Logo Search packages:      
Sourcecode: alsa-driver version File versions

pcxhr.c

/*
 * Driver for Digigram pcxhr compatible soundcards
 *
 * main file with alsa callbacks
 *
 * Copyright (c) 2004 by Digigram <alsa@digigram.com>
 *
 *   This program is free software; you can redistribute it and/or modify
 *   it under the terms of the GNU General Public License as published by
 *   the Free Software Foundation; either version 2 of the License, or
 *   (at your option) any later version.
 *
 *   This program is distributed in the hope that it will be useful,
 *   but WITHOUT ANY WARRANTY; without even the implied warranty of
 *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *   GNU General Public License for more details.
 *
 *   You should have received a copy of the GNU General Public License
 *   along with this program; if not, write to the Free Software
 *   Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
 */


#include <sound/driver.h>
#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/slab.h>
#include <linux/pci.h>
#include <linux/dma-mapping.h>
#include <linux/delay.h>
#include <linux/moduleparam.h>
#include <linux/mutex.h>

#include <sound/core.h>
#include <sound/initval.h>
#include <sound/info.h>
#include <sound/control.h>
#include <sound/pcm.h>
#include <sound/pcm_params.h>
#include "pcxhr.h"
#include "pcxhr_mixer.h"
#include "pcxhr_hwdep.h"
#include "pcxhr_core.h"

#define DRIVER_NAME "pcxhr"

MODULE_AUTHOR("Markus Bollinger <bollinger@digigram.com>");
MODULE_DESCRIPTION("Digigram " DRIVER_NAME " " PCXHR_DRIVER_VERSION_STRING);
MODULE_LICENSE("GPL");
MODULE_SUPPORTED_DEVICE("{{Digigram," DRIVER_NAME "}}");

static int index[SNDRV_CARDS] = SNDRV_DEFAULT_IDX;          /* Index 0-MAX */
static char *id[SNDRV_CARDS] = SNDRV_DEFAULT_STR;           /* ID for this card */
static int enable[SNDRV_CARDS] = SNDRV_DEFAULT_ENABLE_PNP;  /* Enable this card */
static int mono[SNDRV_CARDS];                         /* capture in mono only */

module_param_array(index, int, NULL, 0444);
MODULE_PARM_DESC(index, "Index value for Digigram " DRIVER_NAME " soundcard");
module_param_array(id, charp, NULL, 0444);
MODULE_PARM_DESC(id, "ID string for Digigram " DRIVER_NAME " soundcard");
module_param_array(enable, bool, NULL, 0444);
MODULE_PARM_DESC(enable, "Enable Digigram " DRIVER_NAME " soundcard");
module_param_array(mono, bool, NULL, 0444);
MODULE_PARM_DESC(mono, "Mono capture mode (default is stereo)");

enum {
      PCI_ID_VX882HR,
      PCI_ID_PCX882HR,
      PCI_ID_VX881HR,
      PCI_ID_PCX881HR,
      PCI_ID_PCX1222HR,
      PCI_ID_PCX1221HR,
      PCI_ID_LAST
};

static struct pci_device_id pcxhr_ids[] = {
      { 0x10b5, 0x9656, 0x1369, 0xb001, 0, 0, PCI_ID_VX882HR, },   /* VX882HR */
      { 0x10b5, 0x9656, 0x1369, 0xb101, 0, 0, PCI_ID_PCX882HR, },  /* PCX882HR */
      { 0x10b5, 0x9656, 0x1369, 0xb201, 0, 0, PCI_ID_VX881HR, },   /* VX881HR */
      { 0x10b5, 0x9656, 0x1369, 0xb301, 0, 0, PCI_ID_PCX881HR, },  /* PCX881HR */
      { 0x10b5, 0x9656, 0x1369, 0xb501, 0, 0, PCI_ID_PCX1222HR, }, /* PCX1222HR */
      { 0x10b5, 0x9656, 0x1369, 0xb701, 0, 0, PCI_ID_PCX1221HR, }, /* PCX1221HR */
      { 0, }
};

MODULE_DEVICE_TABLE(pci, pcxhr_ids);

struct board_parameters {
      char* board_name;
      short playback_chips;
      short capture_chips;
      short firmware_num;
};
static struct board_parameters pcxhr_board_params[] = {
[PCI_ID_VX882HR] =      { "VX882HR",   4, 4, 41, },
[PCI_ID_PCX882HR] =     { "PCX882HR",  4, 4, 41, },
[PCI_ID_VX881HR] =      { "VX881HR",   4, 4, 41, },
[PCI_ID_PCX881HR] =     { "PCX881HR",  4, 4, 41, },
[PCI_ID_PCX1222HR] =    { "PCX1222HR", 6, 1, 42, },
[PCI_ID_PCX1221HR] =    { "PCX1221HR", 6, 1, 42, },
};


static int pcxhr_pll_freq_register(unsigned int freq, unsigned int* pllreg,
                           unsigned int* realfreq)
{
      unsigned int reg;

      if (freq < 6900 || freq > 110250)
            return -EINVAL;
      reg = (28224000 * 10) / freq;
      reg = (reg + 5) / 10;
      if (reg < 0x200)
            *pllreg = reg + 0x800;
      else if (reg < 0x400)
            *pllreg = reg & 0x1ff;
      else if (reg < 0x800) {
            *pllreg = ((reg >> 1) & 0x1ff) + 0x200;
            reg &= ~1;
      } else {
            *pllreg = ((reg >> 2) & 0x1ff) + 0x400;
            reg &= ~3;
      }
      if (realfreq)
            *realfreq = ((28224000 * 10) / reg + 5) / 10;
      return 0;
}


#define PCXHR_FREQ_REG_MASK         0x1f
#define PCXHR_FREQ_QUARTZ_48000           0x00
#define PCXHR_FREQ_QUARTZ_24000           0x01
#define PCXHR_FREQ_QUARTZ_12000           0x09
#define PCXHR_FREQ_QUARTZ_32000           0x08
#define PCXHR_FREQ_QUARTZ_16000           0x04
#define PCXHR_FREQ_QUARTZ_8000            0x0c
#define PCXHR_FREQ_QUARTZ_44100           0x02
#define PCXHR_FREQ_QUARTZ_22050           0x0a
#define PCXHR_FREQ_QUARTZ_11025           0x06
#define PCXHR_FREQ_PLL              0x05
#define PCXHR_FREQ_QUARTZ_192000    0x10
#define PCXHR_FREQ_QUARTZ_96000           0x18
#define PCXHR_FREQ_QUARTZ_176400    0x14
#define PCXHR_FREQ_QUARTZ_88200           0x1c
#define PCXHR_FREQ_QUARTZ_128000    0x12
#define PCXHR_FREQ_QUARTZ_64000           0x1a

#define PCXHR_FREQ_WORD_CLOCK       0x0f
#define PCXHR_FREQ_SYNC_AES         0x0e
#define PCXHR_FREQ_AES_1            0x07
#define PCXHR_FREQ_AES_2            0x0b
#define PCXHR_FREQ_AES_3            0x03
#define PCXHR_FREQ_AES_4            0x0d

