Logo Search packages:      
Sourcecode: alsa-driver version File versions  Download package

hda_codec.c

/*
 * Universal Interface for Intel High Definition Audio Codec
 *
 * Copyright (c) 2004 Takashi Iwai <tiwai@suse.de>
 *
 *
 *  This driver is free software; you can redistribute it and/or modify
 *  it under the terms of the GNU General Public License as published by
 *  the Free Software Foundation; either version 2 of the License, or
 *  (at your option) any later version.
 *
 *  This driver is distributed in the hope that it will be useful,
 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *  GNU General Public License for more details.
 *
 *  You should have received a copy of the GNU General Public License
 *  along with this program; if not, write to the Free Software
 *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
 */

#include <sound/driver.h>
#include <linux/init.h>
#include <linux/delay.h>
#include <linux/slab.h>
#include <linux/pci.h>
#include <linux/moduleparam.h>
#include <linux/mutex.h>
#include <sound/core.h>
#include "hda_codec.h"
#include <sound/asoundef.h>
#include <sound/tlv.h>
#include <sound/initval.h>
#include "hda_local.h"


MODULE_AUTHOR("Takashi Iwai <tiwai@suse.de>");
MODULE_DESCRIPTION("Universal interface for High Definition Audio Codec");
MODULE_LICENSE("GPL");


/*
 * vendor / preset table
 */

struct hda_vendor_id {
      unsigned int id;
      const char *name;
};

/* codec vendor labels */
static struct hda_vendor_id hda_vendor_ids[] = {
      { 0x10ec, "Realtek" },
      { 0x1057, "Motorola" },
      { 0x11d4, "Analog Devices" },
      { 0x13f6, "C-Media" },
      { 0x14f1, "Conexant" },
      { 0x434d, "C-Media" },
      { 0x8384, "SigmaTel" },
      {} /* terminator */
};

/* codec presets */
#include "hda_patch.h"


/**
 * snd_hda_codec_read - send a command and get the response
 * @codec: the HDA codec
 * @nid: NID to send the command
 * @direct: direct flag
 * @verb: the verb to send
 * @parm: the parameter for the verb
 *
 * Send a single command and read the corresponding response.
 *
 * Returns the obtained response value, or -1 for an error.
 */
unsigned int snd_hda_codec_read(struct hda_codec *codec, hda_nid_t nid, int direct,
                        unsigned int verb, unsigned int parm)
{
      unsigned int res;
      mutex_lock(&codec->bus->cmd_mutex);
      if (! codec->bus->ops.command(codec, nid, direct, verb, parm))
            res = codec->bus->ops.get_response(codec);
      else
            res = (unsigned int)-1;
      mutex_unlock(&codec->bus->cmd_mutex);
      return res;
}

EXPORT_SYMBOL(snd_hda_codec_read);

/**
 * snd_hda_codec_write - send a single command without waiting for response
 * @codec: the HDA codec
 * @nid: NID to send the command
 * @direct: direct flag
 * @verb: the verb to send
 * @parm: the parameter for the verb
 *
 * Send a single command without waiting for response.
 *
 * Returns 0 if successful, or a negative error code.
 */
int snd_hda_codec_write(struct hda_codec *codec, hda_nid_t nid, int direct,
                   unsigned int verb, unsigned int parm)
{
      int err;
      mutex_lock(&codec->bus->cmd_mutex);
      err = codec->bus->ops.command(codec, nid, direct, verb, parm);
      mutex_unlock(&codec->bus->cmd_mutex);
      return err;
}

EXPORT_SYMBOL(snd_hda_codec_write);

/**
 * snd_hda_sequence_write - sequence writes
 * @codec: the HDA codec
 * @seq: VERB array to send
 *
 * Send the commands sequentially from the given array.
 * The array must be terminated with NID=0.
 */
void snd_hda_sequence_write(struct hda_codec *codec, const struct hda_verb *seq)
{
      for (; seq->nid; seq++)
            snd_hda_codec_write(codec, seq->nid, 0, seq->verb, seq->param);
}

EXPORT_SYMBOL(snd_hda_sequence_write);

/**
 * snd_hda_get_sub_nodes - get the range of sub nodes
 * @codec: the HDA codec
 * @nid: NID to parse
 * @start_id: the pointer to store the start NID
 *
 * Parse the NID and store the start NID of its sub-nodes.
 * Returns the number of sub-nodes.
 */
int snd_hda_get_sub_nodes(struct hda_codec *codec, hda_nid_t nid, hda_nid_t *start_id)
{
      unsigned int parm;

      parm = snd_hda_param_read(codec, nid, AC_PAR_NODE_COUNT);
      *start_id = (parm >> 16) & 0x7fff;
      return (int)(parm & 0x7fff);
}

EXPORT_SYMBOL(snd_hda_get_sub_nodes);

/**
 * snd_hda_get_connections - get connection list
 * @codec: the HDA codec
 * @nid: NID to parse
 * @conn_list: connection list array
 * @max_conns: max. number of connections to store
 *
 * Parses the connection list of the given widget and stores the list
 * of NIDs.
 *
 * Returns the number of connections, or a negative error code.
 */
int snd_hda_get_connections(struct hda_codec *codec, hda_nid_t nid,
                      hda_nid_t *conn_list, int max_conns)
{
      unsigned int parm;
      int i, conn_len, conns;
      unsigned int shift, num_elems, mask;
      hda_nid_t prev_nid;

      snd_assert(conn_list && max_conns > 0, return -EINVAL);

      parm = snd_hda_param_read(codec, nid, AC_PAR_CONNLIST_LEN);
      if (parm & AC_CLIST_LONG) {
            /* long form */
            shift = 16;
            num_elems = 2;
      } else {
            /* short form */
            shift = 8;
            num_elems = 4;
      }
      conn_len = parm & AC_CLIST_LENGTH;
      mask = (1 << (shift-1)) - 1;

      if (! conn_len)
            return 0; /* no connection */

      if (conn_len == 1) {
            /* single connection */
            parm = snd_hda_codec_read(codec, nid, 0, AC_VERB_GET_CONNECT_LIST, 0);
            conn_list[0] = parm & mask;
            return 1;
      }

      /* multi connection */
      conns = 0;
      prev_nid = 0;
      for (i = 0; i < conn_len; i++) {
            int range_val;
            hda_nid_t val, n;

            if (i % num_elems == 0)
                  parm = snd_hda_codec_read(codec, nid, 0,
                                      AC_VERB_GET_CONNECT_LIST, i);
            range_val = !! (parm & (1 << (shift-1))); /* ranges */
            val = parm & mask;
            parm >>= shift;
            if (range_val) {
                  /* ranges between the previous and this one */
                  if (! prev_nid || prev_nid >= val) {
                        snd_printk(KERN_WARNING "hda_codec: invalid dep_range_val %x:%x\n", prev_nid, val);
                        continue;
                  }
                  for (n = prev_nid + 1; n <= val; n++) {
                        if (conns >= max_conns) {
                              snd_printk(KERN_ERR "Too many connections\n");
                              return -EINVAL;
                        }
                        conn_list[conns++] = n;
                  }
            } else {
                  if (conns >= max_conns) {
                        snd_printk(KERN_ERR "Too many connections\n");
                        return -EINVAL;
                  }
                  conn_list[conns++] = val;
            }
            prev_nid = val;
      }
      return conns;
}


/**
 * snd_hda_queue_unsol_event - add an unsolicited event to queue
 * @bus: the BUS
 * @res: unsolicited event (lower 32bit of RIRB entry)
 * @res_ex: codec addr and flags (upper 32bit or RIRB entry)
 *
 * Adds the given event to the queue.  The events are processed in
 * the workqueue asynchronously.  Call this function in the interrupt
 * hanlder when RIRB receives an unsolicited event.
 *
 * Returns 0 if successful, or a negative error code.
 */
int snd_hda_queue_unsol_event(struct hda_bus *bus, u32 res, u32 res_ex)
{
      struct hda_bus_unsolicited *unsol;
      unsigned int wp;

      if ((unsol = bus->unsol) == NULL)
            return 0;

      wp = (unsol->wp + 1) % HDA_UNSOL_QUEUE_SIZE;
      unsol->wp = wp;

      wp <<= 1;
      unsol->queue[wp] = res;
      unsol->queue[wp + 1] = res_ex;

      queue_work(unsol->workq, &unsol->work);

      return 0;
}

EXPORT_SYMBOL(snd_hda_queue_unsol_event);

/*
 * process queueud unsolicited events
 */
static void process_unsol_events(void *data)
{
      struct hda_bus *bus = data;
      struct hda_bus_unsolicited *unsol = bus->unsol;
      struct hda_codec *codec;
      unsigned int rp, caddr, res;

      while (unsol->rp != unsol->wp) {
            rp = (unsol->rp + 1) % HDA_UNSOL_QUEUE_SIZE;
            unsol->rp = rp;
            rp <<= 1;
            res = unsol->queue[rp];
            caddr = unsol->queue[rp + 1];
            if (! (caddr & (1 << 4))) /* no unsolicited event? */
                  continue;
            codec = bus->caddr_tbl[caddr & 0x0f];
            if (codec && codec->patch_ops.unsol_event)
                  codec->patch_ops.unsol_event(codec, res);
      }
}

/*
 * initialize unsolicited queue
 */
static int init_unsol_queue(struct hda_bus *bus)
{
      struct hda_bus_unsolicited *unsol;

      if (bus->unsol) /* already initialized */
            return 0;

      unsol = kzalloc(sizeof(*unsol), GFP_KERNEL);
      if (! unsol) {
            snd_printk(KERN_ERR "hda_codec: can't allocate unsolicited queue\n");
            return -ENOMEM;
      }
      unsol->workq = create_singlethread_workqueue("hda_codec");
      if (! unsol->workq) {
            snd_printk(KERN_ERR "hda_codec: can't create workqueue\n");
            kfree(unsol);
            return -ENOMEM;
      }
      INIT_WORK(&unsol->work, process_unsol_events, bus);
      bus->unsol = unsol;
      return 0;
}

