT);
      /* Only SPCS1 has been tested */
      snd_ca0106_ptr_write(chip, SPCS1, 0,
                        chip->spdif_bits[1] =
                        SPCS_CLKACCY_1000PPM | SPCS_SAMPLERATE_48 |
                        SPCS_CHANNELNUM_LEFT | SPCS_SOURCENUM_UNSPEC |
                        SPCS_GENERATIONSTATUS | 0x00001200 |
                        0x00000000 | SPCS_EMPHASIS_NONE | SPCS_COPYRIGHT);
      snd_ca0106_ptr_write(chip, SPCS2, 0,
                        chip->spdif_bits[2] =
                        SPCS_CLKACCY_1000PPM | SPCS_SAMPLERATE_48 |
                        SPCS_CHANNELNUM_LEFT | SPCS_SOURCENUM_UNSPEC |
                        SPCS_GENERATIONSTATUS | 0x00001200 |
                        0x00000000 | SPCS_EMPHASIS_NONE | SPCS_COPYRIGHT);
      snd_ca0106_ptr_write(chip, SPCS3, 0,
                        chip->spdif_bits[3] =
                        SPCS_CLKACCY_1000PPM | SPCS_SAMPLERATE_48 |
                        SPCS_CHANNELNUM_LEFT | SPCS_SOURCENUM_UNSPEC |
                        SPCS_GENERATIONSTATUS | 0x00001200 |
                        0x00000000 | SPCS_EMPHASIS_NONE | SPCS_COPYRIGHT);

        snd_ca0106_ptr_write(chip, PLAYBACK_MUTE, 0, 0x00fc0000);
        snd_ca0106_ptr_write(chip, CAPTURE_MUTE, 0, 0x00fc0000);

        /* Write 0x8000 to AC97_REC_GAIN to mute it. */
        outb(AC97_REC_GAIN, chip->port + AC97ADDRESS);
        outw(0x8000, chip->port + AC97DATA);
#if 0
      snd_ca0106_ptr_write(chip, SPCS0, 0, 0x2108006);
      snd_ca0106_ptr_write(chip, 0x42, 0, 0x2108006);
      snd_ca0106_ptr_write(chip, 0x43, 0, 0x2108006);
      snd_ca0106_ptr_write(chip, 0x44, 0, 0x2108006);
#endif

      //snd_ca0106_ptr_write(chip, SPDIF_SELECT2, 0, 0xf0f003f); /* OSS drivers set this. */
      /* Analog or Digital output */
      snd_ca0106_ptr_write(chip, SPDIF_SELECT1, 0, 0xf);
      snd_ca0106_ptr_write(chip, SPDIF_SELECT2, 0, 0x000f0000); /* 0x0b000000 for digital, 0x000b0000 for analog, from win2000 drivers. Use 0x000f0000 for surround71 */
      chip->spdif_enable = 0; /* Set digital SPDIF output off */
      //snd_ca0106_ptr_write(chip, 0x45, 0, 0); /* Analogue out */
      //snd_ca0106_ptr_write(chip, 0x45, 0, 0xf00); /* Digital out */