#define PCXHR_MODIFY_CLOCK_S_BIT    0x04

#define PCXHR_IRQ_TIMER_FREQ        92000
#define PCXHR_IRQ_TIMER_PERIOD            48

static int pcxhr_get_clock_reg(struct pcxhr_mgr *mgr, unsigned int rate,
                         unsigned int *reg, unsigned int *freq)
{
      unsigned int val, realfreq, pllreg;
      struct pcxhr_rmh rmh;
      int err;

      realfreq = rate;
      switch (mgr->use_clock_type) {
      case PCXHR_CLOCK_TYPE_INTERNAL :    /* clock by quartz or pll */
            switch (rate) {
            case 48000 :      val = PCXHR_FREQ_QUARTZ_48000;      break;
            case 24000 :      val = PCXHR_FREQ_QUARTZ_24000;      break;
            case 12000 :      val = PCXHR_FREQ_QUARTZ_12000;      break;
            case 32000 :      val = PCXHR_FREQ_QUARTZ_32000;      break;
            case 16000 :      val = PCXHR_FREQ_QUARTZ_16000;      break;
            case 8000 : val = PCXHR_FREQ_QUARTZ_8000; break;
            case 44100 :      val = PCXHR_FREQ_QUARTZ_44100;      break;
            case 22050 :      val = PCXHR_FREQ_QUARTZ_22050;      break;
            case 11025 :      val = PCXHR_FREQ_QUARTZ_11025;      break;
            case 192000 :     val = PCXHR_FREQ_QUARTZ_192000;     break;
            case 96000 :      val = PCXHR_FREQ_QUARTZ_96000;      break;
            case 176400 :     val = PCXHR_FREQ_QUARTZ_176400;     break;
            case 88200 :      val = PCXHR_FREQ_QUARTZ_88200;      break;
            case 128000 :     val = PCXHR_FREQ_QUARTZ_128000;     break;
            case 64000 :      val = PCXHR_FREQ_QUARTZ_64000;      break;
            default :
                  val = PCXHR_FREQ_PLL;
                  /* get the value for the pll register */
                  err = pcxhr_pll_freq_register(rate, &pllreg, &realfreq);
                  if (err)
                        return err;
                  pcxhr_init_rmh(&rmh, CMD_ACCESS_IO_WRITE);
                  rmh.cmd[0] |= IO_NUM_REG_GENCLK;
                  rmh.cmd[1]  = pllreg & MASK_DSP_WORD;
                  rmh.cmd[2]  = pllreg >> 24;
                  rmh.cmd_len = 3;
                  err = pcxhr_send_msg(mgr, &rmh);
                  if (err < 0) {
                        snd_printk(KERN_ERR
                                 "error CMD_ACCESS_IO_WRITE for PLL register : %x!\n",
                                 err );
                        return err;
                  }
            }
            break;
      case PCXHR_CLOCK_TYPE_WORD_CLOCK :  val = PCXHR_FREQ_WORD_CLOCK;  break;
      case PCXHR_CLOCK_TYPE_AES_SYNC :    val = PCXHR_FREQ_SYNC_AES;    break;
      case PCXHR_CLOCK_TYPE_AES_1 :       val = PCXHR_FREQ_AES_1;       break;
      case PCXHR_CLOCK_TYPE_AES_2 :       val = PCXHR_FREQ_AES_2;       break;
      case PCXHR_CLOCK_TYPE_AES_3 :       val = PCXHR_FREQ_AES_3;       break;
      case PCXHR_CLOCK_TYPE_AES_4 :       val = PCXHR_FREQ_AES_4;       break;
      default : return -EINVAL;
      }
      *reg = val;
      *freq = realfreq;
      return 0;
}


int pcxhr_set_clock(struct pcxhr_mgr *mgr, unsigned int rate)
{
      unsigned int val, realfreq, speed;
      struct pcxhr_rmh rmh;
      int err, changed;

      if (rate == 0)
            return 0; /* nothing to do */

      err = pcxhr_get_clock_reg(mgr, rate, &val, &realfreq);
      if (err)
            return err;

      /* codec speed modes */
      if (rate < 55000)
            speed = 0;  /* single speed */
      else if (rate < 100000)
            speed = 1;  /* dual speed */
      else
            speed = 2;  /* quad speed */
      if (mgr->codec_speed != speed) {
            pcxhr_init_rmh(&rmh, CMD_ACCESS_IO_WRITE);      /* mute outputs */
            rmh.cmd[0] |= IO_NUM_REG_MUTE_OUT;
            err = pcxhr_send_msg(mgr, &rmh);
            if (err)
                  return err;

            pcxhr_init_rmh(&rmh, CMD_ACCESS_IO_WRITE);      /* set speed ratio */
            rmh.cmd[0] |= IO_NUM_SPEED_RATIO;
            rmh.cmd[1] = speed;
            rmh.cmd_len = 2;
            err = pcxhr_send_msg(mgr, &rmh);
            if (err)
                  return err;
      }
      /* set the new frequency */
      snd_printdd("clock register : set %x\n", val);
      err = pcxhr_write_io_num_reg_cont(mgr, PCXHR_FREQ_REG_MASK, val, &changed);
      if (err)
            return err;
      mgr->sample_rate_real = realfreq;
      mgr->cur_clock_type = mgr->use_clock_type;

      /* unmute after codec speed modes */
      if (mgr->codec_speed != speed) {
            pcxhr_init_rmh(&rmh, CMD_ACCESS_IO_READ); /* unmute outputs */
            rmh.cmd[0] |= IO_NUM_REG_MUTE_OUT;
            err = pcxhr_send_msg(mgr, &rmh);
            if (err)
                  return err;
            mgr->codec_speed = speed;                 /* save new codec speed */
      }

      if (changed) {
            pcxhr_init_rmh(&rmh, CMD_MODIFY_CLOCK);
            rmh.cmd[0] |= PCXHR_MODIFY_CLOCK_S_BIT;         /* resync fifos  */
            if (rate < PCXHR_IRQ_TIMER_FREQ)
                  rmh.cmd[1] = PCXHR_IRQ_TIMER_PERIOD;
            else
                  rmh.cmd[1] = PCXHR_IRQ_TIMER_PERIOD * 2;
            rmh.cmd[2] = rate;
            rmh.cmd_len = 3;
            err = pcxhr_send_msg(mgr, &rmh);
            if (err)
                  return err;
      }
      snd_printdd("pcxhr_set_clock to %dHz (realfreq=%d)\n", rate, realfreq);
      return 0;
}


int pcxhr_get_external_clock(struct pcxhr_mgr *mgr, enum pcxhr_clock_type clock_type,
                       int *sample_rate)
{
      struct pcxhr_rmh rmh;
      unsigned char reg;
      int err, rate;