/*
 * destructor
 */
static void snd_hda_codec_free(struct hda_codec *codec);

static int snd_hda_bus_free(struct hda_bus *bus)
{
      struct list_head *p, *n;

      if (! bus)
            return 0;
      if (bus->unsol) {
            destroy_workqueue(bus->unsol->workq);
            kfree(bus->unsol);
      }
      list_for_each_safe(p, n, &bus->codec_list) {
            struct hda_codec *codec = list_entry(p, struct hda_codec, list);
            snd_hda_codec_free(codec);
      }
      if (bus->ops.private_free)
            bus->ops.private_free(bus);
      kfree(bus);
      return 0;
}

static int snd_hda_bus_dev_free(struct snd_device *device)
{
      struct hda_bus *bus = device->device_data;
      return snd_hda_bus_free(bus);
}

/**
 * snd_hda_bus_new - create a HDA bus
 * @card: the card entry
 * @temp: the template for hda_bus information
 * @busp: the pointer to store the created bus instance
 *
 * Returns 0 if successful, or a negative error code.
 */
int snd_hda_bus_new(struct snd_card *card, const struct hda_bus_template *temp,
                struct hda_bus **busp)
{
      struct hda_bus *bus;
      int err;
      static struct snd_device_ops dev_ops = {
            .dev_free = snd_hda_bus_dev_free,
      };

      snd_assert(temp, return -EINVAL);
      snd_assert(temp->ops.command && temp->ops.get_response, return -EINVAL);

      if (busp)
            *busp = NULL;

      bus = kzalloc(sizeof(*bus), GFP_KERNEL);
      if (bus == NULL) {
            snd_printk(KERN_ERR "can't allocate struct hda_bus\n");
            return -ENOMEM;
      }

      bus->card = card;
      bus->private_data = temp->private_data;
      bus->pci = temp->pci;
      bus->modelname = temp->modelname;
      bus->ops = temp->ops;

      mutex_init(&bus->cmd_mutex);
      INIT_LIST_HEAD(&bus->codec_list);

      if ((err = snd_device_new(card, SNDRV_DEV_BUS, bus, &dev_ops)) < 0) {
            snd_hda_bus_free(bus);
            return err;
      }
      if (busp)
            *busp = bus;
      return 0;
}

EXPORT_SYMBOL(snd_hda_bus_new);

/*
 * find a matching codec preset
 */
static const struct hda_codec_preset *find_codec_preset(struct hda_codec *codec)
{
      const struct hda_codec_preset **tbl, *preset;

      for (tbl = hda_preset_tables; *tbl; tbl++) {
            for (preset = *tbl; preset->id; preset++) {
                  u32 mask = preset->mask;
                  if (! mask)
                        mask = ~0;
                  if (preset->id == (codec->vendor_id & mask) &&
                      (! preset->rev ||
                       preset->rev == codec->revision_id))
                        return preset;
            }
      }
      return NULL;
}

/*
 * snd_hda_get_codec_name - store the codec name
 */
void snd_hda_get_codec_name(struct hda_codec *codec,
                      char *name, int namelen)
{
      const struct hda_vendor_id *c;
      const char *vendor = NULL;
      u16 vendor_id = codec->vendor_id >> 16;
      char tmp[16];

      for (c = hda_vendor_ids; c->id; c++) {
            if (c->id == vendor_id) {
                  vendor = c->name;
                  break;
            }
      }
      if (! vendor) {
            sprintf(tmp, "Generic %04x", vendor_id);
            vendor = tmp;
      }
      if (codec->preset && codec->preset->name)
            snprintf(name, namelen, "%s %s", vendor, codec->preset->name);
      else
            snprintf(name, namelen, "%s ID %x", vendor, codec->vendor_id & 0xffff);
}

/*
 * look for an AFG and MFG nodes
 */
static void setup_fg_nodes(struct hda_codec *codec)
{
      int i, total_nodes;
      hda_nid_t nid;

      total_nodes = snd_hda_get_sub_nodes(codec, AC_NODE_ROOT, &nid);
      for (i = 0; i < total_nodes; i++, nid++) {
            switch((snd_hda_param_read(codec, nid, AC_PAR_FUNCTION_TYPE) & 0xff)) {
            case AC_GRP_AUDIO_FUNCTION:
                  codec->afg = nid;
                  break;
            case AC_GRP_MODEM_FUNCTION:
                  codec->mfg = nid;
                  break;
            default:
                  break;
            }
      }
}

/*
 * read widget caps for each widget and store in cache
 */
static int read_widget_caps(struct hda_codec *codec, hda_nid_t fg_node)
{
      int i;
      hda_nid_t nid;

      codec->num_nodes = snd_hda_get_sub_nodes(codec, fg_node,
                                     &codec->start_nid);
      codec->wcaps = kmalloc(codec->num_nodes * 4, GFP_KERNEL);
      if (! codec->wcaps)
            return -ENOMEM;
      nid = codec->start_nid;
      for (i = 0; i < codec->num_nodes; i++, nid++)
            codec->wcaps[i] = snd_hda_param_read(codec, nid,
                                         AC_PAR_AUDIO_WIDGET_CAP);
      return 0;
}


/*
 * codec destructor
 */
static void snd_hda_codec_free(struct hda_codec *codec)
{
      if (! codec)
            return;
      list_del(&codec->list);
      codec->bus->caddr_tbl[codec->addr] = NULL;
      if (codec->patch_ops.free)
            codec->patch_ops.free(codec);
      kfree(codec->amp_info);
      kfree(codec->wcaps);
      kfree(codec);
}

static void init_amp_hash(struct hda_codec *codec);

/**
 * snd_hda_codec_new - create a HDA codec
 * @bus: the bus to assign
 * @codec_addr: the codec address
 * @codecp: the pointer to store the generated codec
 *
 * Returns 0 if successful, or a negative error code.
 */
int snd_hda_codec_new(struct hda_bus *bus, unsigned int codec_addr,
                  struct hda_codec **codecp)
{
      struct hda_codec *codec;
      char component[13];
      int err;

      snd_assert(bus, return -EINVAL);
      snd_assert(codec_addr <= HDA_MAX_CODEC_ADDRESS, return -EINVAL);

      if (bus->caddr_tbl[codec_addr]) {
            snd_printk(KERN_ERR "hda_codec: address 0x%x is already occupied\n", codec_addr);
            return -EBUSY;
      }

      codec = kzalloc(sizeof(*codec), GFP_KERNEL);
      if (codec == NULL) {
            snd_printk(KERN_ERR "can't allocate struct hda_codec\n");
            return -ENOMEM;
      }

      codec->bus = bus;
      codec->addr = codec_addr;
      mutex_init(&codec->spdif_mutex);
      init_amp_hash(codec);

      list_add_tail(&codec->list, &bus->codec_list);
      bus->caddr_tbl[codec_addr] = codec;

      codec->vendor_id = snd_hda_param_read(codec, AC_NODE_ROOT, AC_PAR_VENDOR_ID);
      if (codec->vendor_id == -1)
            /* read again, hopefully the access method was corrected
             * in the last read...
             */
            codec->vendor_id = snd_hda_param_read(codec, AC_NODE_ROOT,
                                          AC_PAR_VENDOR_ID);
      codec->subsystem_id = snd_hda_param_read(codec, AC_NODE_ROOT, AC_PAR_SUBSYSTEM_ID);
      codec->revision_id = snd_hda_param_read(codec, AC_NODE_ROOT, AC_PAR_REV_ID);

      setup_fg_nodes(codec);
      if (! codec->afg && ! codec->mfg) {
            snd_printdd("hda_codec: no AFG or MFG node found\n");
            snd_hda_codec_free(codec);
            return -ENODEV;
      }

      if (read_widget_caps(codec, codec->afg ? codec->afg : codec->mfg) < 0) {
            snd_printk(KERN_ERR "hda_codec: cannot malloc\n");
            snd_hda_codec_free(codec);
            return -ENOMEM;
      }

      if (! codec->subsystem_id) {
            hda_nid_t nid = codec->afg ? codec->afg : codec->mfg;
            codec->subsystem_id = snd_hda_codec_read(codec, nid, 0,
                                           AC_VERB_GET_SUBSYSTEM_ID,
                                           0);
      }

      codec->preset = find_codec_preset(codec);
      if (! *bus->card->mixername)
            snd_hda_get_codec_name(codec, bus->card->mixername,
                               sizeof(bus->card->mixername));

      if (codec->preset && codec->preset->patch)
            err = codec->preset->patch(codec);
      else
            err = snd_hda_parse_generic_codec(codec);
      if (err < 0) {
            snd_hda_codec_free(codec);
            return err;
      }

      if (codec->patch_ops.unsol_event)
            init_unsol_queue(bus);

      snd_hda_codec_proc_new(codec);

      sprintf(component, "HDA:%08x", codec->vendor_id);
      snd_component_add(codec->bus->card, component);

      if (codecp)
            *codecp = codec;
      return 0;
}

EXPORT_SYMBOL(snd_hda_codec_new);

/**
 * snd_hda_codec_setup_stream - set up the codec for streaming
 * @codec: the CODEC to set up
 * @nid: the NID to set up
 * @stream_tag: stream tag to pass, it's between 0x1 and 0xf.
 * @channel_id: channel id to pass, zero based.
 * @format: stream format.
 */
void snd_hda_codec_setup_stream(struct hda_codec *codec, hda_nid_t nid, u32 stream_tag,
                        int channel_id, int format)
{
      if (! nid)
            return;

      snd_printdd("hda_codec_setup_stream: NID=0x%x, stream=0x%x, channel=%d, format=0x%x\n",
                nid, stream_tag, channel_id, format);
      snd_hda_codec_write(codec, nid, 0, AC_VERB_SET_CHANNEL_STREAMID,
                      (stream_tag << 4) | channel_id);
      msleep(1);
      snd_hda_codec_write(codec, nid, 0, AC_VERB_SET_STREAM_FORMAT, format);
}

EXPORT_SYMBOL(snd_hda_codec_setup_stream);

/*
 * amp access functions
 */

/* FIXME: more better hash key? */
#define HDA_HASH_KEY(nid,dir,idx) (u32)((nid) + ((idx) << 16) + ((dir) << 24))
#define INFO_AMP_CAPS   (1<<0)
#define INFO_AMP_VOL(ch)      (1 << (1 + (ch)))

