Logo Search packages:      
Sourcecode: alsa-driver version File versions

fm801.c

/*
 *  The driver for the ForteMedia FM801 based soundcards
 *  Copyright (c) by Jaroslav Kysela <perex@suse.cz>
 *
 *  Support FM only card by Andy Shevchenko <andy@smile.org.ua>
 *
 *   This program is free software; you can redistribute it and/or modify
 *   it under the terms of the GNU General Public License as published by
 *   the Free Software Foundation; either version 2 of the License, or
 *   (at your option) any later version.
 *
 *   This program is distributed in the hope that it will be useful,
 *   but WITHOUT ANY WARRANTY; without even the implied warranty of
 *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *   GNU General Public License for more details.
 *
 *   You should have received a copy of the GNU General Public License
 *   along with this program; if not, write to the Free Software
 *   Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
 *
 */

#include <sound/driver.h>
#include <linux/delay.h>
#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/pci.h>
#include <linux/slab.h>
#include <linux/moduleparam.h>
#include <sound/core.h>
#include <sound/pcm.h>
#include <sound/tlv.h>
#include <sound/ac97_codec.h>
#include <sound/mpu401.h>
#include <sound/opl3.h>
#include <sound/initval.h>

#include <asm/io.h>

#ifdef CONFIG_SND_FM801_TEA575X_BOOL
#include <sound/tea575x-tuner.h>
#define TEA575X_RADIO 1
#endif

MODULE_AUTHOR("Jaroslav Kysela <perex@suse.cz>");
MODULE_DESCRIPTION("ForteMedia FM801");
MODULE_LICENSE("GPL");
MODULE_SUPPORTED_DEVICE("{{ForteMedia,FM801},"
            "{Genius,SoundMaker Live 5.1}}");

static int index[SNDRV_CARDS] = SNDRV_DEFAULT_IDX;    /* Index 0-MAX */
static char *id[SNDRV_CARDS] = SNDRV_DEFAULT_STR;     /* ID for this card */
static int enable[SNDRV_CARDS] = SNDRV_DEFAULT_ENABLE_PNP;  /* Enable this card */
/*
 *  Enable TEA575x tuner
 *    1 = MediaForte 256-PCS
 *    2 = MediaForte 256-PCPR
 *    3 = MediaForte 64-PCR
 *   16 = setup tuner only (this is additional bit), i.e. SF-64-PCR FM card
 *  High 16-bits are video (radio) device number + 1
 */
static int tea575x_tuner[SNDRV_CARDS];

module_param_array(index, int, NULL, 0444);
MODULE_PARM_DESC(index, "Index value for the FM801 soundcard.");
module_param_array(id, charp, NULL, 0444);
MODULE_PARM_DESC(id, "ID string for the FM801 soundcard.");
module_param_array(enable, bool, NULL, 0444);
MODULE_PARM_DESC(enable, "Enable FM801 soundcard.");
module_param_array(tea575x_tuner, int, NULL, 0444);
MODULE_PARM_DESC(tea575x_tuner, "Enable TEA575x tuner.");

/*
 *  Direct registers
 */

#define FM801_REG(chip, reg)  (chip->port + FM801_##reg)

#define FM801_PCM_VOL         0x00  /* PCM Output Volume */
#define FM801_FM_VOL          0x02  /* FM Output Volume */
#define FM801_I2S_VOL         0x04  /* I2S Volume */
#define FM801_REC_SRC         0x06  /* Record Source */
#define FM801_PLY_CTRL        0x08  /* Playback Control */
#define FM801_PLY_COUNT       0x0a  /* Playback Count */
#define FM801_PLY_BUF1        0x0c  /* Playback Bufer I */
#define FM801_PLY_BUF2        0x10  /* Playback Buffer II */
#define FM801_CAP_CTRL        0x14  /* Capture Control */
#define FM801_CAP_COUNT       0x16  /* Capture Count */
#define FM801_CAP_BUF1        0x18  /* Capture Buffer I */
#define FM801_CAP_BUF2        0x1c  /* Capture Buffer II */
#define FM801_CODEC_CTRL      0x22  /* Codec Control */
#define FM801_I2S_MODE        0x24  /* I2S Mode Control */
#define FM801_VOLUME          0x26  /* Volume Up/Down/Mute Status */
#define FM801_I2C_CTRL        0x29  /* I2C Control */
#define FM801_AC97_CMD        0x2a  /* AC'97 Command */
#define FM801_AC97_DATA       0x2c  /* AC'97 Data */
#define FM801_MPU401_DATA     0x30  /* MPU401 Data */
#define FM801_MPU401_CMD      0x31  /* MPU401 Command */
#define FM801_GPIO_CTRL       0x52  /* General Purpose I/O Control */
#define FM801_GEN_CTRL        0x54  /* General Control */
#define FM801_IRQ_MASK        0x56  /* Interrupt Mask */
#define FM801_IRQ_STATUS      0x5a  /* Interrupt Status */
#define FM801_OPL3_BANK0      0x68  /* OPL3 Status Read / Bank 0 Write */
#define FM801_OPL3_DATA0      0x69  /* OPL3 Data 0 Write */
#define FM801_OPL3_BANK1      0x6a  /* OPL3 Bank 1 Write */
#define FM801_OPL3_DATA1      0x6b  /* OPL3 Bank 1 Write */
#define FM801_POWERDOWN       0x70  /* Blocks Power Down Control */