      switch (clock_type) {
      case PCXHR_CLOCK_TYPE_WORD_CLOCK :  reg = REG_STATUS_WORD_CLOCK;  break;
      case PCXHR_CLOCK_TYPE_AES_SYNC :    reg = REG_STATUS_AES_SYNC;    break;
      case PCXHR_CLOCK_TYPE_AES_1 :       reg = REG_STATUS_AES_1;       break;
      case PCXHR_CLOCK_TYPE_AES_2 :       reg = REG_STATUS_AES_2;       break;
      case PCXHR_CLOCK_TYPE_AES_3 :       reg = REG_STATUS_AES_3;       break;
      case PCXHR_CLOCK_TYPE_AES_4 :       reg = REG_STATUS_AES_4;       break;
      default : return -EINVAL;
      }
      pcxhr_init_rmh(&rmh, CMD_ACCESS_IO_READ);
      rmh.cmd_len = 2;
      rmh.cmd[0] |= IO_NUM_REG_STATUS;
      if (mgr->last_reg_stat != reg) {
            rmh.cmd[1]  = reg;
            err = pcxhr_send_msg(mgr, &rmh);
            if (err)
                  return err;
            udelay(100);            /* wait minimum 2 sample_frames at 32kHz ! */
            mgr->last_reg_stat = reg;
      }
      rmh.cmd[1]  = REG_STATUS_CURRENT;
      err = pcxhr_send_msg(mgr, &rmh);
      if (err)
            return err;
      switch (rmh.stat[1] & 0x0f) {
      case REG_STATUS_SYNC_32000 :  rate = 32000; break;
      case REG_STATUS_SYNC_44100 :  rate = 44100; break;
      case REG_STATUS_SYNC_48000 :  rate = 48000; break;
      case REG_STATUS_SYNC_64000 :  rate = 64000; break;
      case REG_STATUS_SYNC_88200 :  rate = 88200; break;
      case REG_STATUS_SYNC_96000 :  rate = 96000; break;
      case REG_STATUS_SYNC_128000 : rate = 128000; break;
      case REG_STATUS_SYNC_176400 : rate = 176400; break;
      case REG_STATUS_SYNC_192000 : rate = 192000; break;
      default: rate = 0;
      }
      snd_printdd("External clock is at %d Hz\n", rate);
      *sample_rate = rate;
      return 0;
}


/*
 *  start or stop playback/capture substream
 */
static int pcxhr_set_stream_state(struct pcxhr_stream *stream)
{
      int err;
      struct snd_pcxhr *chip;
      struct pcxhr_rmh rmh;
      int stream_mask, start;

      if (stream->status == PCXHR_STREAM_STATUS_SCHEDULE_RUN)
            start = 1;
      else {
            if (stream->status != PCXHR_STREAM_STATUS_SCHEDULE_STOP) {
                  snd_printk(KERN_ERR "ERROR pcxhr_set_stream_state CANNOT be stopped\n");
                  return -EINVAL;
            }
            start = 0;
      }
      if (!stream->substream)
            return -EINVAL;

      stream->timer_abs_periods = 0;
      stream->timer_period_frag = 0;            /* reset theoretical stream pos */
      stream->timer_buf_periods = 0;
      stream->timer_is_synced = 0;

      stream_mask = stream->pipe->is_capture ? 1 : 1<<stream->substream->number;

      pcxhr_init_rmh(&rmh, start ? CMD_START_STREAM : CMD_STOP_STREAM);
      pcxhr_set_pipe_cmd_params(&rmh, stream->pipe->is_capture,
                          stream->pipe->first_audio, 0, stream_mask);

      chip = snd_pcm_substream_chip(stream->substream);

      err = pcxhr_send_msg(chip->mgr, &rmh);
      if (err)
            snd_printk(KERN_ERR "ERROR pcxhr_set_stream_state err=%x;\n", err);
      stream->status = start ? PCXHR_STREAM_STATUS_STARTED : PCXHR_STREAM_STATUS_STOPPED;
      return err;
}

#define HEADER_FMT_BASE_LIN         0xfed00000
#define HEADER_FMT_BASE_FLOAT       0xfad00000
#define HEADER_FMT_INTEL            0x00008000
#define HEADER_FMT_24BITS           0x00004000
#define HEADER_FMT_16BITS           0x00002000
#define HEADER_FMT_UPTO11           0x00000200
#define HEADER_FMT_UPTO32           0x00000100
#define HEADER_FMT_MONO             0x00000080

static int pcxhr_set_format(struct pcxhr_stream *stream)
{
      int err, is_capture, sample_rate, stream_num;
      struct snd_pcxhr *chip;
      struct pcxhr_rmh rmh;
      unsigned int header;

      switch (stream->format) {
      case SNDRV_PCM_FORMAT_U8:
            header = HEADER_FMT_BASE_LIN;
            break;
      case SNDRV_PCM_FORMAT_S16_LE:
            header = HEADER_FMT_BASE_LIN | HEADER_FMT_16BITS | HEADER_FMT_INTEL;
            break;
      case SNDRV_PCM_FORMAT_S16_BE:
            header = HEADER_FMT_BASE_LIN | HEADER_FMT_16BITS;
            break;
      case SNDRV_PCM_FORMAT_S24_3LE:
            header = HEADER_FMT_BASE_LIN | HEADER_FMT_24BITS | HEADER_FMT_INTEL;
            break;
      case SNDRV_PCM_FORMAT_S24_3BE:
            header = HEADER_FMT_BASE_LIN | HEADER_FMT_24BITS;
            break;
      case SNDRV_PCM_FORMAT_FLOAT_LE:
            header = HEADER_FMT_BASE_FLOAT | HEADER_FMT_INTEL;
            break;
      default:
            snd_printk(KERN_ERR "error pcxhr_set_format() : unknown format\n");
            return -EINVAL;
      }
      chip = snd_pcm_substream_chip(stream->substream);

      sample_rate = chip->mgr->sample_rate;
      if (sample_rate <= 32000 && sample_rate !=0) {
            if (sample_rate <= 11025)
                  header |= HEADER_FMT_UPTO11;
            else
                  header |= HEADER_FMT_UPTO32;
      }
      if (stream->channels == 1)
            header |= HEADER_FMT_MONO;

      is_capture = stream->pipe->is_capture;
      stream_num = is_capture ? 0 : stream->substream->number;

      pcxhr_init_rmh(&rmh, is_capture ? CMD_FORMAT_STREAM_IN : CMD_FORMAT_STREAM_OUT);
      pcxhr_set_pipe_cmd_params(&rmh, is_capture, stream->pipe->first_audio, stream_num, 0);
      if (is_capture)
            rmh.cmd[0] |= 1<<12;
      rmh.cmd[1] = 0;
      rmh.cmd[2] = header >> 8;
      rmh.cmd[3] = (header & 0xff) << 16;
      rmh.cmd_len = 4;
      err = pcxhr_send_msg(chip->mgr, &rmh);
      if (err)
            snd_printk(KERN_ERR "ERROR pcxhr_set_format err=%x;\n", err);
      return err;
}