/* initialize the hash table */
static void init_amp_hash(struct hda_codec *codec)
{
      memset(codec->amp_hash, 0xff, sizeof(codec->amp_hash));
      codec->num_amp_entries = 0;
      codec->amp_info_size = 0;
      codec->amp_info = NULL;
}

/* query the hash.  allocate an entry if not found. */
static struct hda_amp_info *get_alloc_amp_hash(struct hda_codec *codec, u32 key)
{
      u16 idx = key % (u16)ARRAY_SIZE(codec->amp_hash);
      u16 cur = codec->amp_hash[idx];
      struct hda_amp_info *info;

      while (cur != 0xffff) {
            info = &codec->amp_info[cur];
            if (info->key == key)
                  return info;
            cur = info->next;
      }

      /* add a new hash entry */
      if (codec->num_amp_entries >= codec->amp_info_size) {
            /* reallocate the array */
            int new_size = codec->amp_info_size + 64;
            struct hda_amp_info *new_info = kcalloc(new_size, sizeof(struct hda_amp_info),
                                          GFP_KERNEL);
            if (! new_info) {
                  snd_printk(KERN_ERR "hda_codec: can't malloc amp_info\n");
                  return NULL;
            }
            if (codec->amp_info) {
                  memcpy(new_info, codec->amp_info,
                         codec->amp_info_size * sizeof(struct hda_amp_info));
                  kfree(codec->amp_info);
            }
            codec->amp_info_size = new_size;
            codec->amp_info = new_info;
      }
      cur = codec->num_amp_entries++;
      info = &codec->amp_info[cur];
      info->key = key;
      info->status = 0; /* not initialized yet */
      info->next = codec->amp_hash[idx];
      codec->amp_hash[idx] = cur;

      return info;
}

/*
 * query AMP capabilities for the given widget and direction
 */
static u32 query_amp_caps(struct hda_codec *codec, hda_nid_t nid, int direction)
{
      struct hda_amp_info *info = get_alloc_amp_hash(codec, HDA_HASH_KEY(nid, direction, 0));

      if (! info)
            return 0;
      if (! (info->status & INFO_AMP_CAPS)) {
            if (! (get_wcaps(codec, nid) & AC_WCAP_AMP_OVRD))
                  nid = codec->afg;
            info->amp_caps = snd_hda_param_read(codec, nid, direction == HDA_OUTPUT ?
                                        AC_PAR_AMP_OUT_CAP : AC_PAR_AMP_IN_CAP);
            info->status |= INFO_AMP_CAPS;
      }
      return info->amp_caps;
}

/*
 * read the current volume to info
 * if the cache exists, read the cache value.
 */
static unsigned int get_vol_mute(struct hda_codec *codec, struct hda_amp_info *info,
                   hda_nid_t nid, int ch, int direction, int index)
{
      u32 val, parm;

      if (info->status & INFO_AMP_VOL(ch))
            return info->vol[ch];

      parm = ch ? AC_AMP_GET_RIGHT : AC_AMP_GET_LEFT;
      parm |= direction == HDA_OUTPUT ? AC_AMP_GET_OUTPUT : AC_AMP_GET_INPUT;
      parm |= index;
      val = snd_hda_codec_read(codec, nid, 0, AC_VERB_GET_AMP_GAIN_MUTE, parm);
      info->vol[ch] = val & 0xff;
      info->status |= INFO_AMP_VOL(ch);
      return info->vol[ch];
}

/*
 * write the current volume in info to the h/w and update the cache
 */
static void put_vol_mute(struct hda_codec *codec, struct hda_amp_info *info,
                   hda_nid_t nid, int ch, int direction, int index, int val)
{
      u32 parm;

      parm = ch ? AC_AMP_SET_RIGHT : AC_AMP_SET_LEFT;
      parm |= direction == HDA_OUTPUT ? AC_AMP_SET_OUTPUT : AC_AMP_SET_INPUT;
      parm |= index << AC_AMP_SET_INDEX_SHIFT;
      parm |= val;
      snd_hda_codec_write(codec, nid, 0, AC_VERB_SET_AMP_GAIN_MUTE, parm);
      info->vol[ch] = val;
}

/*
 * read AMP value.  The volume is between 0 to 0x7f, 0x80 = mute bit.
 */
int snd_hda_codec_amp_read(struct hda_codec *codec, hda_nid_t nid, int ch,
                     int direction, int index)
{
      struct hda_amp_info *info = get_alloc_amp_hash(codec, HDA_HASH_KEY(nid, direction, index));
      if (! info)
            return 0;
      return get_vol_mute(codec, info, nid, ch, direction, index);
}

/*
 * update the AMP value, mask = bit mask to set, val = the value
 */
int snd_hda_codec_amp_update(struct hda_codec *codec, hda_nid_t nid, int ch,
                       int direction, int idx, int mask, int val)
{
      struct hda_amp_info *info = get_alloc_amp_hash(codec, HDA_HASH_KEY(nid, direction, idx));

      if (! info)
            return 0;
      val &= mask;
      val |= get_vol_mute(codec, info, nid, ch, direction, idx) & ~mask;
      if (info->vol[ch] == val && ! codec->in_resume)
            return 0;
      put_vol_mute(codec, info, nid, ch, direction, idx, val);
      return 1;
}


/*
 * AMP control callbacks
 */
/* retrieve parameters from private_value */
#define get_amp_nid(kc)       ((kc)->private_value & 0xffff)
#define get_amp_channels(kc)  (((kc)->private_value >> 16) & 0x3)
#define get_amp_direction(kc) (((kc)->private_value >> 18) & 0x1)
#define get_amp_index(kc)     (((kc)->private_value >> 19) & 0xf)

/* volume */
int snd_hda_mixer_amp_volume_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo)
{
      struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
      u16 nid = get_amp_nid(kcontrol);
      u8 chs = get_amp_channels(kcontrol);
      int dir = get_amp_direction(kcontrol);
      u32 caps;

      caps = query_amp_caps(codec, nid, dir);
      caps = (caps & AC_AMPCAP_NUM_STEPS) >> AC_AMPCAP_NUM_STEPS_SHIFT; /* num steps */
      if (! caps) {
            printk(KERN_WARNING "hda_codec: num_steps = 0 for NID=0x%x\n", nid);
            return -EINVAL;
      }
      uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
      uinfo->count = chs == 3 ? 2 : 1;
      uinfo->value.integer.min = 0;
      uinfo->value.integer.max = caps;
      return 0;
}

int snd_hda_mixer_amp_volume_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
{
      struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
      hda_nid_t nid = get_amp_nid(kcontrol);
      int chs = get_amp_channels(kcontrol);
      int dir = get_amp_direction(kcontrol);
      int idx = get_amp_index(kcontrol);
      long *valp = ucontrol->value.integer.value;

      if (chs & 1)
            *valp++ = snd_hda_codec_amp_read(codec, nid, 0, dir, idx) & 0x7f;
      if (chs & 2)
            *valp = snd_hda_codec_amp_read(codec, nid, 1, dir, idx) & 0x7f;
      return 0;
}

int snd_hda_mixer_amp_volume_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
{
      struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
      hda_nid_t nid = get_amp_nid(kcontrol);
      int chs = get_amp_channels(kcontrol);
      int dir = get_amp_direction(kcontrol);
      int idx = get_amp_index(kcontrol);
      long *valp = ucontrol->value.integer.value;
      int change = 0;

      if (chs & 1) {
            change = snd_hda_codec_amp_update(codec, nid, 0, dir, idx,
                                      0x7f, *valp);
            valp++;
      }
      if (chs & 2)
            change |= snd_hda_codec_amp_update(codec, nid, 1, dir, idx,
                                       0x7f, *valp);
      return change;
}

int snd_hda_mixer_amp_tlv(struct snd_kcontrol *kcontrol, int op_flag,
                    unsigned int size, unsigned int __user *_tlv)
{
      struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
      hda_nid_t nid = get_amp_nid(kcontrol);
      int dir = get_amp_direction(kcontrol);
      u32 caps, val1, val2;

      if (size < 4 * sizeof(unsigned int))
            return -ENOMEM;
      caps = query_amp_caps(codec, nid, dir);
      val2 = (((caps & AC_AMPCAP_STEP_SIZE) >> AC_AMPCAP_STEP_SIZE_SHIFT) + 1) * 25;
      val1 = -((caps & AC_AMPCAP_OFFSET) >> AC_AMPCAP_OFFSET_SHIFT);
      val1 = ((int)val1) * ((int)val2);
      if (put_user(SNDRV_CTL_TLVT_DB_SCALE, _tlv))
            return -EFAULT;
      if (put_user(2 * sizeof(unsigned int), _tlv + 1))
            return -EFAULT;
      if (put_user(val1, _tlv + 2))
            return -EFAULT;
      if (put_user(val2, _tlv + 3))
            return -EFAULT;
      return 0;
}