/* codec access */
#define FM801_AC97_READ       (1<<7)      /* read=1, write=0 */
#define FM801_AC97_VALID      (1<<8)      /* port valid=1 */
#define FM801_AC97_BUSY       (1<<9)      /* busy=1 */
#define FM801_AC97_ADDR_SHIFT 10    /* codec id (2bit) */

/* playback and record control register bits */
#define FM801_BUF1_LAST       (1<<1)
#define FM801_BUF2_LAST       (1<<2)
#define FM801_START           (1<<5)
#define FM801_PAUSE           (1<<6)
#define FM801_IMMED_STOP      (1<<7)
#define FM801_RATE_SHIFT      8
#define FM801_RATE_MASK       (15 << FM801_RATE_SHIFT)
#define FM801_CHANNELS_4      (1<<12)     /* playback only */
#define FM801_CHANNELS_6      (2<<12)     /* playback only */
#define FM801_CHANNELS_6MS    (3<<12)     /* playback only */
#define FM801_CHANNELS_MASK   (3<<12)
#define FM801_16BIT           (1<<14)
#define FM801_STEREO          (1<<15)

/* IRQ status bits */
#define FM801_IRQ_PLAYBACK    (1<<8)
#define FM801_IRQ_CAPTURE     (1<<9)
#define FM801_IRQ_VOLUME      (1<<14)
#define FM801_IRQ_MPU         (1<<15)

/* GPIO control register */
#define FM801_GPIO_GP0        (1<<0)      /* read/write */
#define FM801_GPIO_GP1        (1<<1)
#define FM801_GPIO_GP2        (1<<2)
#define FM801_GPIO_GP3        (1<<3)
#define FM801_GPIO_GP(x)      (1<<(0+(x)))
#define FM801_GPIO_GD0        (1<<8)      /* directions: 1 = input, 0 = output*/
#define FM801_GPIO_GD1        (1<<9)
#define FM801_GPIO_GD2        (1<<10)
#define FM801_GPIO_GD3        (1<<11)
#define FM801_GPIO_GD(x)      (1<<(8+(x)))
#define FM801_GPIO_GS0        (1<<12)     /* function select: */
#define FM801_GPIO_GS1        (1<<13)     /*    1 = GPIO */
#define FM801_GPIO_GS2        (1<<14)     /*    0 = other (S/PDIF, VOL) */
#define FM801_GPIO_GS3        (1<<15)
#define FM801_GPIO_GS(x)      (1<<(12+(x)))
      
/*

 */

struct fm801 {
      int irq;

      unsigned long port;     /* I/O port number */
      unsigned int multichannel: 1, /* multichannel support */
                 secondary: 1;      /* secondary codec */
      unsigned char secondary_addr; /* address of the secondary codec */
      unsigned int tea575x_tuner;   /* tuner flags */

      unsigned short ply_ctrl; /* playback control */
      unsigned short cap_ctrl; /* capture control */

      unsigned long ply_buffer;
      unsigned int ply_buf;
      unsigned int ply_count;
      unsigned int ply_size;
      unsigned int ply_pos;

      unsigned long cap_buffer;
      unsigned int cap_buf;
      unsigned int cap_count;
      unsigned int cap_size;
      unsigned int cap_pos;

      struct snd_ac97_bus *ac97_bus;
      struct snd_ac97 *ac97;
      struct snd_ac97 *ac97_sec;

      struct pci_dev *pci;
      struct snd_card *card;
      struct snd_pcm *pcm;
      struct snd_rawmidi *rmidi;
      struct snd_pcm_substream *playback_substream;
      struct snd_pcm_substream *capture_substream;
      unsigned int p_dma_size;
      unsigned int c_dma_size;

      spinlock_t reg_lock;
      struct snd_info_entry *proc_entry;