static int pcxhr_update_r_buffer(struct pcxhr_stream *stream)
{
      int err, is_capture, stream_num;
      struct pcxhr_rmh rmh;
      struct snd_pcm_substream *subs = stream->substream;
      struct snd_pcxhr *chip = snd_pcm_substream_chip(subs);

      is_capture = (subs->stream == SNDRV_PCM_STREAM_CAPTURE);
      stream_num = is_capture ? 0 : subs->number;

      snd_printdd("pcxhr_update_r_buffer(pcm%c%d) : addr(%p) bytes(%zx) subs(%d)\n",
                is_capture ? 'c' : 'p',
                chip->chip_idx, (void*)subs->runtime->dma_addr,
                subs->runtime->dma_bytes, subs->number);

      pcxhr_init_rmh(&rmh, CMD_UPDATE_R_BUFFERS);
      pcxhr_set_pipe_cmd_params(&rmh, is_capture, stream->pipe->first_audio, stream_num, 0);

      snd_assert(subs->runtime->dma_bytes < 0x200000);      /* max buffer size is 2 MByte */
      rmh.cmd[1] = subs->runtime->dma_bytes * 8;            /* size in bits */
      rmh.cmd[2] = subs->runtime->dma_addr >> 24;           /* most significant byte */
      rmh.cmd[2] |= 1<<19;                            /* this is a circular buffer */
      rmh.cmd[3] = subs->runtime->dma_addr & MASK_DSP_WORD; /* least 3 significant bytes */
      rmh.cmd_len = 4;
      err = pcxhr_send_msg(chip->mgr, &rmh);
      if (err)
            snd_printk(KERN_ERR "ERROR CMD_UPDATE_R_BUFFERS err=%x;\n", err);
      return err;
}


#if 0
static int pcxhr_pipe_sample_count(struct pcxhr_stream *stream, snd_pcm_uframes_t *sample_count)
{
      struct pcxhr_rmh rmh;
      int err;
      pcxhr_t *chip = snd_pcm_substream_chip(stream->substream);
      pcxhr_init_rmh(&rmh, CMD_PIPE_SAMPLE_COUNT);
      pcxhr_set_pipe_cmd_params(&rmh, stream->pipe->is_capture, 0, 0,
                          1<<stream->pipe->first_audio);
      err = pcxhr_send_msg(chip->mgr, &rmh);
      if (err == 0) {
            *sample_count = ((snd_pcm_uframes_t)rmh.stat[0]) << 24;
            *sample_count += (snd_pcm_uframes_t)rmh.stat[1];
      }
      snd_printdd("PIPE_SAMPLE_COUNT = %lx\n", *sample_count);
      return err;
}
#endif

static inline int pcxhr_stream_scheduled_get_pipe(struct pcxhr_stream *stream,
                                      struct pcxhr_pipe **pipe)
{
      if (stream->status == PCXHR_STREAM_STATUS_SCHEDULE_RUN) {
            *pipe = stream->pipe;
            return 1;
      }
      return 0;
}

static void pcxhr_trigger_tasklet(unsigned long arg)
{
      unsigned long flags;
      int i, j, err;
      struct pcxhr_pipe *pipe;
      struct snd_pcxhr *chip;
      struct pcxhr_mgr *mgr = (struct pcxhr_mgr*)(arg);
      int capture_mask = 0;
      int playback_mask = 0;

#ifdef CONFIG_SND_DEBUG_DETECT
      struct timeval my_tv1, my_tv2;
      do_gettimeofday(&my_tv1);
#endif
      mutex_lock(&mgr->setup_mutex);

      /* check the pipes concerned and build pipe_array */
      for (i = 0; i < mgr->num_cards; i++) {
            chip = mgr->chip[i];
            for (j = 0; j < chip->nb_streams_capt; j++) {
                  if (pcxhr_stream_scheduled_get_pipe(&chip->capture_stream[j], &pipe))
                        capture_mask |= (1 << pipe->first_audio);
            }
            for (j = 0; j < chip->nb_streams_play; j++) {
                  if (pcxhr_stream_scheduled_get_pipe(&chip->playback_stream[j], &pipe)) {
                        playback_mask |= (1 << pipe->first_audio);
                        break;      /* add only once, as all playback streams of
                               * one chip use the same pipe
                               */
                  }
            }
      }
      if (capture_mask == 0 && playback_mask == 0) {
            mutex_unlock(&mgr->setup_mutex);
            snd_printk(KERN_ERR "pcxhr_trigger_tasklet : no pipes\n");
            return;
      }

      snd_printdd("pcxhr_trigger_tasklet : playback_mask=%x capture_mask=%x\n",
                playback_mask, capture_mask);

      /* synchronous stop of all the pipes concerned */
      err = pcxhr_set_pipe_state(mgr,  playback_mask, capture_mask, 0);
      if (err) {
            mutex_unlock(&mgr->setup_mutex);
            snd_printk(KERN_ERR "pcxhr_trigger_tasklet : error stop pipes (P%x C%x)\n",
                     playback_mask, capture_mask);
            return;
      }

      /* unfortunately the dsp lost format and buffer info with the stop pipe */
      for (i = 0; i < mgr->num_cards; i++) {
            struct pcxhr_stream *stream;
            chip = mgr->chip[i];
            for (j = 0; j < chip->nb_streams_capt; j++) {
                  stream = &chip->capture_stream[j];
                  if (pcxhr_stream_scheduled_get_pipe(stream, &pipe)) {
                        err = pcxhr_set_format(stream);
                        err = pcxhr_update_r_buffer(stream);
                  }
            }
            for (j = 0; j < chip->nb_streams_play; j++) {
                  stream = &chip->playback_stream[j];
                  if (pcxhr_stream_scheduled_get_pipe(stream, &pipe)) {
                        err = pcxhr_set_format(stream);
                        err = pcxhr_update_r_buffer(stream);
                  }
            }
      }
      /* start all the streams */
      for (i = 0; i < mgr->num_cards; i++) {
            struct pcxhr_stream *stream;
            chip = mgr->chip[i];
            for (j = 0; j < chip->nb_streams_capt; j++) {
                  stream = &chip->capture_stream[j];
                  if (pcxhr_stream_scheduled_get_pipe(stream, &pipe))
                        err = pcxhr_set_stream_state(stream);
            }
            for (j = 0; j < chip->nb_streams_play; j++) {
                  stream = &chip->playback_stream[j];
                  if (pcxhr_stream_scheduled_get_pipe(stream, &pipe))
                        err = pcxhr_set_stream_state(stream);
            }
      }

      /* synchronous start of all the pipes concerned */
      err = pcxhr_set_pipe_state(mgr, playback_mask, capture_mask, 1);
      if (err) {
            mutex_unlock(&mgr->setup_mutex);
            snd_printk(KERN_ERR "pcxhr_trigger_tasklet : error start pipes (P%x C%x)\n",
                     playback_mask, capture_mask);
            return;
      }

