Logo Search packages:      
Sourcecode: alsa-driver version File versions

tumbler.c

/*
 * PMac Tumbler/Snapper lowlevel functions
 *
 * Copyright (c) by Takashi Iwai <tiwai@suse.de>
 *
 *   This program is free software; you can redistribute it and/or modify
 *   it under the terms of the GNU General Public License as published by
 *   the Free Software Foundation; either version 2 of the License, or
 *   (at your option) any later version.
 *
 *   This program is distributed in the hope that it will be useful,
 *   but WITHOUT ANY WARRANTY; without even the implied warranty of
 *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *   GNU General Public License for more details.
 *
 *   You should have received a copy of the GNU General Public License
 *   along with this program; if not, write to the Free Software
 *   Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
 *
 *   Rene Rebe <rene.rebe@gmx.net>:
 *     * update from shadow registers on wakeup and headphone plug
 *     * automatically toggle DRC on headphone plug
 *    
 */


#include <sound/driver.h>
#include <linux/init.h>
#include <linux/delay.h>
#include <linux/i2c.h>
#include <linux/kmod.h>
#include <linux/slab.h>
#include <linux/interrupt.h>
#include <sound/core.h>
#include <asm/io.h>
#include <asm/irq.h>
#include <asm/machdep.h>
#include <asm/pmac_feature.h>
#include "pmac.h"
#include "tumbler_volume.h"

#undef DEBUG

#ifdef DEBUG
#define DBG(fmt...) printk(fmt)
#else
#define DBG(fmt...)
#endif

/* i2c address for tumbler */
#define TAS_I2C_ADDR    0x34

/* registers */
#define TAS_REG_MCS     0x01  /* main control */
#define TAS_REG_DRC     0x02
#define TAS_REG_VOL     0x04
#define TAS_REG_TREBLE  0x05
#define TAS_REG_BASS    0x06
#define TAS_REG_INPUT1  0x07
#define TAS_REG_INPUT2  0x08

/* tas3001c */
#define TAS_REG_PCM     TAS_REG_INPUT1
 
/* tas3004 */
#define TAS_REG_LMIX    TAS_REG_INPUT1
#define TAS_REG_RMIX    TAS_REG_INPUT2
#define TAS_REG_MCS2    0x43        /* main control 2 */
#define TAS_REG_ACS     0x40        /* analog control */

/* mono volumes for tas3001c/tas3004 */
enum {
      VOL_IDX_PCM_MONO, /* tas3001c only */
      VOL_IDX_BASS, VOL_IDX_TREBLE,
      VOL_IDX_LAST_MONO
};

/* stereo volumes for tas3004 */
enum {
      VOL_IDX_PCM, VOL_IDX_PCM2, VOL_IDX_ADC,
      VOL_IDX_LAST_MIX
};

struct pmac_gpio {
      unsigned int addr;
      u8 active_val;
      u8 inactive_val;
      u8 active_state;
};

struct pmac_tumbler {
      struct pmac_keywest i2c;
      struct pmac_gpio audio_reset;
      struct pmac_gpio amp_mute;
      struct pmac_gpio line_mute;
      struct pmac_gpio line_detect;
      struct pmac_gpio hp_mute;
      struct pmac_gpio hp_detect;
      int headphone_irq;
      int lineout_irq;
      unsigned int save_master_vol[2];
      unsigned int master_vol[2];
      unsigned int save_master_switch[2];
      unsigned int master_switch[2];
      unsigned int mono_vol[VOL_IDX_LAST_MONO];
      unsigned int mix_vol[VOL_IDX_LAST_MIX][2]; /* stereo volumes for tas3004 */
      int drc_range;
      int drc_enable;
      int capture_source;
      int anded_reset;
      int auto_mute_notify;
      int reset_on_sleep;
      u8  acs;
};


/*
 */

static int send_init_client(struct pmac_keywest *i2c, unsigned int *regs)
{
      while (*regs > 0) {
            int err, count = 10;
            do {
                  err = i2c_smbus_write_byte_data(i2c->client,
                                          regs[0], regs[1]);
                  if (err >= 0)
                        break;
                  DBG("(W) i2c error %d\n", err);
                  mdelay(10);
            } while (count--);
            if (err < 0)
                  return -ENXIO;
            regs += 2;
      }
      return 0;
}


static int tumbler_init_client(struct pmac_keywest *i2c)
{
      static unsigned int regs[] = {
            /* normal operation, SCLK=64fps, i2s output, i2s input, 16bit width */
            TAS_REG_MCS, (1<<6)|(2<<4)|(2<<2)|0,
            0, /* terminator */
      };
      DBG("(I) tumbler init client\n");
      return send_init_client(i2c, regs);
}

static int snapper_init_client(struct pmac_keywest *i2c)
{
      static unsigned int regs[] = {
            /* normal operation, SCLK=64fps, i2s output, 16bit width */
            TAS_REG_MCS, (1<<6)|(2<<4)|0,
            /* normal operation, all-pass mode */
            TAS_REG_MCS2, (1<<1),
            /* normal output, no deemphasis, A input, power-up, line-in */
            TAS_REG_ACS, 0,
            0, /* terminator */
      };
      DBG("(I) snapper init client\n");
      return send_init_client(i2c, regs);
}
      
/*
 * gpio access
 */
#define do_gpio_write(gp, val) \
      pmac_call_feature(PMAC_FTR_WRITE_GPIO, NULL, (gp)->addr, val)
#define do_gpio_read(gp) \
      pmac_call_feature(PMAC_FTR_READ_GPIO, NULL, (gp)->addr, 0)
#define tumbler_gpio_free(gp) /* NOP */

static void write_audio_gpio(struct pmac_gpio *gp, int active)
{
      if (! gp->addr)
            return;
      active = active ? gp->active_val : gp->inactive_val;
      do_gpio_write(gp, active);
      DBG("(I) gpio %x write %d\n", gp->addr, active);
}

static int check_audio_gpio(struct pmac_gpio *gp)
{
      int ret;

      if (! gp->addr)
            return 0;

      ret = do_gpio_read(gp);

      return (ret & 0x1) == (gp->active_val & 0x1);
}

static int read_audio_gpio(struct pmac_gpio *gp)
{
      int ret;
      if (! gp->addr)
            return 0;
      ret = do_gpio_read(gp);
      ret = (ret & 0x02) !=0;
      return ret == gp->active_state;
}