#ifdef TEA575X_RADIO
      struct snd_tea575x tea;
#endif

#ifdef CONFIG_PM
      u16 saved_regs[0x20];
#endif
};

static struct pci_device_id snd_fm801_ids[] = {
      { 0x1319, 0x0801, PCI_ANY_ID, PCI_ANY_ID, PCI_CLASS_MULTIMEDIA_AUDIO << 8, 0xffff00, 0, },   /* FM801 */
      { 0x5213, 0x0510, PCI_ANY_ID, PCI_ANY_ID, PCI_CLASS_MULTIMEDIA_AUDIO << 8, 0xffff00, 0, },   /* Gallant Odyssey Sound 4 */
      { 0, }
};

MODULE_DEVICE_TABLE(pci, snd_fm801_ids);

/*
 *  common I/O routines
 */

static int snd_fm801_update_bits(struct fm801 *chip, unsigned short reg,
                         unsigned short mask, unsigned short value)
{
      int change;
      unsigned long flags;
      unsigned short old, new;

      spin_lock_irqsave(&chip->reg_lock, flags);
      old = inw(chip->port + reg);
      new = (old & ~mask) | value;
      change = old != new;
      if (change)
            outw(new, chip->port + reg);
      spin_unlock_irqrestore(&chip->reg_lock, flags);
      return change;
}

static void snd_fm801_codec_write(struct snd_ac97 *ac97,
                          unsigned short reg,
                          unsigned short val)
{
      struct fm801 *chip = ac97->private_data;
      int idx;

      /*
       *  Wait until the codec interface is not ready..
       */
      for (idx = 0; idx < 100; idx++) {
            if (!(inw(FM801_REG(chip, AC97_CMD)) & FM801_AC97_BUSY))
                  goto ok1;
            udelay(10);
      }
      snd_printk(KERN_ERR "AC'97 interface is busy (1)\n");
      return;

 ok1:
      /* write data and address */
      outw(val, FM801_REG(chip, AC97_DATA));
      outw(reg | (ac97->addr << FM801_AC97_ADDR_SHIFT), FM801_REG(chip, AC97_CMD));
      /*
       *  Wait until the write command is not completed..
         */
      for (idx = 0; idx < 1000; idx++) {
            if (!(inw(FM801_REG(chip, AC97_CMD)) & FM801_AC97_BUSY))
                  return;
            udelay(10);
      }
      snd_printk(KERN_ERR "AC'97 interface #%d is busy (2)\n", ac97->num);
}

static unsigned short snd_fm801_codec_read(struct snd_ac97 *ac97, unsigned short reg)
{
      struct fm801 *chip = ac97->private_data;
      int idx;

      /*
       *  Wait until the codec interface is not ready..
       */
      for (idx = 0; idx < 100; idx++) {
            if (!(inw(FM801_REG(chip, AC97_CMD)) & FM801_AC97_BUSY))
                  goto ok1;
            udelay(10);
      }
      snd_printk(KERN_ERR "AC'97 interface is busy (1)\n");
      return 0;

 ok1:
      /* read command */
      outw(reg | (ac97->addr << FM801_AC97_ADDR_SHIFT) | FM801_AC97_READ,
           FM801_REG(chip, AC97_CMD));
      for (idx = 0; idx < 100; idx++) {
            if (!(inw(FM801_REG(chip, AC97_CMD)) & FM801_AC97_BUSY))
                  goto ok2;
            udelay(10);
      }
      snd_printk(KERN_ERR "AC'97 interface #%d is busy (2)\n", ac97->num);
      return 0;

 ok2:
      for (idx = 0; idx < 1000; idx++) {
            if (inw(FM801_REG(chip, AC97_CMD)) & FM801_AC97_VALID)
                  goto ok3;
            udelay(10);
      }
      snd_printk(KERN_ERR "AC'97 interface #%d is not valid (2)\n", ac97->num);
      return 0;