      /* put the streams into the running state now (increment pointer by interrupt) */
      spin_lock_irqsave(&mgr->lock, flags);
      for ( i =0; i < mgr->num_cards; i++) {
            struct pcxhr_stream *stream;
            chip = mgr->chip[i];
            for(j = 0; j < chip->nb_streams_capt; j++) {
                  stream = &chip->capture_stream[j];
                  if(stream->status == PCXHR_STREAM_STATUS_STARTED)
                        stream->status = PCXHR_STREAM_STATUS_RUNNING;
            }
            for (j = 0; j < chip->nb_streams_play; j++) {
                  stream = &chip->playback_stream[j];
                  if (stream->status == PCXHR_STREAM_STATUS_STARTED) {
                        /* playback will already have advanced ! */
                        stream->timer_period_frag += PCXHR_GRANULARITY;
                        stream->status = PCXHR_STREAM_STATUS_RUNNING;
                  }
            }
      }
      spin_unlock_irqrestore(&mgr->lock, flags);

      mutex_unlock(&mgr->setup_mutex);

#ifdef CONFIG_SND_DEBUG_DETECT
      do_gettimeofday(&my_tv2);
      snd_printdd("***TRIGGER TASKLET*** TIME = %ld (err = %x)\n",
                my_tv2.tv_usec - my_tv1.tv_usec, err);
#endif
}


/*
 *  trigger callback
 */
static int pcxhr_trigger(struct snd_pcm_substream *subs, int cmd)
{
      struct pcxhr_stream *stream;
      struct snd_pcm_substream *s;

      switch (cmd) {
      case SNDRV_PCM_TRIGGER_START:
            snd_printdd("SNDRV_PCM_TRIGGER_START\n");
            if (snd_pcm_stream_linked(subs)) {
                  struct snd_pcxhr *chip = snd_pcm_substream_chip(subs);
                  snd_pcm_group_for_each_entry(s, subs) {
                        stream = s->runtime->private_data;
                        stream->status =
                              PCXHR_STREAM_STATUS_SCHEDULE_RUN;
                        snd_pcm_trigger_done(s, subs);
                  }
                  tasklet_hi_schedule(&chip->mgr->trigger_taskq);
            } else {
                  stream = subs->runtime->private_data;
                  snd_printdd("Only one Substream %c %d\n",
                            stream->pipe->is_capture ? 'C' : 'P',
                            stream->pipe->first_audio);
                  if (pcxhr_set_format(stream))
                        return -EINVAL;
                  if (pcxhr_update_r_buffer(stream))
                        return -EINVAL;

                  if (pcxhr_set_stream_state(stream))
                        return -EINVAL;
                  stream->status = PCXHR_STREAM_STATUS_RUNNING;
            }
            break;
      case SNDRV_PCM_TRIGGER_STOP:
            snd_printdd("SNDRV_PCM_TRIGGER_STOP\n");
            snd_pcm_group_for_each_entry(s, subs) {
                  stream = s->runtime->private_data;
                  stream->status = PCXHR_STREAM_STATUS_SCHEDULE_STOP;
                  if (pcxhr_set_stream_state(stream))
                        return -EINVAL;
                  snd_pcm_trigger_done(s, subs);
            }
            break;
      case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
      case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
            /* TODO */
      default:
            return -EINVAL;
      }
      return 0;
}


static int pcxhr_hardware_timer(struct pcxhr_mgr *mgr, int start)
{
      struct pcxhr_rmh rmh;
      int err;

      pcxhr_init_rmh(&rmh, CMD_SET_TIMER_INTERRUPT);
      if (start) {
            mgr->dsp_time_last = PCXHR_DSP_TIME_INVALID;    /* last dsp time invalid */
            rmh.cmd[0] |= PCXHR_GRANULARITY;
      }
      err = pcxhr_send_msg(mgr, &rmh);
      if (err < 0)
            snd_printk(KERN_ERR "error pcxhr_hardware_timer err(%x)\n", err);
      return err;
}

/*
 *  prepare callback for all pcms
 */
static int pcxhr_prepare(struct snd_pcm_substream *subs)
{
      struct snd_pcxhr *chip = snd_pcm_substream_chip(subs);
      struct pcxhr_mgr *mgr = chip->mgr;
      /*
      struct pcxhr_stream *stream = (pcxhr_stream_t*)subs->runtime->private_data;
      */
      int err = 0;

      snd_printdd("pcxhr_prepare : period_size(%lx) periods(%x) buffer_size(%lx)\n",
                subs->runtime->period_size, subs->runtime->periods,
                subs->runtime->buffer_size);

      /*
      if(subs->runtime->period_size <= PCXHR_GRANULARITY) {
            snd_printk(KERN_ERR "pcxhr_prepare : error period_size too small (%x)\n",
                     (unsigned int)subs->runtime->period_size);
            return -EINVAL;
      }
      */

      mutex_lock(&mgr->setup_mutex);

      do {
            /* if the stream was stopped before, format and buffer were reset */
            /*
            if(stream->status == PCXHR_STREAM_STATUS_STOPPED) {
                  err = pcxhr_set_format(stream);
                  if(err) break;
                  err = pcxhr_update_r_buffer(stream);
                  if(err) break;
            }
            */

            /* only the first stream can choose the sample rate */
            /* the further opened streams will be limited to its frequency (see open) */
            /* set the clock only once (first stream) */
            if (mgr->sample_rate != subs->runtime->rate) {
                  err = pcxhr_set_clock(mgr, subs->runtime->rate);
                  if (err)
                        break;
                  if (mgr->sample_rate == 0)
                        /* start the DSP-timer */
                        err = pcxhr_hardware_timer(mgr, 1);
                  mgr->sample_rate = subs->runtime->rate;
            }
      } while(0); /* do only once (so we can use break instead of goto) */

      mutex_unlock(&mgr->setup_mutex);

      return err;
}


/*
 *  HW_PARAMS callback for all pcms
 */
static int pcxhr_hw_params(struct snd_pcm_substream *subs,
                     struct snd_pcm_hw_params *hw)
{
      struct snd_pcxhr *chip = snd_pcm_substream_chip(subs);
      struct pcxhr_mgr *mgr = chip->mgr;
      struct pcxhr_stream *stream = subs->runtime->private_data;
      snd_pcm_format_t format;
      int err;
      int channels;

      /* set up channels */
      channels = params_channels(hw);

      /*  set up format for the stream */
      format = params_format(hw);

      mutex_lock(&mgr->setup_mutex);

      stream->channels = channels;
      stream->format = format;

      /* set the format to the board */
      /*
      err = pcxhr_set_format(stream);
      if(err) {
            mutex_unlock(&mgr->setup_mutex);
            return err;
      }
      */
      /* allocate buffer */
      err = snd_pcm_lib_malloc_pages(subs, params_buffer_bytes(hw));