/*
 * update master volume
 */
static int tumbler_set_master_volume(struct pmac_tumbler *mix)
{
      unsigned char block[6];
      unsigned int left_vol, right_vol;
  
      if (! mix->i2c.client)
            return -ENODEV;
  
      if (! mix->master_switch[0])
            left_vol = 0;
      else {
            left_vol = mix->master_vol[0];
            if (left_vol >= ARRAY_SIZE(master_volume_table))
                  left_vol = ARRAY_SIZE(master_volume_table) - 1;
            left_vol = master_volume_table[left_vol];
      }
      if (! mix->master_switch[1])
            right_vol = 0;
      else {
            right_vol = mix->master_vol[1];
            if (right_vol >= ARRAY_SIZE(master_volume_table))
                  right_vol = ARRAY_SIZE(master_volume_table) - 1;
            right_vol = master_volume_table[right_vol];
      }

      block[0] = (left_vol >> 16) & 0xff;
      block[1] = (left_vol >> 8)  & 0xff;
      block[2] = (left_vol >> 0)  & 0xff;

      block[3] = (right_vol >> 16) & 0xff;
      block[4] = (right_vol >> 8)  & 0xff;
      block[5] = (right_vol >> 0)  & 0xff;
  
      if (i2c_smbus_write_i2c_block_data(mix->i2c.client, TAS_REG_VOL, 6,
                                 block) < 0) {
            snd_printk("failed to set volume \n");
            return -EINVAL;
      }
      return 0;
}


/* output volume */
static int tumbler_info_master_volume(struct snd_kcontrol *kcontrol,
                              struct snd_ctl_elem_info *uinfo)
{
      uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
      uinfo->count = 2;
      uinfo->value.integer.min = 0;
      uinfo->value.integer.max = ARRAY_SIZE(master_volume_table) - 1;
      return 0;
}

static int tumbler_get_master_volume(struct snd_kcontrol *kcontrol,
                             struct snd_ctl_elem_value *ucontrol)
{
      struct snd_pmac *chip = snd_kcontrol_chip(kcontrol);
      struct pmac_tumbler *mix = chip->mixer_data;
      snd_assert(mix, return -ENODEV);
      ucontrol->value.integer.value[0] = mix->master_vol[0];
      ucontrol->value.integer.value[1] = mix->master_vol[1];
      return 0;
}

static int tumbler_put_master_volume(struct snd_kcontrol *kcontrol,
                             struct snd_ctl_elem_value *ucontrol)
{
      struct snd_pmac *chip = snd_kcontrol_chip(kcontrol);
      struct pmac_tumbler *mix = chip->mixer_data;
      int change;

      snd_assert(mix, return -ENODEV);
      change = mix->master_vol[0] != ucontrol->value.integer.value[0] ||
            mix->master_vol[1] != ucontrol->value.integer.value[1];
      if (change) {
            mix->master_vol[0] = ucontrol->value.integer.value[0];
            mix->master_vol[1] = ucontrol->value.integer.value[1];
            tumbler_set_master_volume(mix);
      }
      return change;
}

/* output switch */
static int tumbler_get_master_switch(struct snd_kcontrol *kcontrol,
                             struct snd_ctl_elem_value *ucontrol)
{
      struct snd_pmac *chip = snd_kcontrol_chip(kcontrol);
      struct pmac_tumbler *mix = chip->mixer_data;
      snd_assert(mix, return -ENODEV);
      ucontrol->value.integer.value[0] = mix->master_switch[0];
      ucontrol->value.integer.value[1] = mix->master_switch[1];
      return 0;
}

static int tumbler_put_master_switch(struct snd_kcontrol *kcontrol,
                             struct snd_ctl_elem_value *ucontrol)
{
      struct snd_pmac *chip = snd_kcontrol_chip(kcontrol);
      struct pmac_tumbler *mix = chip->mixer_data;
      int change;

      snd_assert(mix, return -ENODEV);
      change = mix->master_switch[0] != ucontrol->value.integer.value[0] ||
            mix->master_switch[1] != ucontrol->value.integer.value[1];
      if (change) {
            mix->master_switch[0] = !!ucontrol->value.integer.value[0];
            mix->master_switch[1] = !!ucontrol->value.integer.value[1];
            tumbler_set_master_volume(mix);
      }
      return change;
}


/*
 * TAS3001c dynamic range compression
 */

#define TAS3001_DRC_MAX       0x5f

static int tumbler_set_drc(struct pmac_tumbler *mix)
{
      unsigned char val[2];

      if (! mix->i2c.client)
            return -ENODEV;
  
      if (mix->drc_enable) {
            val[0] = 0xc1; /* enable, 3:1 compression */
            if (mix->drc_range > TAS3001_DRC_MAX)
                  val[1] = 0xf0;
            else if (mix->drc_range < 0)
                  val[1] = 0x91;
            else
                  val[1] = mix->drc_range + 0x91;
      } else {
            val[0] = 0;
            val[1] = 0;
      }

      if (i2c_smbus_write_i2c_block_data(mix->i2c.client, TAS_REG_DRC,
                                 2, val) < 0) {
            snd_printk("failed to set DRC\n");
            return -EINVAL;
      }
      return 0;
}

/*
 * TAS3004
 */

#define TAS3004_DRC_MAX       0xef

static int snapper_set_drc(struct pmac_tumbler *mix)
{
      unsigned char val[6];

      if (! mix->i2c.client)
            return -ENODEV;
  
      if (mix->drc_enable)
            val[0] = 0x50; /* 3:1 above threshold */
      else
            val[0] = 0x51; /* disabled */
      val[1] = 0x02; /* 1:1 below threshold */
      if (mix->drc_range > 0xef)
            val[2] = 0xef;
      else if (mix->drc_range < 0)
            val[2] = 0x00;
      else
            val[2] = mix->drc_range;
      val[3] = 0xb0;
      val[4] = 0x60;
      val[5] = 0xa0;

      if (i2c_smbus_write_i2c_block_data(mix->i2c.client, TAS_REG_DRC,
                                 6, val) < 0) {
            snd_printk("failed to set DRC\n");
            return -EINVAL;
      }
      return 0;
}

static int tumbler_info_drc_value(struct snd_kcontrol *kcontrol,
                          struct snd_ctl_elem_info *uinfo)
{
      struct snd_pmac *chip = snd_kcontrol_chip(kcontrol);
      uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
      uinfo->count = 1;
      uinfo->value.integer.min = 0;
      uinfo->value.integer.max =
            chip->model == PMAC_TUMBLER ? TAS3001_DRC_MAX : TAS3004_DRC_MAX;
      return 0;
}