/* switch */
int snd_hda_mixer_amp_switch_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo)
{
      int chs = get_amp_channels(kcontrol);

      uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
      uinfo->count = chs == 3 ? 2 : 1;
      uinfo->value.integer.min = 0;
      uinfo->value.integer.max = 1;
      return 0;
}

int snd_hda_mixer_amp_switch_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
{
      struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
      hda_nid_t nid = get_amp_nid(kcontrol);
      int chs = get_amp_channels(kcontrol);
      int dir = get_amp_direction(kcontrol);
      int idx = get_amp_index(kcontrol);
      long *valp = ucontrol->value.integer.value;

      if (chs & 1)
            *valp++ = (snd_hda_codec_amp_read(codec, nid, 0, dir, idx) & 0x80) ? 0 : 1;
      if (chs & 2)
            *valp = (snd_hda_codec_amp_read(codec, nid, 1, dir, idx) & 0x80) ? 0 : 1;
      return 0;
}

int snd_hda_mixer_amp_switch_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
{
      struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
      hda_nid_t nid = get_amp_nid(kcontrol);
      int chs = get_amp_channels(kcontrol);
      int dir = get_amp_direction(kcontrol);
      int idx = get_amp_index(kcontrol);
      long *valp = ucontrol->value.integer.value;
      int change = 0;

      if (chs & 1) {
            change = snd_hda_codec_amp_update(codec, nid, 0, dir, idx,
                                      0x80, *valp ? 0 : 0x80);
            valp++;
      }
      if (chs & 2)
            change |= snd_hda_codec_amp_update(codec, nid, 1, dir, idx,
                                       0x80, *valp ? 0 : 0x80);
      
      return change;
}

/*
 * bound volume controls
 *
 * bind multiple volumes (# indices, from 0)
 */

#define AMP_VAL_IDX_SHIFT     19
#define AMP_VAL_IDX_MASK      (0x0f<<19)

int snd_hda_mixer_bind_switch_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
{
      struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
      unsigned long pval;
      int err;

      mutex_lock(&codec->spdif_mutex); /* reuse spdif_mutex */
      pval = kcontrol->private_value;
      kcontrol->private_value = pval & ~AMP_VAL_IDX_MASK; /* index 0 */
      err = snd_hda_mixer_amp_switch_get(kcontrol, ucontrol);
      kcontrol->private_value = pval;
      mutex_unlock(&codec->spdif_mutex);
      return err;
}

int snd_hda_mixer_bind_switch_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
{
      struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
      unsigned long pval;
      int i, indices, err = 0, change = 0;

      mutex_lock(&codec->spdif_mutex); /* reuse spdif_mutex */
      pval = kcontrol->private_value;
      indices = (pval & AMP_VAL_IDX_MASK) >> AMP_VAL_IDX_SHIFT;
      for (i = 0; i < indices; i++) {
            kcontrol->private_value = (pval & ~AMP_VAL_IDX_MASK) | (i << AMP_VAL_IDX_SHIFT);
            err = snd_hda_mixer_amp_switch_put(kcontrol, ucontrol);
            if (err < 0)
                  break;
            change |= err;
      }
      kcontrol->private_value = pval;
      mutex_unlock(&codec->spdif_mutex);
      return err < 0 ? err : change;
}

/*
 * SPDIF out controls
 */

static int snd_hda_spdif_mask_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo)
{
      uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
      uinfo->count = 1;
      return 0;
}

static int snd_hda_spdif_cmask_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
{
      ucontrol->value.iec958.status[0] = IEC958_AES0_PROFESSIONAL |
                                 IEC958_AES0_NONAUDIO |
                                 IEC958_AES0_CON_EMPHASIS_5015 |
                                 IEC958_AES0_CON_NOT_COPYRIGHT;
      ucontrol->value.iec958.status[1] = IEC958_AES1_CON_CATEGORY |
                                 IEC958_AES1_CON_ORIGINAL;
      return 0;
}

static int snd_hda_spdif_pmask_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
{
      ucontrol->value.iec958.status[0] = IEC958_AES0_PROFESSIONAL |
                                 IEC958_AES0_NONAUDIO |
                                 IEC958_AES0_PRO_EMPHASIS_5015;
      return 0;
}

static int snd_hda_spdif_default_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
{
      struct hda_codec *codec = snd_kcontrol_chip(kcontrol);

      ucontrol->value.iec958.status[0] = codec->spdif_status & 0xff;
      ucontrol->value.iec958.status[1] = (codec->spdif_status >> 8) & 0xff;
      ucontrol->value.iec958.status[2] = (codec->spdif_status >> 16) & 0xff;
      ucontrol->value.iec958.status[3] = (codec->spdif_status >> 24) & 0xff;

      return 0;
}

/* convert from SPDIF status bits to HDA SPDIF bits
 * bit 0 (DigEn) is always set zero (to be filled later)
 */
static unsigned short convert_from_spdif_status(unsigned int sbits)
{
      unsigned short val = 0;

      if (sbits & IEC958_AES0_PROFESSIONAL)
            val |= 1 << 6;
      if (sbits & IEC958_AES0_NONAUDIO)
            val |= 1 << 5;
      if (sbits & IEC958_AES0_PROFESSIONAL) {
            if ((sbits & IEC958_AES0_PRO_EMPHASIS) == IEC958_AES0_PRO_EMPHASIS_5015)
                  val |= 1 << 3;
      } else {
            if ((sbits & IEC958_AES0_CON_EMPHASIS) == IEC958_AES0_CON_EMPHASIS_5015)
                  val |= 1 << 3;
            if (! (sbits & IEC958_AES0_CON_NOT_COPYRIGHT))
                  val |= 1 << 4;
            if (sbits & (IEC958_AES1_CON_ORIGINAL << 8))
                  val |= 1 << 7;
            val |= sbits & (IEC958_AES1_CON_CATEGORY << 8);
      }
      return val;
}

/* convert to SPDIF status bits from HDA SPDIF bits
 */
static unsigned int convert_to_spdif_status(unsigned short val)
{
      unsigned int sbits = 0;

      if (val & (1 << 5))
            sbits |= IEC958_AES0_NONAUDIO;
      if (val & (1 << 6))
            sbits |= IEC958_AES0_PROFESSIONAL;
      if (sbits & IEC958_AES0_PROFESSIONAL) {
            if (sbits & (1 << 3))
                  sbits |= IEC958_AES0_PRO_EMPHASIS_5015;
      } else {
            if (val & (1 << 3))
                  sbits |= IEC958_AES0_CON_EMPHASIS_5015;
            if (! (val & (1 << 4)))
                  sbits |= IEC958_AES0_CON_NOT_COPYRIGHT;
            if (val & (1 << 7))
                  sbits |= (IEC958_AES1_CON_ORIGINAL << 8);
            sbits |= val & (0x7f << 8);
      }
      return sbits;
}

static int snd_hda_spdif_default_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
{
      struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
      hda_nid_t nid = kcontrol->private_value;
      unsigned short val;
      int change;

      mutex_lock(&codec->spdif_mutex);
      codec->spdif_status = ucontrol->value.iec958.status[0] |
            ((unsigned int)ucontrol->value.iec958.status[1] << 8) |
            ((unsigned int)ucontrol->value.iec958.status[2] << 16) |
            ((unsigned int)ucontrol->value.iec958.status[3] << 24);
      val = convert_from_spdif_status(codec->spdif_status);
      val |= codec->spdif_ctls & 1;
      change = codec->spdif_ctls != val;
      codec->spdif_ctls = val;

      if (change || codec->in_resume) {
            snd_hda_codec_write(codec, nid, 0, AC_VERB_SET_DIGI_CONVERT_1, val & 0xff);
            snd_hda_codec_write(codec, nid, 0, AC_VERB_SET_DIGI_CONVERT_2, val >> 8);
      }

      mutex_unlock(&codec->spdif_mutex);
      return change;
}

static int snd_hda_spdif_out_switch_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo)
{
      uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
      uinfo->count = 1;
      uinfo->value.integer.min = 0;
      uinfo->value.integer.max = 1;
      return 0;
}

static int snd_hda_spdif_out_switch_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
{
      struct hda_codec *codec = snd_kcontrol_chip(kcontrol);

      ucontrol->value.integer.value[0] = codec->spdif_ctls & 1;
      return 0;
}

static int snd_hda_spdif_out_switch_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
{
      struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
      hda_nid_t nid = kcontrol->private_value;
      unsigned short val;
      int change;

      mutex_lock(&codec->spdif_mutex);
      val = codec->spdif_ctls & ~1;
      if (ucontrol->value.integer.value[0])
            val |= 1;
      change = codec->spdif_ctls != val;
      if (change || codec->in_resume) {
            codec->spdif_ctls = val;
            snd_hda_codec_write(codec, nid, 0, AC_VERB_SET_DIGI_CONVERT_1, val & 0xff);
            snd_hda_codec_write(codec, nid, 0, AC_VERB_SET_AMP_GAIN_MUTE,
                            AC_AMP_SET_RIGHT | AC_AMP_SET_LEFT |
                            AC_AMP_SET_OUTPUT | ((val & 1) ? 0 : 0x80));
      }
      mutex_unlock(&codec->spdif_mutex);
      return change;
}

static struct snd_kcontrol_new dig_mixes[] = {
      {
            .access = SNDRV_CTL_ELEM_ACCESS_READ,
            .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
            .name = SNDRV_CTL_NAME_IEC958("",PLAYBACK,CON_MASK),
            .info = snd_hda_spdif_mask_info,
            .get = snd_hda_spdif_cmask_get,
      },
      {
            .access = SNDRV_CTL_ELEM_ACCESS_READ,
            .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
            .name = SNDRV_CTL_NAME_IEC958("",PLAYBACK,PRO_MASK),
            .info = snd_hda_spdif_mask_info,
            .get = snd_hda_spdif_pmask_get,
      },
      {
            .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
            .name = SNDRV_CTL_NAME_IEC958("",PLAYBACK,DEFAULT),
            .info = snd_hda_spdif_mask_info,
            .get = snd_hda_spdif_default_get,
            .put = snd_hda_spdif_default_put,
      },
      {
            .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
            .name = SNDRV_CTL_NAME_IEC958("",PLAYBACK,SWITCH),
            .info = snd_hda_spdif_out_switch_info,
            .get = snd_hda_spdif_out_switch_get,
            .put = snd_hda_spdif_out_switch_put,
      },
      { } /* end */
};

/**
 * snd_hda_create_spdif_out_ctls - create Output SPDIF-related controls
 * @codec: the HDA codec
 * @nid: audio out widget NID
 *
 * Creates controls related with the SPDIF output.
 * Called from each patch supporting the SPDIF out.
 *
 * Returns 0 if successful, or a negative error code.
 */
int snd_hda_create_spdif_out_ctls(struct hda_codec *codec, hda_nid_t nid)
{
      int err;
      struct snd_kcontrol *kctl;
      struct snd_kcontrol_new *dig_mix;

      for (dig_mix = dig_mixes; dig_mix->name; dig_mix++) {
            kctl = snd_ctl_new1(dig_mix, codec);
            kctl->private_value = nid;
            if ((err = snd_ctl_add(codec->bus->card, kctl)) < 0)
                  return err;
      }
      codec->spdif_ctls = snd_hda_codec_read(codec, nid, 0, AC_VERB_GET_DIGI_CONVERT, 0);
      codec->spdif_status = convert_to_spdif_status(codec->spdif_ctls);
      return 0;
}