 ok3:
      return inw(FM801_REG(chip, AC97_DATA));
}

static unsigned int rates[] = {
  5500,  8000,  9600, 11025,
  16000, 19200, 22050, 32000,
  38400, 44100, 48000
};

static struct snd_pcm_hw_constraint_list hw_constraints_rates = {
      .count = ARRAY_SIZE(rates),
      .list = rates,
      .mask = 0,
};

static unsigned int channels[] = {
  2, 4, 6
};

static struct snd_pcm_hw_constraint_list hw_constraints_channels = {
      .count = ARRAY_SIZE(channels),
      .list = channels,
      .mask = 0,
};

/*
 *  Sample rate routines
 */

static unsigned short snd_fm801_rate_bits(unsigned int rate)
{
      unsigned int idx;

      for (idx = 0; idx < ARRAY_SIZE(rates); idx++)
            if (rates[idx] == rate)
                  return idx;
      snd_BUG();
      return ARRAY_SIZE(rates) - 1;
}

/*
 *  PCM part
 */

static int snd_fm801_playback_trigger(struct snd_pcm_substream *substream,
                              int cmd)
{
      struct fm801 *chip = snd_pcm_substream_chip(substream);

      spin_lock(&chip->reg_lock);
      switch (cmd) {
      case SNDRV_PCM_TRIGGER_START:
            chip->ply_ctrl &= ~(FM801_BUF1_LAST |
                             FM801_BUF2_LAST |
                             FM801_PAUSE);
            chip->ply_ctrl |= FM801_START |
                           FM801_IMMED_STOP;
            break;
      case SNDRV_PCM_TRIGGER_STOP:
            chip->ply_ctrl &= ~(FM801_START | FM801_PAUSE);
            break;
      case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
      case SNDRV_PCM_TRIGGER_SUSPEND:
            chip->ply_ctrl |= FM801_PAUSE;
            break;
      case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
      case SNDRV_PCM_TRIGGER_RESUME:
            chip->ply_ctrl &= ~FM801_PAUSE;
            break;
      default:
            spin_unlock(&chip->reg_lock);
            snd_BUG();
            return -EINVAL;
      }
      outw(chip->ply_ctrl, FM801_REG(chip, PLY_CTRL));
      spin_unlock(&chip->reg_lock);
      return 0;
}

static int snd_fm801_capture_trigger(struct snd_pcm_substream *substream,
                             int cmd)
{
      struct fm801 *chip = snd_pcm_substream_chip(substream);

      spin_lock(&chip->reg_lock);
      switch (cmd) {
      case SNDRV_PCM_TRIGGER_START:
            chip->cap_ctrl &= ~(FM801_BUF1_LAST |
                             FM801_BUF2_LAST |
                             FM801_PAUSE);
            chip->cap_ctrl |= FM801_START |
                           FM801_IMMED_STOP;
            break;
      case SNDRV_PCM_TRIGGER_STOP:
            chip->cap_ctrl &= ~(FM801_START | FM801_PAUSE);
            break;
      case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
      case SNDRV_PCM_TRIGGER_SUSPEND:
            chip->cap_ctrl |= FM801_PAUSE;
            break;
      case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
      case SNDRV_PCM_TRIGGER_RESUME:
            chip->cap_ctrl &= ~FM801_PAUSE;
            break;
      default:
            spin_unlock(&chip->reg_lock);
            snd_BUG();
            return -EINVAL;
      }
      outw(chip->cap_ctrl, FM801_REG(chip, CAP_CTRL));
      spin_unlock(&chip->reg_lock);
      return 0;
}

static int snd_fm801_hw_params(struct snd_pcm_substream *substream,
                         struct snd_pcm_hw_params *hw_params)
{
      return snd_pcm_lib_malloc_pages(substream, params_buffer_bytes(hw_params));
}

static int snd_fm801_hw_free(struct snd_pcm_substream *substream)
{
      return snd_pcm_lib_free_pages(substream);
}

static int snd_fm801_playback_prepare(struct snd_pcm_substream *substream)
{
      struct fm801 *chip = snd_pcm_substream_chip(substream);
      struct snd_pcm_runtime *runtime = substream->runtime;