static int tumbler_get_drc_value(struct snd_kcontrol *kcontrol,
                         struct snd_ctl_elem_value *ucontrol)
{
      struct snd_pmac *chip = snd_kcontrol_chip(kcontrol);
      struct pmac_tumbler *mix;
      if (! (mix = chip->mixer_data))
            return -ENODEV;
      ucontrol->value.integer.value[0] = mix->drc_range;
      return 0;
}

static int tumbler_put_drc_value(struct snd_kcontrol *kcontrol,
                         struct snd_ctl_elem_value *ucontrol)
{
      struct snd_pmac *chip = snd_kcontrol_chip(kcontrol);
      struct pmac_tumbler *mix;
      int change;

      if (! (mix = chip->mixer_data))
            return -ENODEV;
      change = mix->drc_range != ucontrol->value.integer.value[0];
      if (change) {
            mix->drc_range = ucontrol->value.integer.value[0];
            if (chip->model == PMAC_TUMBLER)
                  tumbler_set_drc(mix);
            else
                  snapper_set_drc(mix);
      }
      return change;
}

static int tumbler_get_drc_switch(struct snd_kcontrol *kcontrol,
                          struct snd_ctl_elem_value *ucontrol)
{
      struct snd_pmac *chip = snd_kcontrol_chip(kcontrol);
      struct pmac_tumbler *mix;
      if (! (mix = chip->mixer_data))
            return -ENODEV;
      ucontrol->value.integer.value[0] = mix->drc_enable;
      return 0;
}

static int tumbler_put_drc_switch(struct snd_kcontrol *kcontrol,
                          struct snd_ctl_elem_value *ucontrol)
{
      struct snd_pmac *chip = snd_kcontrol_chip(kcontrol);
      struct pmac_tumbler *mix;
      int change;

      if (! (mix = chip->mixer_data))
            return -ENODEV;
      change = mix->drc_enable != ucontrol->value.integer.value[0];
      if (change) {
            mix->drc_enable = !!ucontrol->value.integer.value[0];
            if (chip->model == PMAC_TUMBLER)
                  tumbler_set_drc(mix);
            else
                  snapper_set_drc(mix);
      }
      return change;
}


/*
 * mono volumes
 */

struct tumbler_mono_vol {
      int index;
      int reg;
      int bytes;
      unsigned int max;
      unsigned int *table;
};

static int tumbler_set_mono_volume(struct pmac_tumbler *mix,
                           struct tumbler_mono_vol *info)
{
      unsigned char block[4];
      unsigned int vol;
      int i;
  
      if (! mix->i2c.client)
            return -ENODEV;
  
      vol = mix->mono_vol[info->index];
      if (vol >= info->max)
            vol = info->max - 1;
      vol = info->table[vol];
      for (i = 0; i < info->bytes; i++)
            block[i] = (vol >> ((info->bytes - i - 1) * 8)) & 0xff;
      if (i2c_smbus_write_i2c_block_data(mix->i2c.client, info->reg,
                                 info->bytes, block) < 0) {
            snd_printk("failed to set mono volume %d\n", info->index);
            return -EINVAL;
      }
      return 0;
}

static int tumbler_info_mono(struct snd_kcontrol *kcontrol,
                       struct snd_ctl_elem_info *uinfo)
{
      struct tumbler_mono_vol *info = (struct tumbler_mono_vol *)kcontrol->private_value;

      uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
      uinfo->count = 1;
      uinfo->value.integer.min = 0;
      uinfo->value.integer.max = info->max - 1;
      return 0;
}

static int tumbler_get_mono(struct snd_kcontrol *kcontrol,
                      struct snd_ctl_elem_value *ucontrol)
{
      struct tumbler_mono_vol *info = (struct tumbler_mono_vol *)kcontrol->private_value;
      struct snd_pmac *chip = snd_kcontrol_chip(kcontrol);
      struct pmac_tumbler *mix;
      if (! (mix = chip->mixer_data))
            return -ENODEV;
      ucontrol->value.integer.value[0] = mix->mono_vol[info->index];
      return 0;
}

static int tumbler_put_mono(struct snd_kcontrol *kcontrol,
                      struct snd_ctl_elem_value *ucontrol)
{
      struct tumbler_mono_vol *info = (struct tumbler_mono_vol *)kcontrol->private_value;
      struct snd_pmac *chip = snd_kcontrol_chip(kcontrol);
      struct pmac_tumbler *mix;
      int change;

      if (! (mix = chip->mixer_data))
            return -ENODEV;
      change = mix->mono_vol[info->index] != ucontrol->value.integer.value[0];
      if (change) {
            mix->mono_vol[info->index] = ucontrol->value.integer.value[0];
            tumbler_set_mono_volume(mix, info);
      }
      return change;
}

/* TAS3001c mono volumes */
static struct tumbler_mono_vol tumbler_pcm_vol_info = {
      .index = VOL_IDX_PCM_MONO,
      .reg = TAS_REG_PCM,
      .bytes = 3,
      .max = ARRAY_SIZE(mixer_volume_table),
      .table = mixer_volume_table,
};

static struct tumbler_mono_vol tumbler_bass_vol_info = {
      .index = VOL_IDX_BASS,
      .reg = TAS_REG_BASS,
      .bytes = 1,
      .max = ARRAY_SIZE(bass_volume_table),
      .table = bass_volume_table,
};

static struct tumbler_mono_vol tumbler_treble_vol_info = {
      .index = VOL_IDX_TREBLE,
      .reg = TAS_REG_TREBLE,
      .bytes = 1,
      .max = ARRAY_SIZE(treble_volume_table),
      .table = treble_volume_table,
};

/* TAS3004 mono volumes */
static struct tumbler_mono_vol snapper_bass_vol_info = {
      .index = VOL_IDX_BASS,
      .reg = TAS_REG_BASS,
      .bytes = 1,
      .max = ARRAY_SIZE(snapper_bass_volume_table),
      .table = snapper_bass_volume_table,
};

static struct tumbler_mono_vol snapper_treble_vol_info = {
      .index = VOL_IDX_TREBLE,
      .reg = TAS_REG_TREBLE,
      .bytes = 1,
      .max = ARRAY_SIZE(snapper_treble_volume_table),
      .table = snapper_treble_volume_table,
};