      /*
      if (err > 0) {
            err = pcxhr_update_r_buffer(stream);
      }
      */
      mutex_unlock(&mgr->setup_mutex);

      return err;
}

static int pcxhr_hw_free(struct snd_pcm_substream *subs)
{
      snd_pcm_lib_free_pages(subs);
      return 0;
}


/*
 *  CONFIGURATION SPACE for all pcms, mono pcm must update channels_max
 */
static struct snd_pcm_hardware pcxhr_caps =
{
      .info             = ( SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED |
                        SNDRV_PCM_INFO_MMAP_VALID | SNDRV_PCM_INFO_SYNC_START |
                        0 /*SNDRV_PCM_INFO_PAUSE*/),
      .formats      = ( SNDRV_PCM_FMTBIT_U8 |
                        SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_S16_BE |
                        SNDRV_PCM_FMTBIT_S24_3LE | SNDRV_PCM_FMTBIT_S24_3BE |
                        SNDRV_PCM_FMTBIT_FLOAT_LE ),
      .rates            = SNDRV_PCM_RATE_CONTINUOUS | SNDRV_PCM_RATE_8000_192000,
      .rate_min         = 8000,
      .rate_max         = 192000,
      .channels_min     = 1,
      .channels_max     = 2,
      .buffer_bytes_max = (32*1024),
      /* 1 byte == 1 frame U8 mono (PCXHR_GRANULARITY is frames!) */
      .period_bytes_min = (2*PCXHR_GRANULARITY),
      .period_bytes_max = (16*1024),
      .periods_min      = 2,
      .periods_max      = (32*1024/PCXHR_GRANULARITY),
};


static int pcxhr_open(struct snd_pcm_substream *subs)
{
      struct snd_pcxhr       *chip = snd_pcm_substream_chip(subs);
      struct pcxhr_mgr       *mgr = chip->mgr;
      struct snd_pcm_runtime *runtime = subs->runtime;
      struct pcxhr_stream    *stream;
      int                 is_capture;

      mutex_lock(&mgr->setup_mutex);

      /* copy the struct snd_pcm_hardware struct */
      runtime->hw = pcxhr_caps;

      if( subs->stream == SNDRV_PCM_STREAM_PLAYBACK ) {
            snd_printdd("pcxhr_open playback chip%d subs%d\n",
                      chip->chip_idx, subs->number);
            is_capture = 0;
            stream = &chip->playback_stream[subs->number];
      } else {
            snd_printdd("pcxhr_open capture chip%d subs%d\n",
                      chip->chip_idx, subs->number);
            is_capture = 1;
            if (mgr->mono_capture)
                  runtime->hw.channels_max = 1;
            else
                  runtime->hw.channels_min = 2;
            stream = &chip->capture_stream[subs->number];
      }
      if (stream->status != PCXHR_STREAM_STATUS_FREE){
            /* streams in use */
            snd_printk(KERN_ERR "pcxhr_open chip%d subs%d in use\n",
                     chip->chip_idx, subs->number);
            mutex_unlock(&mgr->setup_mutex);
            return -EBUSY;
      }

      /* if a sample rate is already used or fixed by external clock,
       * the stream cannot change
       */
      if (mgr->sample_rate)
            runtime->hw.rate_min = runtime->hw.rate_max = mgr->sample_rate;
      else {
            if (mgr->use_clock_type != PCXHR_CLOCK_TYPE_INTERNAL) {
                  int external_rate;
                  if (pcxhr_get_external_clock(mgr, mgr->use_clock_type,
                                         &external_rate) ||
                      external_rate == 0) {
                        /* cannot detect the external clock rate */
                        mutex_unlock(&mgr->setup_mutex);
                        return -EBUSY;
                  }
                  runtime->hw.rate_min = runtime->hw.rate_max = external_rate;
            }
      }

      stream->status      = PCXHR_STREAM_STATUS_OPEN;
      stream->substream   = subs;
      stream->channels    = 0; /* not configured yet */

      runtime->private_data = stream;

      snd_pcm_hw_constraint_step(runtime, 0, SNDRV_PCM_HW_PARAM_BUFFER_BYTES, 4);
      snd_pcm_hw_constraint_step(runtime, 0, SNDRV_PCM_HW_PARAM_PERIOD_BYTES, 4);

      mgr->ref_count_rate++;

      mutex_unlock(&mgr->setup_mutex);
      return 0;
}


static int pcxhr_close(struct snd_pcm_substream *subs)
{
      struct snd_pcxhr *chip = snd_pcm_substream_chip(subs);
      struct pcxhr_mgr *mgr = chip->mgr;
      struct pcxhr_stream *stream = subs->runtime->private_data;

      mutex_lock(&mgr->setup_mutex);

      snd_printdd("pcxhr_close chip%d subs%d\n", chip->chip_idx, subs->number);

      /* sample rate released */
      if (--mgr->ref_count_rate == 0) {
            mgr->sample_rate = 0;         /* the sample rate is no more locked */
            pcxhr_hardware_timer(mgr, 0); /* stop the DSP-timer */
      }

      stream->status    = PCXHR_STREAM_STATUS_FREE;
      stream->substream = NULL;

      mutex_unlock(&mgr->setup_mutex);

      return 0;
}


static snd_pcm_uframes_t pcxhr_stream_pointer(struct snd_pcm_substream *subs)
{
      unsigned long flags;
      u_int32_t timer_period_frag;
      int timer_buf_periods;
      struct snd_pcxhr *chip = snd_pcm_substream_chip(subs);
      struct snd_pcm_runtime *runtime = subs->runtime;
      struct pcxhr_stream *stream  = runtime->private_data;

      spin_lock_irqsave(&chip->mgr->lock, flags);

      /* get the period fragment and the nb of periods in the buffer */
      timer_period_frag = stream->timer_period_frag;
      timer_buf_periods = stream->timer_buf_periods;

      spin_unlock_irqrestore(&chip->mgr->lock, flags);

      return (snd_pcm_uframes_t)((timer_buf_periods * runtime->period_size) +
                           timer_period_frag);
}


static struct snd_pcm_ops pcxhr_ops = {
      .open      = pcxhr_open,
      .close     = pcxhr_close,
      .ioctl     = snd_pcm_lib_ioctl,
      .prepare   = pcxhr_prepare,
      .hw_params = pcxhr_hw_params,
      .hw_free   = pcxhr_hw_free,
      .trigger   = pcxhr_trigger,
      .pointer   = pcxhr_stream_pointer,
};

/*
 */
int pcxhr_create_pcm(struct snd_pcxhr *chip)
{
      int err;
      struct snd_pcm *pcm;
      char name[32];

      sprintf(name, "pcxhr %d", chip->chip_idx);
      if ((err = snd_pcm_new(chip->card, name, 0,
                         chip->nb_streams_play,
                         chip->nb_streams_capt, &pcm)) < 0) {
            snd_printk(KERN_ERR "cannot create pcm %s\n", name);
            return err;
      }
      pcm->private_data = chip;

      if (chip->nb_streams_play)
            snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &pcxhr_ops);
      if (chip->nb_streams_capt)
            snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &pcxhr_ops);

      pcm->info_flags = 0;
      strcpy(pcm->name, name);

      snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_DEV,
                                    snd_dma_pci_data(chip->mgr->pci),
                                    32*1024, 32*1024);
      chip->pcm = pcm;
      return 0;
}

static int pcxhr_chip_free(struct snd_pcxhr *chip)
{
      kfree(chip);
      return 0;
}

static int pcxhr_chip_dev_free(struct snd_device *device)
{
      struct snd_pcxhr *chip = device->device_data;
      return pcxhr_chip_free(chip);
}