      chip->ply_size = snd_pcm_lib_buffer_bytes(substream);
      chip->ply_count = snd_pcm_lib_period_bytes(substream);
      spin_lock_irq(&chip->reg_lock);
      chip->ply_ctrl &= ~(FM801_START | FM801_16BIT |
                       FM801_STEREO | FM801_RATE_MASK |
                       FM801_CHANNELS_MASK);
      if (snd_pcm_format_width(runtime->format) == 16)
            chip->ply_ctrl |= FM801_16BIT;
      if (runtime->channels > 1) {
            chip->ply_ctrl |= FM801_STEREO;
            if (runtime->channels == 4)
                  chip->ply_ctrl |= FM801_CHANNELS_4;
            else if (runtime->channels == 6)
                  chip->ply_ctrl |= FM801_CHANNELS_6;
      }
      chip->ply_ctrl |= snd_fm801_rate_bits(runtime->rate) << FM801_RATE_SHIFT;
      chip->ply_buf = 0;
      outw(chip->ply_ctrl, FM801_REG(chip, PLY_CTRL));
      outw(chip->ply_count - 1, FM801_REG(chip, PLY_COUNT));
      chip->ply_buffer = runtime->dma_addr;
      chip->ply_pos = 0;
      outl(chip->ply_buffer, FM801_REG(chip, PLY_BUF1));
      outl(chip->ply_buffer + (chip->ply_count % chip->ply_size), FM801_REG(chip, PLY_BUF2));
      spin_unlock_irq(&chip->reg_lock);
      return 0;
}

static int snd_fm801_capture_prepare(struct snd_pcm_substream *substream)
{
      struct fm801 *chip = snd_pcm_substream_chip(substream);
      struct snd_pcm_runtime *runtime = substream->runtime;

      chip->cap_size = snd_pcm_lib_buffer_bytes(substream);
      chip->cap_count = snd_pcm_lib_period_bytes(substream);
      spin_lock_irq(&chip->reg_lock);
      chip->cap_ctrl &= ~(FM801_START | FM801_16BIT |
                       FM801_STEREO | FM801_RATE_MASK);
      if (snd_pcm_format_width(runtime->format) == 16)
            chip->cap_ctrl |= FM801_16BIT;
      if (runtime->channels > 1)
            chip->cap_ctrl |= FM801_STEREO;
      chip->cap_ctrl |= snd_fm801_rate_bits(runtime->rate) << FM801_RATE_SHIFT;
      chip->cap_buf = 0;
      outw(chip->cap_ctrl, FM801_REG(chip, CAP_CTRL));
      outw(chip->cap_count - 1, FM801_REG(chip, CAP_COUNT));
      chip->cap_buffer = runtime->dma_addr;
      chip->cap_pos = 0;
      outl(chip->cap_buffer, FM801_REG(chip, CAP_BUF1));
      outl(chip->cap_buffer + (chip->cap_count % chip->cap_size), FM801_REG(chip, CAP_BUF2));
      spin_unlock_irq(&chip->reg_lock);
      return 0;
}

static snd_pcm_uframes_t snd_fm801_playback_pointer(struct snd_pcm_substream *substream)
{
      struct fm801 *chip = snd_pcm_substream_chip(substream);
      size_t ptr;

      if (!(chip->ply_ctrl & FM801_START))
            return 0;
      spin_lock(&chip->reg_lock);
      ptr = chip->ply_pos + (chip->ply_count - 1) - inw(FM801_REG(chip, PLY_COUNT));
      if (inw(FM801_REG(chip, IRQ_STATUS)) & FM801_IRQ_PLAYBACK) {
            ptr += chip->ply_count;
            ptr %= chip->ply_size;
      }
      spin_unlock(&chip->reg_lock);
      return bytes_to_frames(substream->runtime, ptr);
}

static snd_pcm_uframes_t snd_fm801_capture_pointer(struct snd_pcm_substream *substream)
{
      struct fm801 *chip = snd_pcm_substream_chip(substream);
      size_t ptr;

      if (!(chip->cap_ctrl & FM801_START))
            return 0;
      spin_lock(&chip->reg_lock);
      ptr = chip->cap_pos + (chip->cap_count - 1) - inw(FM801_REG(chip, CAP_COUNT));
      if (inw(FM801_REG(chip, IRQ_STATUS)) & FM801_IRQ_CAPTURE) {
            ptr += chip->cap_count;
            ptr %= chip->cap_size;
      }
      spin_unlock(&chip->reg_lock);
      return bytes_to_frames(substream->runtime, ptr);
}