#define DEFINE_MONO(xname,type) { \
      .iface = SNDRV_CTL_ELEM_IFACE_MIXER,\
      .name = xname, \
      .info = tumbler_info_mono, \
      .get = tumbler_get_mono, \
      .put = tumbler_put_mono, \
      .private_value = (unsigned long)(&tumbler_##type##_vol_info), \
}

#define DEFINE_SNAPPER_MONO(xname,type) { \
      .iface = SNDRV_CTL_ELEM_IFACE_MIXER,\
      .name = xname, \
      .info = tumbler_info_mono, \
      .get = tumbler_get_mono, \
      .put = tumbler_put_mono, \
      .private_value = (unsigned long)(&snapper_##type##_vol_info), \
}


/*
 * snapper mixer volumes
 */

static int snapper_set_mix_vol1(struct pmac_tumbler *mix, int idx, int ch, int reg)
{
      int i, j, vol;
      unsigned char block[9];

      vol = mix->mix_vol[idx][ch];
      if (vol >= ARRAY_SIZE(mixer_volume_table)) {
            vol = ARRAY_SIZE(mixer_volume_table) - 1;
            mix->mix_vol[idx][ch] = vol;
      }

      for (i = 0; i < 3; i++) {
            vol = mix->mix_vol[i][ch];
            vol = mixer_volume_table[vol];
            for (j = 0; j < 3; j++)
                  block[i * 3 + j] = (vol >> ((2 - j) * 8)) & 0xff;
      }
      if (i2c_smbus_write_i2c_block_data(mix->i2c.client, reg,
                                 9, block) < 0) {
            snd_printk("failed to set mono volume %d\n", reg);
            return -EINVAL;
      }
      return 0;
}

static int snapper_set_mix_vol(struct pmac_tumbler *mix, int idx)
{
      if (! mix->i2c.client)
            return -ENODEV;
      if (snapper_set_mix_vol1(mix, idx, 0, TAS_REG_LMIX) < 0 ||
          snapper_set_mix_vol1(mix, idx, 1, TAS_REG_RMIX) < 0)
            return -EINVAL;
      return 0;
}

static int snapper_info_mix(struct snd_kcontrol *kcontrol,
                      struct snd_ctl_elem_info *uinfo)
{
      uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
      uinfo->count = 2;
      uinfo->value.integer.min = 0;
      uinfo->value.integer.max = ARRAY_SIZE(mixer_volume_table) - 1;
      return 0;
}

static int snapper_get_mix(struct snd_kcontrol *kcontrol,
                     struct snd_ctl_elem_value *ucontrol)
{
      int idx = (int)kcontrol->private_value;
      struct snd_pmac *chip = snd_kcontrol_chip(kcontrol);
      struct pmac_tumbler *mix;
      if (! (mix = chip->mixer_data))
            return -ENODEV;
      ucontrol->value.integer.value[0] = mix->mix_vol[idx][0];
      ucontrol->value.integer.value[1] = mix->mix_vol[idx][1];
      return 0;
}

static int snapper_put_mix(struct snd_kcontrol *kcontrol,
                     struct snd_ctl_elem_value *ucontrol)
{
      int idx = (int)kcontrol->private_value;
      struct snd_pmac *chip = snd_kcontrol_chip(kcontrol);
      struct pmac_tumbler *mix;
      int change;

      if (! (mix = chip->mixer_data))
            return -ENODEV;
      change = mix->mix_vol[idx][0] != ucontrol->value.integer.value[0] ||
            mix->mix_vol[idx][1] != ucontrol->value.integer.value[1];
      if (change) {
            mix->mix_vol[idx][0] = ucontrol->value.integer.value[0];
            mix->mix_vol[idx][1] = ucontrol->value.integer.value[1];
            snapper_set_mix_vol(mix, idx);
      }
      return change;
}


/*
 * mute switches. FIXME: Turn that into software mute when both outputs are muted
 * to avoid codec reset on ibook M7
 */

enum { TUMBLER_MUTE_HP, TUMBLER_MUTE_AMP, TUMBLER_MUTE_LINE };

static int tumbler_get_mute_switch(struct snd_kcontrol *kcontrol,
                           struct snd_ctl_elem_value *ucontrol)
{
      struct snd_pmac *chip = snd_kcontrol_chip(kcontrol);
      struct pmac_tumbler *mix;
      struct pmac_gpio *gp;
      if (! (mix = chip->mixer_data))
            return -ENODEV;
      switch(kcontrol->private_value) {
      case TUMBLER_MUTE_HP:
            gp = &mix->hp_mute;     break;
      case TUMBLER_MUTE_AMP:
            gp = &mix->amp_mute;    break;
      case TUMBLER_MUTE_LINE:
            gp = &mix->line_mute;   break;
      default:
            gp = NULL;
      }
      if (gp == NULL)
            return -EINVAL;
      ucontrol->value.integer.value[0] = !check_audio_gpio(gp);
      return 0;
}

static int tumbler_put_mute_switch(struct snd_kcontrol *kcontrol,
                           struct snd_ctl_elem_value *ucontrol)
{
      struct snd_pmac *chip = snd_kcontrol_chip(kcontrol);
      struct pmac_tumbler *mix;
      struct pmac_gpio *gp;
      int val;
#ifdef PMAC_SUPPORT_AUTOMUTE
      if (chip->update_automute && chip->auto_mute)
            return 0; /* don't touch in the auto-mute mode */
#endif      
      if (! (mix = chip->mixer_data))
            return -ENODEV;
      switch(kcontrol->private_value) {
      case TUMBLER_MUTE_HP:
            gp = &mix->hp_mute;     break;
      case TUMBLER_MUTE_AMP:
            gp = &mix->amp_mute;    break;
      case TUMBLER_MUTE_LINE:
            gp = &mix->line_mute;   break;
      default:
            gp = NULL;
      }
      if (gp == NULL)
            return -EINVAL;
      val = ! check_audio_gpio(gp);
      if (val != ucontrol->value.integer.value[0]) {
            write_audio_gpio(gp, ! ucontrol->value.integer.value[0]);
            return 1;
      }
      return 0;
}

static int snapper_set_capture_source(struct pmac_tumbler *mix)
{
      if (! mix->i2c.client)
            return -ENODEV;
      if (mix->capture_source)
            mix->acs = mix->acs |= 2;
      else
            mix->acs &= ~2;
      return i2c_smbus_write_byte_data(mix->i2c.client, TAS_REG_ACS, mix->acs);
}