      snd_ca0106_ptr_write(chip, CAPTURE_CONTROL, 0, 0x40c81000); /* goes to 0x40c80000 when doing SPDIF IN/OUT */
      snd_ca0106_ptr_write(chip, CAPTURE_CONTROL, 1, 0xffffffff); /* (Mute) CAPTURE feedback into PLAYBACK volume. Only lower 16 bits matter. */
      snd_ca0106_ptr_write(chip, CAPTURE_CONTROL, 2, 0x30300000); /* SPDIF IN Volume */
      snd_ca0106_ptr_write(chip, CAPTURE_CONTROL, 3, 0x00700000); /* SPDIF IN Volume, 0x70 = (vol & 0x3f) | 0x40 */
      snd_ca0106_ptr_write(chip, PLAYBACK_ROUTING1, 0, 0x32765410);
      snd_ca0106_ptr_write(chip, PLAYBACK_ROUTING2, 0, 0x76767676);
      snd_ca0106_ptr_write(chip, CAPTURE_ROUTING1, 0, 0x32765410);
      snd_ca0106_ptr_write(chip, CAPTURE_ROUTING2, 0, 0x76767676);
      for(ch = 0; ch < 4; ch++) {
            snd_ca0106_ptr_write(chip, CAPTURE_VOLUME1, ch, 0x30303030); /* Only high 16 bits matter */
            snd_ca0106_ptr_write(chip, CAPTURE_VOLUME2, ch, 0x30303030);
            //snd_ca0106_ptr_write(chip, PLAYBACK_VOLUME1, ch, 0x40404040); /* Mute */
            //snd_ca0106_ptr_write(chip, PLAYBACK_VOLUME2, ch, 0x40404040); /* Mute */
            snd_ca0106_ptr_write(chip, PLAYBACK_VOLUME1, ch, 0xffffffff); /* Mute */
            snd_ca0106_ptr_write(chip, PLAYBACK_VOLUME2, ch, 0xffffffff); /* Mute */
      }
      if (chip->details->i2c_adc == 1) {
              /* Select MIC, Line in, TAD in, AUX in */
              snd_ca0106_ptr_write(chip, CAPTURE_SOURCE, 0x0, 0x333300e4);
            /* Default to CAPTURE_SOURCE to i2s in */
            chip->capture_source = 3;
      } else if (chip->details->ac97 == 1) {
              /* Default to AC97 in */
              snd_ca0106_ptr_write(chip, CAPTURE_SOURCE, 0x0, 0x444400e4);
            /* Default to CAPTURE_SOURCE to AC97 in */
            chip->capture_source = 4;
      } else {
              /* Select MIC, Line in, TAD in, AUX in */
              snd_ca0106_ptr_write(chip, CAPTURE_SOURCE, 0x0, 0x333300e4);
            /* Default to Set CAPTURE_SOURCE to i2s in */
            chip->capture_source = 3;
      }

        if (chip->details->gpio_type == 2) { /* The SB0438 use GPIO differently. */
            /* FIXME: Still need to find out what the other GPIO bits do. E.g. For digital spdif out. */
            outl(0x0, chip->port+GPIO);
            //outl(0x00f0e000, chip->port+GPIO); /* Analog */
            outl(0x005f5301, chip->port+GPIO); /* Analog */
      } else if (chip->details->gpio_type == 1) { /* The SB0410 and SB0413 use GPIO differently. */
            /* FIXME: Still need to find out what the other GPIO bits do. E.g. For digital spdif out. */
            outl(0x0, chip->port+GPIO);
            //outl(0x00f0e000, chip->port+GPIO); /* Analog */
            outl(0x005f5301, chip->port+GPIO); /* Analog */
      } else {
            outl(0x0, chip->port+GPIO);
            outl(0x005f03a3, chip->port+GPIO); /* Analog */
            //outl(0x005f02a2, chip->port+GPIO);   /* SPDIF */
      }
      snd_ca0106_intr_enable(chip, 0x105); /* Win2000 uses 0x1e0 */

      //outl(HCFG_LOCKSOUNDCACHE|HCFG_AUDIOENABLE, chip->port+HCFG);
      //outl(0x00001409, chip->port+HCFG); /* 0x1000 causes AC3 to fails. Maybe it effects 24 bit output. */
      //outl(0x00000009, chip->port+HCFG);
      outl(HCFG_AC97 | HCFG_AUDIOENABLE, chip->port+HCFG); /* AC97 2.0, Enable outputs. */

        if (chip->details->i2c_adc == 1) { /* The SB0410 and SB0413 use I2C to control ADC. */
            int size, n;