static irqreturn_t snd_fm801_interrupt(int irq, void *dev_id, struct pt_regs *regs)
{
      struct fm801 *chip = dev_id;
      unsigned short status;
      unsigned int tmp;

      status = inw(FM801_REG(chip, IRQ_STATUS));
      status &= FM801_IRQ_PLAYBACK|FM801_IRQ_CAPTURE|FM801_IRQ_MPU|FM801_IRQ_VOLUME;
      if (! status)
            return IRQ_NONE;
      /* ack first */
      outw(status, FM801_REG(chip, IRQ_STATUS));
      if (chip->pcm && (status & FM801_IRQ_PLAYBACK) && chip->playback_substream) {
            spin_lock(&chip->reg_lock);
            chip->ply_buf++;
            chip->ply_pos += chip->ply_count;
            chip->ply_pos %= chip->ply_size;
            tmp = chip->ply_pos + chip->ply_count;
            tmp %= chip->ply_size;
            outl(chip->ply_buffer + tmp,
                        (chip->ply_buf & 1) ?
                              FM801_REG(chip, PLY_BUF1) :
                              FM801_REG(chip, PLY_BUF2));
            spin_unlock(&chip->reg_lock);
            snd_pcm_period_elapsed(chip->playback_substream);
      }
      if (chip->pcm && (status & FM801_IRQ_CAPTURE) && chip->capture_substream) {
            spin_lock(&chip->reg_lock);
            chip->cap_buf++;
            chip->cap_pos += chip->cap_count;
            chip->cap_pos %= chip->cap_size;
            tmp = chip->cap_pos + chip->cap_count;
            tmp %= chip->cap_size;
            outl(chip->cap_buffer + tmp,
                        (chip->cap_buf & 1) ?
                              FM801_REG(chip, CAP_BUF1) :
                              FM801_REG(chip, CAP_BUF2));
            spin_unlock(&chip->reg_lock);
            snd_pcm_period_elapsed(chip->capture_substream);
      }
      if (chip->rmidi && (status & FM801_IRQ_MPU))
            snd_mpu401_uart_interrupt(irq, chip->rmidi->private_data, regs);
      if (status & FM801_IRQ_VOLUME)
            ;/* TODO */

      return IRQ_HANDLED;
}

static struct snd_pcm_hardware snd_fm801_playback =
{
      .info =                 (SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED |
                         SNDRV_PCM_INFO_BLOCK_TRANSFER |
                         SNDRV_PCM_INFO_PAUSE | SNDRV_PCM_INFO_RESUME |
                         SNDRV_PCM_INFO_MMAP_VALID),
      .formats =        SNDRV_PCM_FMTBIT_U8 | SNDRV_PCM_FMTBIT_S16_LE,
      .rates =          SNDRV_PCM_RATE_KNOT | SNDRV_PCM_RATE_8000_48000,
      .rate_min =       5500,
      .rate_max =       48000,
      .channels_min =         1,
      .channels_max =         2,
      .buffer_bytes_max =     (128*1024),
      .period_bytes_min =     64,
      .period_bytes_max =     (128*1024),
      .periods_min =          1,
      .periods_max =          1024,
      .fifo_size =            0,
};

static struct snd_pcm_hardware snd_fm801_capture =
{
      .info =                 (SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED |
                         SNDRV_PCM_INFO_BLOCK_TRANSFER |
                         SNDRV_PCM_INFO_PAUSE | SNDRV_PCM_INFO_RESUME |
                         SNDRV_PCM_INFO_MMAP_VALID),
      .formats =        SNDRV_PCM_FMTBIT_U8 | SNDRV_PCM_FMTBIT_S16_LE,
      .rates =          SNDRV_PCM_RATE_KNOT | SNDRV_PCM_RATE_8000_48000,
      .rate_min =       5500,
      .rate_max =       48000,
      .channels_min =         1,
      .channels_max =         2,
      .buffer_bytes_max =     (128*1024),
      .period_bytes_min =     64,
      .period_bytes_max =     (128*1024),
      .periods_min =          1,
      .periods_max =          1024,
      .fifo_size =            0,
};