static int snapper_info_capture_source(struct snd_kcontrol *kcontrol,
                               struct snd_ctl_elem_info *uinfo)
{
      static char *texts[2] = {
            "Line", "Mic"
      };
      uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
      uinfo->count = 1;
      uinfo->value.enumerated.items = 2;
      if (uinfo->value.enumerated.item > 1)
            uinfo->value.enumerated.item = 1;
      strcpy(uinfo->value.enumerated.name, texts[uinfo->value.enumerated.item]);
      return 0;
}

static int snapper_get_capture_source(struct snd_kcontrol *kcontrol,
                              struct snd_ctl_elem_value *ucontrol)
{
      struct snd_pmac *chip = snd_kcontrol_chip(kcontrol);
      struct pmac_tumbler *mix = chip->mixer_data;

      snd_assert(mix, return -ENODEV);
      ucontrol->value.integer.value[0] = mix->capture_source;
      return 0;
}

static int snapper_put_capture_source(struct snd_kcontrol *kcontrol,
                              struct snd_ctl_elem_value *ucontrol)
{
      struct snd_pmac *chip = snd_kcontrol_chip(kcontrol);
      struct pmac_tumbler *mix = chip->mixer_data;
      int change;

      snd_assert(mix, return -ENODEV);
      change = ucontrol->value.integer.value[0] != mix->capture_source;
      if (change) {
            mix->capture_source = !!ucontrol->value.integer.value[0];
            snapper_set_capture_source(mix);
      }
      return change;
}

#define DEFINE_SNAPPER_MIX(xname,idx,ofs) { \
      .iface = SNDRV_CTL_ELEM_IFACE_MIXER,\
      .name = xname, \
      .info = snapper_info_mix, \
      .get = snapper_get_mix, \
      .put = snapper_put_mix, \
      .index = idx,\
      .private_value = ofs, \
}


/*
 */
static struct snd_kcontrol_new tumbler_mixers[] __initdata = {
      { .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
        .name = "Master Playback Volume",
        .info = tumbler_info_master_volume,
        .get = tumbler_get_master_volume,
        .put = tumbler_put_master_volume
      },
      { .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
        .name = "Master Playback Switch",
        .info = snd_pmac_boolean_stereo_info,
        .get = tumbler_get_master_switch,
        .put = tumbler_put_master_switch
      },
      DEFINE_MONO("Tone Control - Bass", bass),
      DEFINE_MONO("Tone Control - Treble", treble),
      DEFINE_MONO("PCM Playback Volume", pcm),
      { .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
        .name = "DRC Range",
        .info = tumbler_info_drc_value,
        .get = tumbler_get_drc_value,
        .put = tumbler_put_drc_value
      },
};

static struct snd_kcontrol_new snapper_mixers[] __initdata = {
      { .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
        .name = "Master Playback Volume",
        .info = tumbler_info_master_volume,
        .get = tumbler_get_master_volume,
        .put = tumbler_put_master_volume
      },
      { .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
        .name = "Master Playback Switch",
        .info = snd_pmac_boolean_stereo_info,
        .get = tumbler_get_master_switch,
        .put = tumbler_put_master_switch
      },
      DEFINE_SNAPPER_MIX("PCM Playback Volume", 0, VOL_IDX_PCM),
      DEFINE_SNAPPER_MIX("PCM Playback Volume", 1, VOL_IDX_PCM2),
      DEFINE_SNAPPER_MIX("Monitor Mix Volume", 0, VOL_IDX_ADC),
      DEFINE_SNAPPER_MONO("Tone Control - Bass", bass),
      DEFINE_SNAPPER_MONO("Tone Control - Treble", treble),
      { .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
        .name = "DRC Range",
        .info = tumbler_info_drc_value,
        .get = tumbler_get_drc_value,
        .put = tumbler_put_drc_value
      },
      { .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
        .name = "Input Source", /* FIXME: "Capture Source" doesn't work properly */
        .info = snapper_info_capture_source,
        .get = snapper_get_capture_source,
        .put = snapper_put_capture_source
      },
};

static struct snd_kcontrol_new tumbler_hp_sw __initdata = {
      .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
      .name = "Headphone Playback Switch",
      .info = snd_pmac_boolean_mono_info,
      .get = tumbler_get_mute_switch,
      .put = tumbler_put_mute_switch,
      .private_value = TUMBLER_MUTE_HP,
};
static struct snd_kcontrol_new tumbler_speaker_sw __initdata = {
      .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
      .name = "PC Speaker Playback Switch",
      .info = snd_pmac_boolean_mono_info,
      .get = tumbler_get_mute_switch,
      .put = tumbler_put_mute_switch,
      .private_value = TUMBLER_MUTE_AMP,
};
static struct snd_kcontrol_new tumbler_lineout_sw __initdata = {
      .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
      .name = "Line Out Playback Switch",
      .info = snd_pmac_boolean_mono_info,
      .get = tumbler_get_mute_switch,
      .put = tumbler_put_mute_switch,
      .private_value = TUMBLER_MUTE_LINE,
};
static struct snd_kcontrol_new tumbler_drc_sw __initdata = {
      .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
      .name = "DRC Switch",
      .info = snd_pmac_boolean_mono_info,
      .get = tumbler_get_drc_switch,
      .put = tumbler_put_drc_switch
};


#ifdef PMAC_SUPPORT_AUTOMUTE
/*
 * auto-mute stuffs
 */
static int tumbler_detect_headphone(struct snd_pmac *chip)
{
      struct pmac_tumbler *mix = chip->mixer_data;
      int detect = 0;

      if (mix->hp_detect.addr)
            detect |= read_audio_gpio(&mix->hp_detect);
      return detect;
}

static int tumbler_detect_lineout(struct snd_pmac *chip)
{
      struct pmac_tumbler *mix = chip->mixer_data;
      int detect = 0;

      if (mix->line_detect.addr)
            detect |= read_audio_gpio(&mix->line_detect);
      return detect;
}

static void check_mute(struct snd_pmac *chip, struct pmac_gpio *gp, int val, int do_notify,
                   struct snd_kcontrol *sw)
{
      if (check_audio_gpio(gp) != val) {
            write_audio_gpio(gp, val);
            if (do_notify)
                  snd_ctl_notify(chip->card, SNDRV_CTL_EVENT_MASK_VALUE,
                               &sw->id);
      }
}

static struct work_struct device_change;
static struct snd_pmac *device_change_chip;

static void device_change_handler(struct work_struct *work)
{
      struct snd_pmac *chip = device_change_chip;
      struct pmac_tumbler *mix;
      int headphone, lineout;

      if (!chip)
            return;

      mix = chip->mixer_data;
      snd_assert(mix, return);

      headphone = tumbler_detect_headphone(chip);
      lineout = tumbler_detect_lineout(chip);