/*
 * SPDIF input
 */

#define snd_hda_spdif_in_switch_info      snd_hda_spdif_out_switch_info

static int snd_hda_spdif_in_switch_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
{
      struct hda_codec *codec = snd_kcontrol_chip(kcontrol);

      ucontrol->value.integer.value[0] = codec->spdif_in_enable;
      return 0;
}

static int snd_hda_spdif_in_switch_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
{
      struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
      hda_nid_t nid = kcontrol->private_value;
      unsigned int val = !!ucontrol->value.integer.value[0];
      int change;

      mutex_lock(&codec->spdif_mutex);
      change = codec->spdif_in_enable != val;
      if (change || codec->in_resume) {
            codec->spdif_in_enable = val;
            snd_hda_codec_write(codec, nid, 0, AC_VERB_SET_DIGI_CONVERT_1, val);
      }
      mutex_unlock(&codec->spdif_mutex);
      return change;
}

static int snd_hda_spdif_in_status_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
{
      struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
      hda_nid_t nid = kcontrol->private_value;
      unsigned short val;
      unsigned int sbits;

      val = snd_hda_codec_read(codec, nid, 0, AC_VERB_GET_DIGI_CONVERT, 0);
      sbits = convert_to_spdif_status(val);
      ucontrol->value.iec958.status[0] = sbits;
      ucontrol->value.iec958.status[1] = sbits >> 8;
      ucontrol->value.iec958.status[2] = sbits >> 16;
      ucontrol->value.iec958.status[3] = sbits >> 24;
      return 0;
}

static struct snd_kcontrol_new dig_in_ctls[] = {
      {
            .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
            .name = SNDRV_CTL_NAME_IEC958("",CAPTURE,SWITCH),
            .info = snd_hda_spdif_in_switch_info,
            .get = snd_hda_spdif_in_switch_get,
            .put = snd_hda_spdif_in_switch_put,
      },
      {
            .access = SNDRV_CTL_ELEM_ACCESS_READ,
            .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
            .name = SNDRV_CTL_NAME_IEC958("",CAPTURE,DEFAULT),
            .info = snd_hda_spdif_mask_info,
            .get = snd_hda_spdif_in_status_get,
      },
      { } /* end */
};

/**
 * snd_hda_create_spdif_in_ctls - create Input SPDIF-related controls
 * @codec: the HDA codec
 * @nid: audio in widget NID
 *
 * Creates controls related with the SPDIF input.
 * Called from each patch supporting the SPDIF in.
 *
 * Returns 0 if successful, or a negative error code.
 */
int snd_hda_create_spdif_in_ctls(struct hda_codec *codec, hda_nid_t nid)
{
      int err;
      struct snd_kcontrol *kctl;
      struct snd_kcontrol_new *dig_mix;

      for (dig_mix = dig_in_ctls; dig_mix->name; dig_mix++) {
            kctl = snd_ctl_new1(dig_mix, codec);
            kctl->private_value = nid;
            if ((err = snd_ctl_add(codec->bus->card, kctl)) < 0)
                  return err;
      }
      codec->spdif_in_enable = snd_hda_codec_read(codec, nid, 0, AC_VERB_GET_DIGI_CONVERT, 0) & 1;
      return 0;
}


/*
 * set power state of the codec
 */
static void hda_set_power_state(struct hda_codec *codec, hda_nid_t fg,
                        unsigned int power_state)
{
      hda_nid_t nid, nid_start;
      int nodes;

      snd_hda_codec_write(codec, fg, 0, AC_VERB_SET_POWER_STATE,
                      power_state);

      nodes = snd_hda_get_sub_nodes(codec, fg, &nid_start);
      for (nid = nid_start; nid < nodes + nid_start; nid++) {
            if (get_wcaps(codec, nid) & AC_WCAP_POWER)
                  snd_hda_codec_write(codec, nid, 0,
                                  AC_VERB_SET_POWER_STATE,
                                  power_state);
      }

      if (power_state == AC_PWRST_D0)
            msleep(10);
}


/**
 * snd_hda_build_controls - build mixer controls
 * @bus: the BUS
 *
 * Creates mixer controls for each codec included in the bus.
 *
 * Returns 0 if successful, otherwise a negative error code.
 */
int snd_hda_build_controls(struct hda_bus *bus)
{
      struct list_head *p;

      /* build controls */
      list_for_each(p, &bus->codec_list) {
            struct hda_codec *codec = list_entry(p, struct hda_codec, list);
            int err;
            if (! codec->patch_ops.build_controls)
                  continue;
            err = codec->patch_ops.build_controls(codec);
            if (err < 0)
                  return err;
      }

      /* initialize */
      list_for_each(p, &bus->codec_list) {
            struct hda_codec *codec = list_entry(p, struct hda_codec, list);
            int err;
            hda_set_power_state(codec,
                            codec->afg ? codec->afg : codec->mfg,
                            AC_PWRST_D0);
            if (! codec->patch_ops.init)
                  continue;
            err = codec->patch_ops.init(codec);
            if (err < 0)
                  return err;
      }
      return 0;
}

EXPORT_SYMBOL(snd_hda_build_controls);

/*
 * stream formats
 */
struct hda_rate_tbl {
      unsigned int hz;
      unsigned int alsa_bits;
      unsigned int hda_fmt;
};

static struct hda_rate_tbl rate_bits[] = {
      /* rate in Hz, ALSA rate bitmask, HDA format value */

      /* autodetected value used in snd_hda_query_supported_pcm */
      { 8000, SNDRV_PCM_RATE_8000, 0x0500 }, /* 1/6 x 48 */
      { 11025, SNDRV_PCM_RATE_11025, 0x4300 }, /* 1/4 x 44 */
      { 16000, SNDRV_PCM_RATE_16000, 0x0200 }, /* 1/3 x 48 */
      { 22050, SNDRV_PCM_RATE_22050, 0x4100 }, /* 1/2 x 44 */
      { 32000, SNDRV_PCM_RATE_32000, 0x0a00 }, /* 2/3 x 48 */
      { 44100, SNDRV_PCM_RATE_44100, 0x4000 }, /* 44 */
      { 48000, SNDRV_PCM_RATE_48000, 0x0000 }, /* 48 */
      { 88200, SNDRV_PCM_RATE_88200, 0x4800 }, /* 2 x 44 */
      { 96000, SNDRV_PCM_RATE_96000, 0x0800 }, /* 2 x 48 */
      { 176400, SNDRV_PCM_RATE_176400, 0x5800 },/* 4 x 44 */
      { 192000, SNDRV_PCM_RATE_192000, 0x1800 }, /* 4 x 48 */

      /* not autodetected value */
      { 9600, SNDRV_PCM_RATE_KNOT, 0x0400 }, /* 1/5 x 48 */

      { 0 } /* terminator */
};

/**
 * snd_hda_calc_stream_format - calculate format bitset
 * @rate: the sample rate
 * @channels: the number of channels
 * @format: the PCM format (SNDRV_PCM_FORMAT_XXX)
 * @maxbps: the max. bps
 *
 * Calculate the format bitset from the given rate, channels and th PCM format.
 *
 * Return zero if invalid.
 */
unsigned int snd_hda_calc_stream_format(unsigned int rate,
                              unsigned int channels,
                              unsigned int format,
                              unsigned int maxbps)
{
      int i;
      unsigned int val = 0;

      for (i = 0; rate_bits[i].hz; i++)
            if (rate_bits[i].hz == rate) {
                  val = rate_bits[i].hda_fmt;
                  break;
            }
      if (! rate_bits[i].hz) {
            snd_printdd("invalid rate %d\n", rate);
            return 0;
      }

      if (channels == 0 || channels > 8) {
            snd_printdd("invalid channels %d\n", channels);
            return 0;
      }
      val |= channels - 1;

      switch (snd_pcm_format_width(format)) {
      case 8:  val |= 0x00; break;
      case 16: val |= 0x10; break;
      case 20:
      case 24:
      case 32:
            if (maxbps >= 32)
                  val |= 0x40;
            else if (maxbps >= 24)
                  val |= 0x30;
            else
                  val |= 0x20;
            break;
      default:
            snd_printdd("invalid format width %d\n", snd_pcm_format_width(format));
            return 0;
      }

      return val;
}

EXPORT_SYMBOL(snd_hda_calc_stream_format);

/**
 * snd_hda_query_supported_pcm - query the supported PCM rates and formats
 * @codec: the HDA codec
 * @nid: NID to query
 * @ratesp: the pointer to store the detected rate bitflags
 * @formatsp: the pointer to store the detected formats
 * @bpsp: the pointer to store the detected format widths
 *
 * Queries the supported PCM rates and formats.  The NULL @ratesp, @formatsp
 * or @bsps argument is ignored.
 *
 * Returns 0 if successful, otherwise a negative error code.
 */
int snd_hda_query_supported_pcm(struct hda_codec *codec, hda_nid_t nid,
                        u32 *ratesp, u64 *formatsp, unsigned int *bpsp)
{
      int i;
      unsigned int val, streams;

      val = 0;
      if (nid != codec->afg &&
          (get_wcaps(codec, nid) & AC_WCAP_FORMAT_OVRD)) {
            val = snd_hda_param_read(codec, nid, AC_PAR_PCM);
            if (val == -1)
                  return -EIO;
      }
      if (! val)
            val = snd_hda_param_read(codec, codec->afg, AC_PAR_PCM);

      if (ratesp) {
            u32 rates = 0;
            for (i = 0; rate_bits[i].hz; i++) {
                  if (val & (1 << i))
                        rates |= rate_bits[i].alsa_bits;
            }
            *ratesp = rates;
      }

      if (formatsp || bpsp) {
            u64 formats = 0;
            unsigned int bps;
            unsigned int wcaps;

            wcaps = get_wcaps(codec, nid);
            streams = snd_hda_param_read(codec, nid, AC_PAR_STREAM);
            if (streams == -1)
                  return -EIO;
            if (! streams) {
                  streams = snd_hda_param_read(codec, codec->afg, AC_PAR_STREAM);
                  if (streams == -1)
                        return -EIO;
            }