/*
 */
static int __devinit pcxhr_create(struct pcxhr_mgr *mgr, struct snd_card *card, int idx)
{
      int err;
      struct snd_pcxhr *chip;
      static struct snd_device_ops ops = {
            .dev_free = pcxhr_chip_dev_free,
      };

      mgr->chip[idx] = chip = kzalloc(sizeof(*chip), GFP_KERNEL);
      if (! chip) {
            snd_printk(KERN_ERR "cannot allocate chip\n");
            return -ENOMEM;
      }

      chip->card = card;
      chip->chip_idx = idx;
      chip->mgr = mgr;

      if (idx < mgr->playback_chips)
            /* stereo or mono streams */
            chip->nb_streams_play = PCXHR_PLAYBACK_STREAMS;

      if (idx < mgr->capture_chips) {
            if (mgr->mono_capture)
                  chip->nb_streams_capt = 2;    /* 2 mono streams (left+right) */
            else
                  chip->nb_streams_capt = 1;    /* or 1 stereo stream */
      }

      if ((err = snd_device_new(card, SNDRV_DEV_LOWLEVEL, chip, &ops)) < 0) {
            pcxhr_chip_free(chip);
            return err;
      }

      snd_card_set_dev(card, &mgr->pci->dev);

      return 0;
}

/* proc interface */
static void pcxhr_proc_info(struct snd_info_entry *entry, struct snd_info_buffer *buffer)
{
      struct snd_pcxhr *chip = entry->private_data;
      struct pcxhr_mgr *mgr = chip->mgr;

      snd_iprintf(buffer, "\n%s\n", mgr->longname);

      /* stats available when embedded DSP is running */
      if (mgr->dsp_loaded & (1 << PCXHR_FIRMWARE_DSP_MAIN_INDEX)) {
            struct pcxhr_rmh rmh;
            short ver_maj = (mgr->dsp_version >> 16) & 0xff;
            short ver_min = (mgr->dsp_version >> 8) & 0xff;
            short ver_build = mgr->dsp_version & 0xff;
            snd_iprintf(buffer, "module version %s\n", PCXHR_DRIVER_VERSION_STRING);
            snd_iprintf(buffer, "dsp version %d.%d.%d\n", ver_maj, ver_min, ver_build);
            if (mgr->board_has_analog)
                  snd_iprintf(buffer, "analog io available\n");
            else
                  snd_iprintf(buffer, "digital only board\n");

            /* calc cpu load of the dsp */
            pcxhr_init_rmh(&rmh, CMD_GET_DSP_RESOURCES);
            if( ! pcxhr_send_msg(mgr, &rmh) ) {
                  int cur = rmh.stat[0];
                  int ref = rmh.stat[1];
                  if (ref > 0) {
                        if (mgr->sample_rate_real != 0 &&
                            mgr->sample_rate_real != 48000) {
                              ref = (ref * 48000) / mgr->sample_rate_real;
                              if (mgr->sample_rate_real >= PCXHR_IRQ_TIMER_FREQ)
                                    ref *= 2;
                        }
                        cur = 100 - (100 * cur) / ref;
                        snd_iprintf(buffer, "cpu load    %d%%\n", cur);
                        snd_iprintf(buffer, "buffer pool %d/%d kWords\n",
                                  rmh.stat[2], rmh.stat[3]);
                  }
            }
            snd_iprintf(buffer, "dma granularity : %d\n", PCXHR_GRANULARITY);
            snd_iprintf(buffer, "dsp time errors : %d\n", mgr->dsp_time_err);
            snd_iprintf(buffer, "dsp async pipe xrun errors : %d\n",
                      mgr->async_err_pipe_xrun);
            snd_iprintf(buffer, "dsp async stream xrun errors : %d\n",
                      mgr->async_err_stream_xrun);
            snd_iprintf(buffer, "dsp async last other error : %x\n",
                      mgr->async_err_other_last);
            /* debug zone dsp */
            rmh.cmd[0] = 0x4200 + PCXHR_SIZE_MAX_STATUS;
            rmh.cmd_len = 1;
            rmh.stat_len = PCXHR_SIZE_MAX_STATUS;
            rmh.dsp_stat = 0;
            rmh.cmd_idx = CMD_LAST_INDEX;
            if( ! pcxhr_send_msg(mgr, &rmh) ) {
                  int i;
                  for (i = 0; i < rmh.stat_len; i++)
                        snd_iprintf(buffer, "debug[%02d] = %06x\n", i,  rmh.stat[i]);
            }
      } else
            snd_iprintf(buffer, "no firmware loaded\n");
      snd_iprintf(buffer, "\n");
}
static void pcxhr_proc_sync(struct snd_info_entry *entry, struct snd_info_buffer *buffer)
{
      struct snd_pcxhr *chip = entry->private_data;
      struct pcxhr_mgr *mgr = chip->mgr;
      static char *texts[7] = {
            "Internal", "Word", "AES Sync", "AES 1", "AES 2", "AES 3", "AES 4"
      };

      snd_iprintf(buffer, "\n%s\n", mgr->longname);
      snd_iprintf(buffer, "Current Sample Clock\t: %s\n", texts[mgr->cur_clock_type]);
      snd_iprintf(buffer, "Current Sample Rate\t= %d\n", mgr->sample_rate_real);

      /* commands available when embedded DSP is running */
      if (mgr->dsp_loaded & (1 << PCXHR_FIRMWARE_DSP_MAIN_INDEX)) {
            int i, err, sample_rate;
            for (i = PCXHR_CLOCK_TYPE_WORD_CLOCK; i< (3 + mgr->capture_chips); i++) {
                  err = pcxhr_get_external_clock(mgr, i, &sample_rate);
                  if (err)
                        break;
                  snd_iprintf(buffer, "%s Clock\t\t= %d\n", texts[i], sample_rate);
            }
      } else
            snd_iprintf(buffer, "no firmware loaded\n");
      snd_iprintf(buffer, "\n");
}

static void __devinit pcxhr_proc_init(struct snd_pcxhr *chip)
{
      struct snd_info_entry *entry;

      if (! snd_card_proc_new(chip->card, "info", &entry))
            snd_info_set_text_ops(entry, chip, pcxhr_proc_info);
      if (! snd_card_proc_new(chip->card, "sync", &entry))
            snd_info_set_text_ops(entry, chip, pcxhr_proc_sync);
}
/* end of proc interface */