      DBG("headphone: %d, lineout: %d\n", headphone, lineout);

      if (headphone || lineout) {
            /* unmute headphone/lineout & mute speaker */
            if (headphone)
                  check_mute(chip, &mix->hp_mute, 0, mix->auto_mute_notify,
                           chip->master_sw_ctl);
            if (lineout && mix->line_mute.addr != 0)
                  check_mute(chip, &mix->line_mute, 0, mix->auto_mute_notify,
                           chip->lineout_sw_ctl);
            if (mix->anded_reset)
                  msleep(10);
            check_mute(chip, &mix->amp_mute, 1, mix->auto_mute_notify,
                     chip->speaker_sw_ctl);
      } else {
            /* unmute speaker, mute others */
            check_mute(chip, &mix->amp_mute, 0, mix->auto_mute_notify,
                     chip->speaker_sw_ctl);
            if (mix->anded_reset)
                  msleep(10);
            check_mute(chip, &mix->hp_mute, 1, mix->auto_mute_notify,
                     chip->master_sw_ctl);
            if (mix->line_mute.addr != 0)
                  check_mute(chip, &mix->line_mute, 1, mix->auto_mute_notify,
                           chip->lineout_sw_ctl);
      }
      if (mix->auto_mute_notify)
            snd_ctl_notify(chip->card, SNDRV_CTL_EVENT_MASK_VALUE,
                               &chip->hp_detect_ctl->id);

#ifdef CONFIG_SND_POWERMAC_AUTO_DRC
      mix->drc_enable = ! (headphone || lineout);
      if (mix->auto_mute_notify)
            snd_ctl_notify(chip->card, SNDRV_CTL_EVENT_MASK_VALUE,
                         &chip->drc_sw_ctl->id);
      if (chip->model == PMAC_TUMBLER)
            tumbler_set_drc(mix);
      else
            snapper_set_drc(mix);
#endif

      /* reset the master volume so the correct amplification is applied */
      tumbler_set_master_volume(mix);
}

static void tumbler_update_automute(struct snd_pmac *chip, int do_notify)
{
      if (chip->auto_mute) {
            struct pmac_tumbler *mix;
            mix = chip->mixer_data;
            snd_assert(mix, return);
            mix->auto_mute_notify = do_notify;
            schedule_work(&device_change);
      }
}
#endif /* PMAC_SUPPORT_AUTOMUTE */


/* interrupt - headphone plug changed */
static irqreturn_t headphone_intr(int irq, void *devid)
{
      struct snd_pmac *chip = devid;
      if (chip->update_automute && chip->initialized) {
            chip->update_automute(chip, 1);
            return IRQ_HANDLED;
      }
      return IRQ_NONE;
}

/* look for audio-gpio device */
static struct device_node *find_audio_device(const char *name)
{
      struct device_node *gpiop;
      struct device_node *np;
  
      gpiop = of_find_node_by_name(NULL, "gpio");
      if (! gpiop)
            return NULL;
  
      for (np = of_get_next_child(gpiop, NULL); np;
                  np = of_get_next_child(gpiop, np)) {
            const char *property = of_get_property(np, "audio-gpio", NULL);
            if (property && strcmp(property, name) == 0)
                  break;
      }  
      of_node_put(gpiop);
      return np;
}

/* look for audio-gpio device */
static struct device_node *find_compatible_audio_device(const char *name)
{
      struct device_node *gpiop;
      struct device_node *np;
  
      gpiop = of_find_node_by_name(NULL, "gpio");
      if (!gpiop)
            return NULL;
  
      for (np = of_get_next_child(gpiop, NULL); np;
                  np = of_get_next_child(gpiop, np)) {
            if (of_device_is_compatible(np, name))
                  break;
      }  
      of_node_put(gpiop);
      return np;
}

/* find an audio device and get its address */
static long tumbler_find_device(const char *device, const char *platform,
                        struct pmac_gpio *gp, int is_compatible)
{
      struct device_node *node;
      const u32 *base;
      u32 addr;
      long ret;

      if (is_compatible)
            node = find_compatible_audio_device(device);
      else
            node = find_audio_device(device);
      if (! node) {
            DBG("(W) cannot find audio device %s !\n", device);
            snd_printdd("cannot find device %s\n", device);
            return -ENODEV;
      }

      base = of_get_property(node, "AAPL,address", NULL);
      if (! base) {
            base = of_get_property(node, "reg", NULL);
            if (!base) {
                  DBG("(E) cannot find address for device %s !\n", device);
                  snd_printd("cannot find address for device %s\n", device);
                  of_node_put(node);
                  return -ENODEV;
            }
            addr = *base;
            if (addr < 0x50)
                  addr += 0x50;
      } else
            addr = *base;

      gp->addr = addr & 0x0000ffff;
      /* Try to find the active state, default to 0 ! */
      base = of_get_property(node, "audio-gpio-active-state", NULL);
      if (base) {
            gp->active_state = *base;
            gp->active_val = (*base) ? 0x5 : 0x4;
            gp->inactive_val = (*base) ? 0x4 : 0x5;
      } else {
            const u32 *prop = NULL;
            gp->active_state = 0;
            gp->active_val = 0x4;
            gp->inactive_val = 0x5;
            /* Here are some crude hacks to extract the GPIO polarity and
             * open collector informations out of the do-platform script
             * as we don't yet have an interpreter for these things
             */
            if (platform)
                  prop = of_get_property(node, platform, NULL);
            if (prop) {
                  if (prop[3] == 0x9 && prop[4] == 0x9) {
                        gp->active_val = 0xd;
                        gp->inactive_val = 0xc;
                  }
                  if (prop[3] == 0x1 && prop[4] == 0x1) {
                        gp->active_val = 0x5;
                        gp->inactive_val = 0x4;
                  }
            }
      }

      DBG("(I) GPIO device %s found, offset: %x, active state: %d !\n",
          device, gp->addr, gp->active_state);

      ret = irq_of_parse_and_map(node, 0);
      of_node_put(node);
      return ret;
}