            size = ARRAY_SIZE(i2c_adc_init);
                //snd_printk("I2C:array size=0x%x\n", size);
            for (n=0; n < size; n++) {
                  snd_ca0106_i2c_write(chip, i2c_adc_init[n][0], i2c_adc_init[n][1]);
            }
            for (n=0; n < 4; n++) {
                  chip->i2c_capture_volume[n][0]= 0xcf;
                  chip->i2c_capture_volume[n][1]= 0xcf;
            }
            chip->i2c_capture_source=2; /* Line in */
              //snd_ca0106_i2c_write(chip, ADC_MUX, ADC_MUX_LINEIN); /* Enable Line-in capture. MIC in currently untested. */
      }
        if (chip->details->spi_dac == 1) { /* The SB0570 use SPI to control DAC. */
            int size, n;

            size = ARRAY_SIZE(spi_dac_init);
            for (n = 0; n < size; n++) {
                  int reg = spi_dac_init[n] >> SPI_REG_SHIFT;

                  snd_ca0106_spi_write(chip, spi_dac_init[n]);
                  if (reg < ARRAY_SIZE(chip->spi_dac_reg))
                        chip->spi_dac_reg[reg] = spi_dac_init[n];
            }
      }

      if ((err = snd_device_new(card, SNDRV_DEV_LOWLEVEL,
                          chip, &ops)) < 0) {
            snd_ca0106_free(chip);
            return err;
      }
      *rchip = chip;
      return 0;
}


static void ca0106_midi_interrupt_enable(struct snd_ca_midi *midi, int intr)
{
      snd_ca0106_intr_enable((struct snd_ca0106 *)(midi->dev_id), intr);
}

static void ca0106_midi_interrupt_disable(struct snd_ca_midi *midi, int intr)
{
      snd_ca0106_intr_disable((struct snd_ca0106 *)(midi->dev_id), intr);
}

static unsigned char ca0106_midi_read(struct snd_ca_midi *midi, int idx)
{
      return (unsigned char)snd_ca0106_ptr_read((struct snd_ca0106 *)(midi->dev_id),
                                      midi->port + idx, 0);
}

static void ca0106_midi_write(struct snd_ca_midi *midi, int data, int idx)
{
      snd_ca0106_ptr_write((struct snd_ca0106 *)(midi->dev_id), midi->port + idx, 0, data);
}

static struct snd_card *ca0106_dev_id_card(void *dev_id)
{
      return ((struct snd_ca0106 *)dev_id)->card;
}

static int ca0106_dev_id_port(void *dev_id)
{
      return ((struct snd_ca0106 *)dev_id)->port;
}

static int __devinit snd_ca0106_midi(struct snd_ca0106 *chip, unsigned int channel)
{
      struct snd_ca_midi *midi;
      char *name;
      int err;

      if (channel == CA0106_MIDI_CHAN_B) {
            name = "CA0106 MPU-401 (UART) B";
            midi =  &chip->midi2;
            midi->tx_enable = INTE_MIDI_TX_B;
            midi->rx_enable = INTE_MIDI_RX_B;
            midi->ipr_tx = IPR_MIDI_TX_B;
            midi->ipr_rx = IPR_MIDI_RX_B;
            midi->port = MIDI_UART_B_DATA;
      } else {
            name = "CA0106 MPU-401 (UART)";
            midi =  &chip->midi;
            midi->tx_enable = INTE_MIDI_TX_A;
            midi->rx_enable = INTE_MIDI_TX_B;
            midi->ipr_tx = IPR_MIDI_TX_A;
            midi->ipr_rx = IPR_MIDI_RX_A;
            midi->port = MIDI_UART_A_DATA;
      }

      midi->reset = CA0106_MPU401_RESET;
      midi->enter_uart = CA0106_MPU401_ENTER_UART;
      midi->ack = CA0106_MPU401_ACK;

      midi->input_avail = CA0106_MIDI_INPUT_AVAIL;
      midi->output_ready = CA0106_MIDI_OUTPUT_READY;