            bps = 0;
            if (streams & AC_SUPFMT_PCM) {
                  if (val & AC_SUPPCM_BITS_8) {
                        formats |= SNDRV_PCM_FMTBIT_U8;
                        bps = 8;
                  }
                  if (val & AC_SUPPCM_BITS_16) {
                        formats |= SNDRV_PCM_FMTBIT_S16_LE;
                        bps = 16;
                  }
                  if (wcaps & AC_WCAP_DIGITAL) {
                        if (val & AC_SUPPCM_BITS_32)
                              formats |= SNDRV_PCM_FMTBIT_IEC958_SUBFRAME_LE;
                        if (val & (AC_SUPPCM_BITS_20|AC_SUPPCM_BITS_24))
                              formats |= SNDRV_PCM_FMTBIT_S32_LE;
                        if (val & AC_SUPPCM_BITS_24)
                              bps = 24;
                        else if (val & AC_SUPPCM_BITS_20)
                              bps = 20;
                  } else if (val & (AC_SUPPCM_BITS_20|AC_SUPPCM_BITS_24|AC_SUPPCM_BITS_32)) {
                        formats |= SNDRV_PCM_FMTBIT_S32_LE;
                        if (val & AC_SUPPCM_BITS_32)
                              bps = 32;
                        else if (val & AC_SUPPCM_BITS_24)
                              bps = 24;
                        else if (val & AC_SUPPCM_BITS_20)
                              bps = 20;
                  }
            }
            else if (streams == AC_SUPFMT_FLOAT32) { /* should be exclusive */
                  formats |= SNDRV_PCM_FMTBIT_FLOAT_LE;
                  bps = 32;
            } else if (streams == AC_SUPFMT_AC3) { /* should be exclusive */
                  /* temporary hack: we have still no proper support
                   * for the direct AC3 stream...
                   */
                  formats |= SNDRV_PCM_FMTBIT_U8;
                  bps = 8;
            }
            if (formatsp)
                  *formatsp = formats;
            if (bpsp)
                  *bpsp = bps;
      }

      return 0;
}

/**
 * snd_hda_is_supported_format - check whether the given node supports the format val
 *
 * Returns 1 if supported, 0 if not.
 */
int snd_hda_is_supported_format(struct hda_codec *codec, hda_nid_t nid,
                        unsigned int format)
{
      int i;
      unsigned int val = 0, rate, stream;

      if (nid != codec->afg &&
          (get_wcaps(codec, nid) & AC_WCAP_FORMAT_OVRD)) {
            val = snd_hda_param_read(codec, nid, AC_PAR_PCM);
            if (val == -1)
                  return 0;
      }
      if (! val) {
            val = snd_hda_param_read(codec, codec->afg, AC_PAR_PCM);
            if (val == -1)
                  return 0;
      }

      rate = format & 0xff00;
      for (i = 0; rate_bits[i].hz; i++)
            if (rate_bits[i].hda_fmt == rate) {
                  if (val & (1 << i))
                        break;
                  return 0;
            }
      if (! rate_bits[i].hz)
            return 0;

      stream = snd_hda_param_read(codec, nid, AC_PAR_STREAM);
      if (stream == -1)
            return 0;
      if (! stream && nid != codec->afg)
            stream = snd_hda_param_read(codec, codec->afg, AC_PAR_STREAM);
      if (! stream || stream == -1)
            return 0;

      if (stream & AC_SUPFMT_PCM) {
            switch (format & 0xf0) {
            case 0x00:
                  if (! (val & AC_SUPPCM_BITS_8))
                        return 0;
                  break;
            case 0x10:
                  if (! (val & AC_SUPPCM_BITS_16))
                        return 0;
                  break;
            case 0x20:
                  if (! (val & AC_SUPPCM_BITS_20))
                        return 0;
                  break;
            case 0x30:
                  if (! (val & AC_SUPPCM_BITS_24))
                        return 0;
                  break;
            case 0x40:
                  if (! (val & AC_SUPPCM_BITS_32))
                        return 0;
                  break;
            default:
                  return 0;
            }
      } else {
            /* FIXME: check for float32 and AC3? */
      }

      return 1;
}

/*
 * PCM stuff
 */
static int hda_pcm_default_open_close(struct hda_pcm_stream *hinfo,
                              struct hda_codec *codec,
                              struct snd_pcm_substream *substream)
{
      return 0;
}

static int hda_pcm_default_prepare(struct hda_pcm_stream *hinfo,
                           struct hda_codec *codec,
                           unsigned int stream_tag,
                           unsigned int format,
                           struct snd_pcm_substream *substream)
{
      snd_hda_codec_setup_stream(codec, hinfo->nid, stream_tag, 0, format);
      return 0;
}

static int hda_pcm_default_cleanup(struct hda_pcm_stream *hinfo,
                           struct hda_codec *codec,
                           struct snd_pcm_substream *substream)
{
      snd_hda_codec_setup_stream(codec, hinfo->nid, 0, 0, 0);
      return 0;
}

static int set_pcm_default_values(struct hda_codec *codec, struct hda_pcm_stream *info)
{
      if (info->nid) {
            /* query support PCM information from the given NID */
            if (! info->rates || ! info->formats)
                  snd_hda_query_supported_pcm(codec, info->nid,
                                        info->rates ? NULL : &info->rates,
                                        info->formats ? NULL : &info->formats,
                                        info->maxbps ? NULL : &info->maxbps);
      }
      if (info->ops.open == NULL)
            info->ops.open = hda_pcm_default_open_close;
      if (info->ops.close == NULL)
            info->ops.close = hda_pcm_default_open_close;
      if (info->ops.prepare == NULL) {
            snd_assert(info->nid, return -EINVAL);
            info->ops.prepare = hda_pcm_default_prepare;
      }
      if (info->ops.cleanup == NULL) {
            snd_assert(info->nid, return -EINVAL);
            info->ops.cleanup = hda_pcm_default_cleanup;
      }
      return 0;
}

/**
 * snd_hda_build_pcms - build PCM information
 * @bus: the BUS
 *
 * Create PCM information for each codec included in the bus.
 *
 * The build_pcms codec patch is requested to set up codec->num_pcms and
 * codec->pcm_info properly.  The array is referred by the top-level driver
 * to create its PCM instances.
 * The allocated codec->pcm_info should be released in codec->patch_ops.free
 * callback.
 *
 * At least, substreams, channels_min and channels_max must be filled for
 * each stream.  substreams = 0 indicates that the stream doesn't exist.
 * When rates and/or formats are zero, the supported values are queried
 * from the given nid.  The nid is used also by the default ops.prepare
 * and ops.cleanup callbacks.
 *
 * The driver needs to call ops.open in its open callback.  Similarly,
 * ops.close is supposed to be called in the close callback.
 * ops.prepare should be called in the prepare or hw_params callback
 * with the proper parameters for set up.
 * ops.cleanup should be called in hw_free for clean up of streams.
 *
 * This function returns 0 if successfull, or a negative error code.
 */
int snd_hda_build_pcms(struct hda_bus *bus)
{
      struct list_head *p;

      list_for_each(p, &bus->codec_list) {
            struct hda_codec *codec = list_entry(p, struct hda_codec, list);
            unsigned int pcm, s;
            int err;
            if (! codec->patch_ops.build_pcms)
                  continue;
            err = codec->patch_ops.build_pcms(codec);
            if (err < 0)
                  return err;
            for (pcm = 0; pcm < codec->num_pcms; pcm++) {
                  for (s = 0; s < 2; s++) {
                        struct hda_pcm_stream *info;
                        info = &codec->pcm_info[pcm].stream[s];
                        if (! info->substreams)
                              continue;
                        err = set_pcm_default_values(codec, info);
                        if (err < 0)
                              return err;
                  }
            }
      }
      return 0;
}

EXPORT_SYMBOL(snd_hda_build_pcms);

/**
 * snd_hda_check_board_config - compare the current codec with the config table
 * @codec: the HDA codec
 * @tbl: configuration table, terminated by null entries
 *
 * Compares the modelname or PCI subsystem id of the current codec with the
 * given configuration table.  If a matching entry is found, returns its
 * config value (supposed to be 0 or positive).
 *
 * If no entries are matching, the function returns a negative value.
 */
int snd_hda_check_board_config(struct hda_codec *codec, const struct hda_board_config *tbl)
{
      const struct hda_board_config *c;

      if (codec->bus->modelname) {
            for (c = tbl; c->modelname || c->pci_subvendor; c++) {
                  if (c->modelname &&
                      ! strcmp(codec->bus->modelname, c->modelname)) {
                        snd_printd(KERN_INFO "hda_codec: model '%s' is selected\n", c->modelname);
                        return c->config;
                  }
            }
      }

      if (codec->bus->pci) {
            u16 subsystem_vendor, subsystem_device;
            pci_read_config_word(codec->bus->pci, PCI_SUBSYSTEM_VENDOR_ID, &subsystem_vendor);
            pci_read_config_word(codec->bus->pci, PCI_SUBSYSTEM_ID, &subsystem_device);
            for (c = tbl; c->modelname || c->pci_subvendor; c++) {
                  if (c->pci_subvendor == subsystem_vendor &&
                      (! c->pci_subdevice /* all match */||
                       (c->pci_subdevice == subsystem_device))) {
                        snd_printdd(KERN_INFO "hda_codec: PCI %x:%x, codec config %d is selected\n",
                                  subsystem_vendor, subsystem_device, c->config);
                        return c->config;
                  }
            }
      }
      return -1;
}

/**
 * snd_hda_add_new_ctls - create controls from the array
 * @codec: the HDA codec
 * @knew: the array of struct snd_kcontrol_new
 *
 * This helper function creates and add new controls in the given array.
 * The array must be terminated with an empty entry as terminator.
 *
 * Returns 0 if successful, or a negative error code.
 */
int snd_hda_add_new_ctls(struct hda_codec *codec, struct snd_kcontrol_new *knew)
{
      int err;

      for (; knew->name; knew++) {
            struct snd_kcontrol *kctl;
            kctl = snd_ctl_new1(knew, codec);
            if (! kctl)
                  return -ENOMEM;
            err = snd_ctl_add(codec->bus->card, kctl);
            if (err < 0) {
                  if (! codec->addr)
                        return err;
                  kctl = snd_ctl_new1(knew, codec);
                  if (! kctl)
                        return -ENOMEM;
                  kctl->id.device = codec->addr;
                  if ((err = snd_ctl_add(codec->bus->card, kctl)) < 0)
                        return err;
            }
      }
      return 0;
}