/* reset audio */
static void tumbler_reset_audio(struct snd_pmac *chip)
{
      struct pmac_tumbler *mix = chip->mixer_data;

      if (mix->anded_reset) {
            DBG("(I) codec anded reset !\n");
            write_audio_gpio(&mix->hp_mute, 0);
            write_audio_gpio(&mix->amp_mute, 0);
            msleep(200);
            write_audio_gpio(&mix->hp_mute, 1);
            write_audio_gpio(&mix->amp_mute, 1);
            msleep(100);
            write_audio_gpio(&mix->hp_mute, 0);
            write_audio_gpio(&mix->amp_mute, 0);
            msleep(100);
      } else {
            DBG("(I) codec normal reset !\n");

            write_audio_gpio(&mix->audio_reset, 0);
            msleep(200);
            write_audio_gpio(&mix->audio_reset, 1);
            msleep(100);
            write_audio_gpio(&mix->audio_reset, 0);
            msleep(100);
      }
}

#ifdef CONFIG_PM
/* suspend mixer */
static void tumbler_suspend(struct snd_pmac *chip)
{
      struct pmac_tumbler *mix = chip->mixer_data;

      if (mix->headphone_irq >= 0)
            disable_irq(mix->headphone_irq);
      if (mix->lineout_irq >= 0)
            disable_irq(mix->lineout_irq);
      mix->save_master_switch[0] = mix->master_switch[0];
      mix->save_master_switch[1] = mix->master_switch[1];
      mix->save_master_vol[0] = mix->master_vol[0];
      mix->save_master_vol[1] = mix->master_vol[1];
      mix->master_switch[0] = mix->master_switch[1] = 0;
      tumbler_set_master_volume(mix);
      if (!mix->anded_reset) {
            write_audio_gpio(&mix->amp_mute, 1);
            write_audio_gpio(&mix->hp_mute, 1);
      }
      if (chip->model == PMAC_SNAPPER) {
            mix->acs |= 1;
            i2c_smbus_write_byte_data(mix->i2c.client, TAS_REG_ACS, mix->acs);
      }
      if (mix->anded_reset) {
            write_audio_gpio(&mix->amp_mute, 1);
            write_audio_gpio(&mix->hp_mute, 1);
      } else
            write_audio_gpio(&mix->audio_reset, 1);
}

/* resume mixer */
static void tumbler_resume(struct snd_pmac *chip)
{
      struct pmac_tumbler *mix = chip->mixer_data;

      snd_assert(mix, return);

      mix->acs &= ~1;
      mix->master_switch[0] = mix->save_master_switch[0];
      mix->master_switch[1] = mix->save_master_switch[1];
      mix->master_vol[0] = mix->save_master_vol[0];
      mix->master_vol[1] = mix->save_master_vol[1];
      tumbler_reset_audio(chip);
      if (mix->i2c.client && mix->i2c.init_client) {
            if (mix->i2c.init_client(&mix->i2c) < 0)
                  printk(KERN_ERR "tumbler_init_client error\n");
      } else
            printk(KERN_ERR "tumbler: i2c is not initialized\n");
      if (chip->model == PMAC_TUMBLER) {
            tumbler_set_mono_volume(mix, &tumbler_pcm_vol_info);
            tumbler_set_mono_volume(mix, &tumbler_bass_vol_info);
            tumbler_set_mono_volume(mix, &tumbler_treble_vol_info);
            tumbler_set_drc(mix);
      } else {
            snapper_set_mix_vol(mix, VOL_IDX_PCM);
            snapper_set_mix_vol(mix, VOL_IDX_PCM2);
            snapper_set_mix_vol(mix, VOL_IDX_ADC);
            tumbler_set_mono_volume(mix, &snapper_bass_vol_info);
            tumbler_set_mono_volume(mix, &snapper_treble_vol_info);
            snapper_set_drc(mix);
            snapper_set_capture_source(mix);
      }
      tumbler_set_master_volume(mix);
      if (chip->update_automute)
            chip->update_automute(chip, 0);
      if (mix->headphone_irq >= 0) {
            unsigned char val;

            enable_irq(mix->headphone_irq);
            /* activate headphone status interrupts */
            val = do_gpio_read(&mix->hp_detect);
            do_gpio_write(&mix->hp_detect, val | 0x80);
      }
      if (mix->lineout_irq >= 0)
            enable_irq(mix->lineout_irq);
}
#endif

/* initialize tumbler */
static int __init tumbler_init(struct snd_pmac *chip)
{
      int irq;
      struct pmac_tumbler *mix = chip->mixer_data;
      snd_assert(mix, return -EINVAL);

      if (tumbler_find_device("audio-hw-reset",
                        "platform-do-hw-reset",
                        &mix->audio_reset, 0) < 0)
            tumbler_find_device("hw-reset",
                            "platform-do-hw-reset",
                            &mix->audio_reset, 1);
      if (tumbler_find_device("amp-mute",
                        "platform-do-amp-mute",
                        &mix->amp_mute, 0) < 0)
            tumbler_find_device("amp-mute",
                            "platform-do-amp-mute",
                            &mix->amp_mute, 1);
      if (tumbler_find_device("headphone-mute",
                        "platform-do-headphone-mute",
                        &mix->hp_mute, 0) < 0)
            tumbler_find_device("headphone-mute",
                            "platform-do-headphone-mute",
                            &mix->hp_mute, 1);
      if (tumbler_find_device("line-output-mute",
                        "platform-do-lineout-mute",
                        &mix->line_mute, 0) < 0)
            tumbler_find_device("line-output-mute",
                           "platform-do-lineout-mute",
                            &mix->line_mute, 1);
      irq = tumbler_find_device("headphone-detect",
                          NULL, &mix->hp_detect, 0);
      if (irq <= NO_IRQ)
            irq = tumbler_find_device("headphone-detect",
                                NULL, &mix->hp_detect, 1);
      if (irq <= NO_IRQ)
            irq = tumbler_find_device("keywest-gpio15",
                                NULL, &mix->hp_detect, 1);
      mix->headphone_irq = irq;
      irq = tumbler_find_device("line-output-detect",
                          NULL, &mix->line_detect, 0);
      if (irq <= NO_IRQ)
            irq = tumbler_find_device("line-output-detect",
                                NULL, &mix->line_detect, 1);
      mix->lineout_irq = irq;

      tumbler_reset_audio(chip);
  
      return 0;
}

static void tumbler_cleanup(struct snd_pmac *chip)
{
      struct pmac_tumbler *mix = chip->mixer_data;
      if (! mix)
            return;

      if (mix->headphone_irq >= 0)
            free_irq(mix->headphone_irq, chip);
      if (mix->lineout_irq >= 0)
            free_irq(mix->lineout_irq, chip);
      tumbler_gpio_free(&mix->audio_reset);
      tumbler_gpio_free(&mix->amp_mute);
      tumbler_gpio_free(&mix->hp_mute);
      tumbler_gpio_free(&mix->hp_detect);
      snd_pmac_keywest_cleanup(&mix->i2c);
      kfree(mix);
      chip->mixer_data = NULL;
}