      midi->channel = channel;

      midi->interrupt_enable = ca0106_midi_interrupt_enable;
      midi->interrupt_disable = ca0106_midi_interrupt_disable;

      midi->read = ca0106_midi_read;
      midi->write = ca0106_midi_write;

      midi->get_dev_id_card = ca0106_dev_id_card;
      midi->get_dev_id_port = ca0106_dev_id_port;

      midi->dev_id = chip;
      
      if ((err = ca_midi_init(chip, midi, 0, name)) < 0)
            return err;

      return 0;
}


static int __devinit snd_ca0106_probe(struct pci_dev *pci,
                              const struct pci_device_id *pci_id)
{
      static int dev;
      struct snd_card *card;
      struct snd_ca0106 *chip;
      int err;

      if (dev >= SNDRV_CARDS)
            return -ENODEV;
      if (!enable[dev]) {
            dev++;
            return -ENOENT;
      }

      card = snd_card_new(index[dev], id[dev], THIS_MODULE, 0);
      if (card == NULL)
            return -ENOMEM;

      if ((err = snd_ca0106_create(dev, card, pci, &chip)) < 0) {
            snd_card_free(card);
            return err;
      }

      if ((err = snd_ca0106_pcm(chip, 0, NULL)) < 0) {
            snd_card_free(card);
            return err;
      }
      if ((err = snd_ca0106_pcm(chip, 1, NULL)) < 0) {
            snd_card_free(card);
            return err;
      }
      if ((err = snd_ca0106_pcm(chip, 2, NULL)) < 0) {
            snd_card_free(card);
            return err;
      }
      if ((err = snd_ca0106_pcm(chip, 3, NULL)) < 0) {
            snd_card_free(card);
            return err;
      }
        if (chip->details->ac97 == 1) { /* The SB0410 and SB0413 do not have an AC97 chip. */
            if ((err = snd_ca0106_ac97(chip)) < 0) {
                  snd_card_free(card);
                  return err;
            }
      }
      if ((err = snd_ca0106_mixer(chip)) < 0) {
            snd_card_free(card);
            return err;
      }

      snd_printdd("ca0106: probe for MIDI channel A ...");
      if ((err = snd_ca0106_midi(chip,CA0106_MIDI_CHAN_A)) < 0) {
            snd_card_free(card);
            snd_printdd(" failed, err=0x%x\n",err);
            return err;
      }
      snd_printdd(" done.\n");

#ifdef CONFIG_PROC_FS
      snd_ca0106_proc_init(chip);
#endif

      snd_card_set_dev(card, &pci->dev);

      if ((err = snd_card_register(card)) < 0) {
            snd_card_free(card);
            return err;
      }

      pci_set_drvdata(pci, card);
      dev++;
      return 0;
}

static void __devexit snd_ca0106_remove(struct pci_dev *pci)
{
      snd_card_free(pci_get_drvdata(pci));
      pci_set_drvdata(pci, NULL);
}

// PCI IDs
static struct pci_device_id snd_ca0106_ids[] = {
      { 0x1102, 0x0007, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0 },  /* Audigy LS or Live 24bit */
      { 0, }
};
MODULE_DEVICE_TABLE(pci, snd_ca0106_ids);

// pci_driver definition
static struct pci_driver driver = {
      .name = "CA0106",
      .id_table = snd_ca0106_ids,
      .probe = snd_ca0106_probe,
      .remove = __devexit_p(snd_ca0106_remove),
};

// initialization of the module
static int __init alsa_card_ca0106_init(void)
{
      return pci_register_driver(&driver);
}

// clean up the module
static void __exit alsa_card_ca0106_exit(void)
{
      pci_unregister_driver(&driver);
}

module_init(alsa_card_ca0106_init)
module_exit(alsa_card_ca0106_exit)

Generated by  Doxygen 1.6.0   Back to index