/*
 * Channel mode helper
 */
int snd_hda_ch_mode_info(struct hda_codec *codec, struct snd_ctl_elem_info *uinfo,
                   const struct hda_channel_mode *chmode, int num_chmodes)
{
      uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
      uinfo->count = 1;
      uinfo->value.enumerated.items = num_chmodes;
      if (uinfo->value.enumerated.item >= num_chmodes)
            uinfo->value.enumerated.item = num_chmodes - 1;
      sprintf(uinfo->value.enumerated.name, "%dch",
            chmode[uinfo->value.enumerated.item].channels);
      return 0;
}

int snd_hda_ch_mode_get(struct hda_codec *codec, struct snd_ctl_elem_value *ucontrol,
                  const struct hda_channel_mode *chmode, int num_chmodes,
                  int max_channels)
{
      int i;

      for (i = 0; i < num_chmodes; i++) {
            if (max_channels == chmode[i].channels) {
                  ucontrol->value.enumerated.item[0] = i;
                  break;
            }
      }
      return 0;
}

int snd_hda_ch_mode_put(struct hda_codec *codec, struct snd_ctl_elem_value *ucontrol,
                  const struct hda_channel_mode *chmode, int num_chmodes,
                  int *max_channelsp)
{
      unsigned int mode;

      mode = ucontrol->value.enumerated.item[0];
      snd_assert(mode < num_chmodes, return -EINVAL);
      if (*max_channelsp == chmode[mode].channels && ! codec->in_resume)
            return 0;
      /* change the current channel setting */
      *max_channelsp = chmode[mode].channels;
      if (chmode[mode].sequence)
            snd_hda_sequence_write(codec, chmode[mode].sequence);
      return 1;
}

/*
 * input MUX helper
 */
int snd_hda_input_mux_info(const struct hda_input_mux *imux, struct snd_ctl_elem_info *uinfo)
{
      unsigned int index;

      uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
      uinfo->count = 1;
      uinfo->value.enumerated.items = imux->num_items;
      index = uinfo->value.enumerated.item;
      if (index >= imux->num_items)
            index = imux->num_items - 1;
      strcpy(uinfo->value.enumerated.name, imux->items[index].label);
      return 0;
}

int snd_hda_input_mux_put(struct hda_codec *codec, const struct hda_input_mux *imux,
                    struct snd_ctl_elem_value *ucontrol, hda_nid_t nid,
                    unsigned int *cur_val)
{
      unsigned int idx;

      idx = ucontrol->value.enumerated.item[0];
      if (idx >= imux->num_items)
            idx = imux->num_items - 1;
      if (*cur_val == idx && ! codec->in_resume)
            return 0;
      snd_hda_codec_write(codec, nid, 0, AC_VERB_SET_CONNECT_SEL,
                      imux->items[idx].index);
      *cur_val = idx;
      return 1;
}


/*
 * Multi-channel / digital-out PCM helper functions
 */

/*
 * open the digital out in the exclusive mode
 */
int snd_hda_multi_out_dig_open(struct hda_codec *codec, struct hda_multi_out *mout)
{
      mutex_lock(&codec->spdif_mutex);
      if (mout->dig_out_used) {
            mutex_unlock(&codec->spdif_mutex);
            return -EBUSY; /* already being used */
      }
      mout->dig_out_used = HDA_DIG_EXCLUSIVE;
      mutex_unlock(&codec->spdif_mutex);
      return 0;
}

/*
 * release the digital out
 */
int snd_hda_multi_out_dig_close(struct hda_codec *codec, struct hda_multi_out *mout)
{
      mutex_lock(&codec->spdif_mutex);
      mout->dig_out_used = 0;
      mutex_unlock(&codec->spdif_mutex);
      return 0;
}

/*
 * set up more restrictions for analog out
 */
int snd_hda_multi_out_analog_open(struct hda_codec *codec, struct hda_multi_out *mout,
                          struct snd_pcm_substream *substream)
{
      substream->runtime->hw.channels_max = mout->max_channels;
      return snd_pcm_hw_constraint_step(substream->runtime, 0,
                                SNDRV_PCM_HW_PARAM_CHANNELS, 2);
}

/*
 * set up the i/o for analog out
 * when the digital out is available, copy the front out to digital out, too.
 */
int snd_hda_multi_out_analog_prepare(struct hda_codec *codec, struct hda_multi_out *mout,
                             unsigned int stream_tag,
                             unsigned int format,
                             struct snd_pcm_substream *substream)
{
      hda_nid_t *nids = mout->dac_nids;
      int chs = substream->runtime->channels;
      int i;

      mutex_lock(&codec->spdif_mutex);
      if (mout->dig_out_nid && mout->dig_out_used != HDA_DIG_EXCLUSIVE) {
            if (chs == 2 &&
                snd_hda_is_supported_format(codec, mout->dig_out_nid, format) &&
                ! (codec->spdif_status & IEC958_AES0_NONAUDIO)) {
                  mout->dig_out_used = HDA_DIG_ANALOG_DUP;
                  /* setup digital receiver */
                  snd_hda_codec_setup_stream(codec, mout->dig_out_nid,
                                       stream_tag, 0, format);
            } else {
                  mout->dig_out_used = 0;
                  snd_hda_codec_setup_stream(codec, mout->dig_out_nid, 0, 0, 0);
            }
      }
      mutex_unlock(&codec->spdif_mutex);

      /* front */
      snd_hda_codec_setup_stream(codec, nids[HDA_FRONT], stream_tag, 0, format);
      if (mout->hp_nid && mout->hp_nid != nids[HDA_FRONT])
            /* headphone out will just decode front left/right (stereo) */
            snd_hda_codec_setup_stream(codec, mout->hp_nid, stream_tag, 0, format);
      /* extra outputs copied from front */
      for (i = 0; i < ARRAY_SIZE(mout->extra_out_nid); i++)
            if (mout->extra_out_nid[i])
                  snd_hda_codec_setup_stream(codec,
                                       mout->extra_out_nid[i],
                                       stream_tag, 0, format);

      /* surrounds */
      for (i = 1; i < mout->num_dacs; i++) {
            if (chs >= (i + 1) * 2) /* independent out */
                  snd_hda_codec_setup_stream(codec, nids[i], stream_tag, i * 2,
                                       format);
            else /* copy front */
                  snd_hda_codec_setup_stream(codec, nids[i], stream_tag, 0,
                                       format);
      }
      return 0;
}

/*
 * clean up the setting for analog out
 */
int snd_hda_multi_out_analog_cleanup(struct hda_codec *codec, struct hda_multi_out *mout)
{
      hda_nid_t *nids = mout->dac_nids;
      int i;

      for (i = 0; i < mout->num_dacs; i++)
            snd_hda_codec_setup_stream(codec, nids[i], 0, 0, 0);
      if (mout->hp_nid)
            snd_hda_codec_setup_stream(codec, mout->hp_nid, 0, 0, 0);
      for (i = 0; i < ARRAY_SIZE(mout->extra_out_nid); i++)
            if (mout->extra_out_nid[i])
                  snd_hda_codec_setup_stream(codec,
                                       mout->extra_out_nid[i],
                                       0, 0, 0);
      mutex_lock(&codec->spdif_mutex);
      if (mout->dig_out_nid && mout->dig_out_used == HDA_DIG_ANALOG_DUP) {
            snd_hda_codec_setup_stream(codec, mout->dig_out_nid, 0, 0, 0);
            mout->dig_out_used = 0;
      }
      mutex_unlock(&codec->spdif_mutex);
      return 0;
}

/*
 * Helper for automatic ping configuration
 */

static int is_in_nid_list(hda_nid_t nid, hda_nid_t *list)
{
      for (; *list; list++)
            if (*list == nid)
                  return 1;
      return 0;
}

/*
 * Parse all pin widgets and store the useful pin nids to cfg
 *
 * The number of line-outs or any primary output is stored in line_outs,
 * and the corresponding output pins are assigned to line_out_pins[],
 * in the order of front, rear, CLFE, side, ...
 *
 * If more extra outputs (speaker and headphone) are found, the pins are
 * assisnged to hp_pins[] and speaker_pins[], respectively.  If no line-out jack
 * is detected, one of speaker of HP pins is assigned as the primary
 * output, i.e. to line_out_pins[0].  So, line_outs is always positive
 * if any analog output exists.
 * 
 * The analog input pins are assigned to input_pins array.
 * The digital input/output pins are assigned to dig_in_pin and dig_out_pin,
 * respectively.
 */
int snd_hda_parse_pin_def_config(struct hda_codec *codec, struct auto_pin_cfg *cfg,
                         hda_nid_t *ignore_nids)
{
      hda_nid_t nid, nid_start;
      int i, j, nodes;
      short seq, assoc_line_out, sequences[ARRAY_SIZE(cfg->line_out_pins)];

      memset(cfg, 0, sizeof(*cfg));

      memset(sequences, 0, sizeof(sequences));
      assoc_line_out = 0;

      nodes = snd_hda_get_sub_nodes(codec, codec->afg, &nid_start);
      for (nid = nid_start; nid < nodes + nid_start; nid++) {
            unsigned int wid_caps = get_wcaps(codec, nid);
            unsigned int wid_type = (wid_caps & AC_WCAP_TYPE) >> AC_WCAP_TYPE_SHIFT;
            unsigned int def_conf;
            short assoc, loc;