/* exported */
int __init snd_pmac_tumbler_init(struct snd_pmac *chip)
{
      int i, err;
      struct pmac_tumbler *mix;
      const u32 *paddr;
      struct device_node *tas_node, *np;
      char *chipname;

#ifdef CONFIG_KMOD
      if (current->fs->root)
            request_module("i2c-powermac");
#endif /* CONFIG_KMOD */      

      mix = kzalloc(sizeof(*mix), GFP_KERNEL);
      if (! mix)
            return -ENOMEM;
      mix->headphone_irq = -1;

      chip->mixer_data = mix;
      chip->mixer_free = tumbler_cleanup;
      mix->anded_reset = 0;
      mix->reset_on_sleep = 1;

      for (np = chip->node->child; np; np = np->sibling) {
            if (!strcmp(np->name, "sound")) {
                  if (of_get_property(np, "has-anded-reset", NULL))
                        mix->anded_reset = 1;
                  if (of_get_property(np, "layout-id", NULL))
                        mix->reset_on_sleep = 0;
                  break;
            }
      }
      if ((err = tumbler_init(chip)) < 0)
            return err;

      /* set up TAS */
      tas_node = of_find_node_by_name(NULL, "deq");
      if (tas_node == NULL)
            tas_node = of_find_node_by_name(NULL, "codec");
      if (tas_node == NULL)
            return -ENODEV;

      paddr = of_get_property(tas_node, "i2c-address", NULL);
      if (paddr == NULL)
            paddr = of_get_property(tas_node, "reg", NULL);
      if (paddr)
            mix->i2c.addr = (*paddr) >> 1;
      else
            mix->i2c.addr = TAS_I2C_ADDR;
      of_node_put(tas_node);

      DBG("(I) TAS i2c address is: %x\n", mix->i2c.addr);

      if (chip->model == PMAC_TUMBLER) {
            mix->i2c.init_client = tumbler_init_client;
            mix->i2c.name = "TAS3001c";
            chipname = "Tumbler";
      } else {
            mix->i2c.init_client = snapper_init_client;
            mix->i2c.name = "TAS3004";
            chipname = "Snapper";
      }

      if ((err = snd_pmac_keywest_init(&mix->i2c)) < 0)
            return err;

      /*
       * build mixers
       */
      sprintf(chip->card->mixername, "PowerMac %s", chipname);

      if (chip->model == PMAC_TUMBLER) {
            for (i = 0; i < ARRAY_SIZE(tumbler_mixers); i++) {
                  if ((err = snd_ctl_add(chip->card, snd_ctl_new1(&tumbler_mixers[i], chip))) < 0)
                        return err;
            }
      } else {
            for (i = 0; i < ARRAY_SIZE(snapper_mixers); i++) {
                  if ((err = snd_ctl_add(chip->card, snd_ctl_new1(&snapper_mixers[i], chip))) < 0)
                        return err;
            }
      }
      chip->master_sw_ctl = snd_ctl_new1(&tumbler_hp_sw, chip);
      if ((err = snd_ctl_add(chip->card, chip->master_sw_ctl)) < 0)
            return err;
      chip->speaker_sw_ctl = snd_ctl_new1(&tumbler_speaker_sw, chip);
      if ((err = snd_ctl_add(chip->card, chip->speaker_sw_ctl)) < 0)
            return err;
      if (mix->line_mute.addr != 0) {
            chip->lineout_sw_ctl = snd_ctl_new1(&tumbler_lineout_sw, chip);
            if ((err = snd_ctl_add(chip->card, chip->lineout_sw_ctl)) < 0)
                  return err;
      }
      chip->drc_sw_ctl = snd_ctl_new1(&tumbler_drc_sw, chip);
      if ((err = snd_ctl_add(chip->card, chip->drc_sw_ctl)) < 0)
            return err;

      /* set initial DRC range to 60% */
      if (chip->model == PMAC_TUMBLER)
            mix->drc_range = (TAS3001_DRC_MAX * 6) / 10;
      else
            mix->drc_range = (TAS3004_DRC_MAX * 6) / 10;
      mix->drc_enable = 1; /* will be changed later if AUTO_DRC is set */
      if (chip->model == PMAC_TUMBLER)
            tumbler_set_drc(mix);
      else
            snapper_set_drc(mix);

#ifdef CONFIG_PM
      chip->suspend = tumbler_suspend;
      chip->resume = tumbler_resume;
#endif

      INIT_WORK(&device_change, device_change_handler);
      device_change_chip = chip;

#ifdef PMAC_SUPPORT_AUTOMUTE
      if ((mix->headphone_irq >=0 || mix->lineout_irq >= 0)
          && (err = snd_pmac_add_automute(chip)) < 0)
            return err;
      chip->detect_headphone = tumbler_detect_headphone;
      chip->update_automute = tumbler_update_automute;
      tumbler_update_automute(chip, 0); /* update the status only */

      /* activate headphone status interrupts */
      if (mix->headphone_irq >= 0) {
            unsigned char val;
            if ((err = request_irq(mix->headphone_irq, headphone_intr, 0,
                               "Sound Headphone Detection", chip)) < 0)
                  return 0;
            /* activate headphone status interrupts */
            val = do_gpio_read(&mix->hp_detect);
            do_gpio_write(&mix->hp_detect, val | 0x80);
      }
      if (mix->lineout_irq >= 0) {
            unsigned char val;
            if ((err = request_irq(mix->lineout_irq, headphone_intr, 0,
                               "Sound Lineout Detection", chip)) < 0)
                  return 0;
            /* activate headphone status interrupts */
            val = do_gpio_read(&mix->line_detect);
            do_gpio_write(&mix->line_detect, val | 0x80);
      }
#endif

      return 0;
}

Generated by  Doxygen 1.6.0   Back to index