/*
 * release all the cards assigned to a manager instance
 */
static int pcxhr_free(struct pcxhr_mgr *mgr)
{
      unsigned int i;

      for (i = 0; i < mgr->num_cards; i++) {
            if (mgr->chip[i])
                  snd_card_free(mgr->chip[i]->card);
      }

      /* reset board if some firmware was loaded */
      if(mgr->dsp_loaded) {
            pcxhr_reset_board(mgr);
            snd_printdd("reset pcxhr !\n");
      }

      /* release irq  */
      if (mgr->irq >= 0)
            free_irq(mgr->irq, mgr);

      pci_release_regions(mgr->pci);

      /* free hostport purgebuffer */
      if (mgr->hostport.area) {
            snd_dma_free_pages(&mgr->hostport);
            mgr->hostport.area = NULL;
      }

      kfree(mgr->prmh);

      pci_disable_device(mgr->pci);
      kfree(mgr);
      return 0;
}

/*
 *    probe function - creates the card manager
 */
static int __devinit pcxhr_probe(struct pci_dev *pci, const struct pci_device_id *pci_id)
{
      static int dev;
      struct pcxhr_mgr *mgr;
      unsigned int i;
      int err;
      size_t size;
      char *card_name;

      if (dev >= SNDRV_CARDS)
            return -ENODEV;
      if (! enable[dev]) {
            dev++;
            return -ENOENT;
      }

      /* enable PCI device */
      if ((err = pci_enable_device(pci)) < 0)
            return err;
      pci_set_master(pci);

      /* check if we can restrict PCI DMA transfers to 32 bits */
      if (pci_set_dma_mask(pci, DMA_32BIT_MASK) < 0) {
            snd_printk(KERN_ERR "architecture does not support 32bit PCI busmaster DMA\n");
            pci_disable_device(pci);
            return -ENXIO;
      }

      /* alloc card manager */
      mgr = kzalloc(sizeof(*mgr), GFP_KERNEL);
      if (! mgr) {
            pci_disable_device(pci);
            return -ENOMEM;
      }

      snd_assert(pci_id->driver_data < PCI_ID_LAST, return -ENODEV);
      card_name = pcxhr_board_params[pci_id->driver_data].board_name;
      mgr->playback_chips = pcxhr_board_params[pci_id->driver_data].playback_chips;
      mgr->capture_chips  = pcxhr_board_params[pci_id->driver_data].capture_chips;
      mgr->firmware_num  = pcxhr_board_params[pci_id->driver_data].firmware_num;
      mgr->mono_capture = mono[dev];

      /* resource assignment */
      if ((err = pci_request_regions(pci, card_name)) < 0) {
            kfree(mgr);
            pci_disable_device(pci);
            return err;
      }
      for (i = 0; i < 3; i++)
            mgr->port[i] = pci_resource_start(pci, i);

      mgr->pci = pci;
      mgr->irq = -1;

      if (request_irq(pci->irq, pcxhr_interrupt, IRQF_SHARED,
                  card_name, mgr)) {
            snd_printk(KERN_ERR "unable to grab IRQ %d\n", pci->irq);
            pcxhr_free(mgr);
            return -EBUSY;
      }
      mgr->irq = pci->irq;

      sprintf(mgr->shortname, "Digigram %s", card_name);
      sprintf(mgr->longname, "%s at 0x%lx & 0x%lx, 0x%lx irq %i", mgr->shortname,
            mgr->port[0], mgr->port[1], mgr->port[2], mgr->irq);

      /* ISR spinlock  */
      spin_lock_init(&mgr->lock);
      spin_lock_init(&mgr->msg_lock);

      /* init setup mutex*/
      mutex_init(&mgr->setup_mutex);

      /* init taslket */
      tasklet_init(&mgr->msg_taskq, pcxhr_msg_tasklet, (unsigned long) mgr);
      tasklet_init(&mgr->trigger_taskq, pcxhr_trigger_tasklet, (unsigned long) mgr);
      mgr->prmh = kmalloc(sizeof(*mgr->prmh) + 
                      sizeof(u32) * (PCXHR_SIZE_MAX_LONG_STATUS - PCXHR_SIZE_MAX_STATUS),
                      GFP_KERNEL);
      if (! mgr->prmh) {
            pcxhr_free(mgr);
            return -ENOMEM;
      }

      for (i=0; i < PCXHR_MAX_CARDS; i++) {
            struct snd_card *card;
            char tmpid[16];
            int idx;

            if (i >= max(mgr->playback_chips, mgr->capture_chips))
                  break;
            mgr->num_cards++;

            if (index[dev] < 0)
                  idx = index[dev];
            else
                  idx = index[dev] + i;

            snprintf(tmpid, sizeof(tmpid), "%s-%d", id[dev] ? id[dev] : card_name, i);
            card = snd_card_new(idx, tmpid, THIS_MODULE, 0);

            if (! card) {
                  snd_printk(KERN_ERR "cannot allocate the card %d\n", i);
                  pcxhr_free(mgr);
                  return -ENOMEM;
            }

            strcpy(card->driver, DRIVER_NAME);
            sprintf(card->shortname, "%s [PCM #%d]", mgr->shortname, i);
            sprintf(card->longname, "%s [PCM #%d]", mgr->longname, i);

            if ((err = pcxhr_create(mgr, card, i)) < 0) {
                  pcxhr_free(mgr);
                  return err;
            }

            if (i == 0)
                  /* init proc interface only for chip0 */
                  pcxhr_proc_init(mgr->chip[i]);

            if ((err = snd_card_register(card)) < 0) {
                  pcxhr_free(mgr);
                  return err;
            }
      }

      /* create hostport purgebuffer */
      size = PAGE_ALIGN(sizeof(struct pcxhr_hostport));
      if (snd_dma_alloc_pages(SNDRV_DMA_TYPE_DEV, snd_dma_pci_data(pci),
                        size, &mgr->hostport) < 0) {
            pcxhr_free(mgr);
            return -ENOMEM;
      }
      /* init purgebuffer */
      memset(mgr->hostport.area, 0, size);

      /* create a DSP loader */
      err = pcxhr_setup_firmware(mgr);
      if (err < 0) {
            pcxhr_free(mgr);
            return err;
      }

      pci_set_drvdata(pci, mgr);
      dev++;
      return 0;
}

static void __devexit pcxhr_remove(struct pci_dev *pci)
{
      pcxhr_free(pci_get_drvdata(pci));
      pci_set_drvdata(pci, NULL);
}

static struct pci_driver driver = {
      .name = "Digigram pcxhr",
      .id_table = pcxhr_ids,
      .probe = pcxhr_probe,
      .remove = __devexit_p(pcxhr_remove),
};

static int __init pcxhr_module_init(void)
{
      return pci_register_driver(&driver);
}

static void __exit pcxhr_module_exit(void)
{
      pci_unregister_driver(&driver);
}

module_init(pcxhr_module_init)
module_exit(pcxhr_module_exit)

Generated by  Doxygen 1.6.0   Back to index