            /* read all default configuration for pin complex */
            if (wid_type != AC_WID_PIN)
                  continue;
            /* ignore the given nids (e.g. pc-beep returns error) */
            if (ignore_nids && is_in_nid_list(nid, ignore_nids))
                  continue;

            def_conf = snd_hda_codec_read(codec, nid, 0, AC_VERB_GET_CONFIG_DEFAULT, 0);
            if (get_defcfg_connect(def_conf) == AC_JACK_PORT_NONE)
                  continue;
            loc = get_defcfg_location(def_conf);
            switch (get_defcfg_device(def_conf)) {
            case AC_JACK_LINE_OUT:
                  seq = get_defcfg_sequence(def_conf);
                  assoc = get_defcfg_association(def_conf);
                  if (! assoc)
                        continue;
                  if (! assoc_line_out)
                        assoc_line_out = assoc;
                  else if (assoc_line_out != assoc)
                        continue;
                  if (cfg->line_outs >= ARRAY_SIZE(cfg->line_out_pins))
                        continue;
                  cfg->line_out_pins[cfg->line_outs] = nid;
                  sequences[cfg->line_outs] = seq;
                  cfg->line_outs++;
                  break;
            case AC_JACK_SPEAKER:
                  if (cfg->speaker_outs >= ARRAY_SIZE(cfg->speaker_pins))
                        continue;
                  cfg->speaker_pins[cfg->speaker_outs] = nid;
                  cfg->speaker_outs++;
                  break;
            case AC_JACK_HP_OUT:
                  if (cfg->hp_outs >= ARRAY_SIZE(cfg->hp_pins))
                        continue;
                  cfg->hp_pins[cfg->hp_outs] = nid;
                  cfg->hp_outs++;
                  break;
            case AC_JACK_MIC_IN: {
                  int preferred, alt;
                  if (loc == AC_JACK_LOC_FRONT) {
                        preferred = AUTO_PIN_FRONT_MIC;
                        alt = AUTO_PIN_MIC;
                  } else {
                        preferred = AUTO_PIN_MIC;
                        alt = AUTO_PIN_FRONT_MIC;
                  }
                  if (!cfg->input_pins[preferred])
                        cfg->input_pins[preferred] = nid;
                  else if (!cfg->input_pins[alt])
                        cfg->input_pins[alt] = nid;
                  break;
            }
            case AC_JACK_LINE_IN:
                  if (loc == AC_JACK_LOC_FRONT)
                        cfg->input_pins[AUTO_PIN_FRONT_LINE] = nid;
                  else
                        cfg->input_pins[AUTO_PIN_LINE] = nid;
                  break;
            case AC_JACK_CD:
                  cfg->input_pins[AUTO_PIN_CD] = nid;
                  break;
            case AC_JACK_AUX:
                  cfg->input_pins[AUTO_PIN_AUX] = nid;
                  break;
            case AC_JACK_SPDIF_OUT:
                  cfg->dig_out_pin = nid;
                  break;
            case AC_JACK_SPDIF_IN:
                  cfg->dig_in_pin = nid;
                  break;
            }
      }

      /* sort by sequence */
      for (i = 0; i < cfg->line_outs; i++)
            for (j = i + 1; j < cfg->line_outs; j++)
                  if (sequences[i] > sequences[j]) {
                        seq = sequences[i];
                        sequences[i] = sequences[j];
                        sequences[j] = seq;
                        nid = cfg->line_out_pins[i];
                        cfg->line_out_pins[i] = cfg->line_out_pins[j];
                        cfg->line_out_pins[j] = nid;
                  }

      /* Reorder the surround channels
       * ALSA sequence is front/surr/clfe/side
       * HDA sequence is:
       *    4-ch: front/surr  =>  OK as it is
       *    6-ch: front/clfe/surr
       *    8-ch: front/clfe/side/surr
       */
      switch (cfg->line_outs) {
      case 3:
            nid = cfg->line_out_pins[1];
            cfg->line_out_pins[1] = cfg->line_out_pins[2];
            cfg->line_out_pins[2] = nid;
            break;
      case 4:
            nid = cfg->line_out_pins[1];
            cfg->line_out_pins[1] = cfg->line_out_pins[3];
            cfg->line_out_pins[3] = cfg->line_out_pins[2];
            cfg->line_out_pins[2] = nid;
            break;
      }

      /*
       * debug prints of the parsed results
       */
      snd_printd("autoconfig: line_outs=%d (0x%x/0x%x/0x%x/0x%x/0x%x)\n",
               cfg->line_outs, cfg->line_out_pins[0], cfg->line_out_pins[1],
               cfg->line_out_pins[2], cfg->line_out_pins[3],
               cfg->line_out_pins[4]);
      snd_printd("   speaker_outs=%d (0x%x/0x%x/0x%x/0x%x/0x%x)\n",
               cfg->speaker_outs, cfg->speaker_pins[0],
               cfg->speaker_pins[1], cfg->speaker_pins[2],
               cfg->speaker_pins[3], cfg->speaker_pins[4]);
      snd_printd("   hp_outs=%d (0x%x/0x%x/0x%x/0x%x/0x%x)\n",
               cfg->hp_outs, cfg->hp_pins[0],
               cfg->hp_pins[1], cfg->hp_pins[2],
               cfg->hp_pins[3], cfg->hp_pins[4]);
      snd_printd("   inputs: mic=0x%x, fmic=0x%x, line=0x%x, fline=0x%x,"
               " cd=0x%x, aux=0x%x\n",
               cfg->input_pins[AUTO_PIN_MIC],
               cfg->input_pins[AUTO_PIN_FRONT_MIC],
               cfg->input_pins[AUTO_PIN_LINE],
               cfg->input_pins[AUTO_PIN_FRONT_LINE],
               cfg->input_pins[AUTO_PIN_CD],
               cfg->input_pins[AUTO_PIN_AUX]);

      /*
       * FIX-UP: if no line-outs are detected, try to use speaker or HP pin
       * as a primary output
       */
      if (! cfg->line_outs) {
            if (cfg->speaker_outs) {
                  cfg->line_outs = cfg->speaker_outs;
                  memcpy(cfg->line_out_pins, cfg->speaker_pins,
                         sizeof(cfg->speaker_pins));
                  cfg->speaker_outs = 0;
                  memset(cfg->speaker_pins, 0, sizeof(cfg->speaker_pins));
            } else if (cfg->hp_outs) {
                  cfg->line_outs = cfg->hp_outs;
                  memcpy(cfg->line_out_pins, cfg->hp_pins,
                         sizeof(cfg->hp_pins));
                  cfg->hp_outs = 0;
                  memset(cfg->hp_pins, 0, sizeof(cfg->hp_pins));
            }
      }

      return 0;
}

/* labels for input pins */
const char *auto_pin_cfg_labels[AUTO_PIN_LAST] = {
      "Mic", "Front Mic", "Line", "Front Line", "CD", "Aux"
};


#ifdef CONFIG_PM
/*
 * power management
 */

/**
 * snd_hda_suspend - suspend the codecs
 * @bus: the HDA bus
 * @state: suspsend state
 *
 * Returns 0 if successful.
 */
int snd_hda_suspend(struct hda_bus *bus, pm_message_t state)
{
      struct list_head *p;

      /* FIXME: should handle power widget capabilities */
      list_for_each(p, &bus->codec_list) {
            struct hda_codec *codec = list_entry(p, struct hda_codec, list);
            if (codec->patch_ops.suspend)
                  codec->patch_ops.suspend(codec, state);
            hda_set_power_state(codec,
                            codec->afg ? codec->afg : codec->mfg,
                            AC_PWRST_D3);
      }
      return 0;
}

EXPORT_SYMBOL(snd_hda_suspend);

/**
 * snd_hda_resume - resume the codecs
 * @bus: the HDA bus
 * @state: resume state
 *
 * Returns 0 if successful.
 */
int snd_hda_resume(struct hda_bus *bus)
{
      struct list_head *p;

      list_for_each(p, &bus->codec_list) {
            struct hda_codec *codec = list_entry(p, struct hda_codec, list);
            hda_set_power_state(codec,
                            codec->afg ? codec->afg : codec->mfg,
                            AC_PWRST_D0);
            if (codec->patch_ops.resume)
                  codec->patch_ops.resume(codec);
      }
      return 0;
}

EXPORT_SYMBOL(snd_hda_resume);

/**
 * snd_hda_resume_ctls - resume controls in the new control list
 * @codec: the HDA codec
 * @knew: the array of struct snd_kcontrol_new
 *
 * This function resumes the mixer controls in the struct snd_kcontrol_new array,
 * originally for snd_hda_add_new_ctls().
 * The array must be terminated with an empty entry as terminator.
 */
int snd_hda_resume_ctls(struct hda_codec *codec, struct snd_kcontrol_new *knew)
{
      struct snd_ctl_elem_value *val;

      val = kmalloc(sizeof(*val), GFP_KERNEL);
      if (! val)
            return -ENOMEM;
      codec->in_resume = 1;
      for (; knew->name; knew++) {
            int i, count;
            count = knew->count ? knew->count : 1;
            for (i = 0; i < count; i++) {
                  memset(val, 0, sizeof(*val));
                  val->id.iface = knew->iface;
                  val->id.device = knew->device;
                  val->id.subdevice = knew->subdevice;
                  strcpy(val->id.name, knew->name);
                  val->id.index = knew->index ? knew->index : i;
                  /* Assume that get callback reads only from cache,
                   * not accessing to the real hardware
                   */
                  if (snd_ctl_elem_read(codec->bus->card, val) < 0)
                        continue;
                  snd_ctl_elem_write(codec->bus->card, NULL, val);
            }
      }
      codec->in_resume = 0;
      kfree(val);
      return 0;
}

/**
 * snd_hda_resume_spdif_out - resume the digital out
 * @codec: the HDA codec
 */
int snd_hda_resume_spdif_out(struct hda_codec *codec)
{
      return snd_hda_resume_ctls(codec, dig_mixes);
}

/**
 * snd_hda_resume_spdif_in - resume the digital in
 * @codec: the HDA codec
 */
int snd_hda_resume_spdif_in(struct hda_codec *codec)
{
      return snd_hda_resume_ctls(codec, dig_in_ctls);
}
#endif

/*
 *  INIT part
 */

static int __init alsa_hda_init(void)
{
      return 0;
}

static void __exit alsa_hda_exit(void)
{
}

module_init(alsa_hda_init)
module_exit(alsa_hda_exit)

Generated by  Doxygen 1.6.0   Back to index