static int snd_fm801_playback_open(struct snd_pcm_substream *substream)
{
      struct fm801 *chip = snd_pcm_substream_chip(substream);
      struct snd_pcm_runtime *runtime = substream->runtime;
      int err;

      chip->playback_substream = substream;
      runtime->hw = snd_fm801_playback;
      snd_pcm_hw_constraint_list(runtime, 0, SNDRV_PCM_HW_PARAM_RATE,
                           &hw_constraints_rates);
      if (chip->multichannel) {
            runtime->hw.channels_max = 6;
            snd_pcm_hw_constraint_list(runtime, 0,
                                 SNDRV_PCM_HW_PARAM_CHANNELS,
                                 &hw_constraints_channels);
      }
      if ((err = snd_pcm_hw_constraint_integer(runtime, SNDRV_PCM_HW_PARAM_PERIODS)) < 0)
            return err;
      return 0;
}

static int snd_fm801_capture_open(struct snd_pcm_substream *substream)
{
      struct fm801 *chip = snd_pcm_substream_chip(substream);
      struct snd_pcm_runtime *runtime = substream->runtime;
      int err;

      chip->capture_substream = substream;
      runtime->hw = snd_fm801_capture;
      snd_pcm_hw_constraint_list(runtime, 0, SNDRV_PCM_HW_PARAM_RATE,
                           &hw_constraints_rates);
      if ((err = snd_pcm_hw_constraint_integer(runtime, SNDRV_PCM_HW_PARAM_PERIODS)) < 0)
            return err;
      return 0;
}

static int snd_fm801_playback_close(struct snd_pcm_substream *substream)
{
      struct fm801 *chip = snd_pcm_substream_chip(substream);

      chip->playback_substream = NULL;
      return 0;
}

static int snd_fm801_capture_close(struct snd_pcm_substream *substream)
{
      struct fm801 *chip = snd_pcm_substream_chip(substream);

      chip->capture_substream = NULL;
      return 0;
}

static struct snd_pcm_ops snd_fm801_playback_ops = {
      .open =           snd_fm801_playback_open,
      .close =    snd_fm801_playback_close,
      .ioctl =    snd_pcm_lib_ioctl,
      .hw_params =      snd_fm801_hw_params,
      .hw_free =  snd_fm801_hw_free,
      .prepare =  snd_fm801_playback_prepare,
      .trigger =  snd_fm801_playback_trigger,
      .pointer =  snd_fm801_playback_pointer,
};

static struct snd_pcm_ops snd_fm801_capture_ops = {
      .open =           snd_fm801_capture_open,
      .close =    snd_fm801_capture_close,
      .ioctl =    snd_pcm_lib_ioctl,
      .hw_params =      snd_fm801_hw_params,
      .hw_free =  snd_fm801_hw_free,
      .prepare =  snd_fm801_capture_prepare,
      .trigger =  snd_fm801_capture_trigger,
      .pointer =  snd_fm801_capture_pointer,
};

static int __devinit snd_fm801_pcm(struct fm801 *chip, int device, struct snd_pcm ** rpcm)
{
      struct snd_pcm *pcm;
      int err;

      if (rpcm)
            *rpcm = NULL;
      if ((err = snd_pcm_new(chip->card, "FM801", device, 1, 1, &pcm)) < 0)
            return err;

      snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_fm801_playback_ops);
      snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &snd_fm801_capture_ops);

      pcm->private_data = chip;
      pcm->info_flags = 0;
      strcpy(pcm->name, "FM801");
      chip->pcm = pcm;

      snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_DEV,
                                    snd_dma_pci_data(chip->pci),
                                    chip->multichannel ? 128*1024 : 64*1024, 128*1024);

      if (rpcm)
            *rpcm = pcm;
      return 0;
}

/*
 *  TEA5757 radio
 */

#ifdef TEA575X_RADIO

/* 256PCS GPIO numbers */
#define TEA_256PCS_DATA             1
#define TEA_256PCS_WRITE_ENABLE           2     /* inverted */
#define TEA_256PCS_BUS_CLOCK        3

static void snd_fm801_tea575x_256pcs_write(struct snd_tea575x *tea, unsigned int val)
{
      struct fm801 *chip = tea->private_data;
      unsigned short reg;
      int i = 25;

      spin_lock_irq(&chip->reg_lock);
      reg = inw(FM801_REG(chip, GPIO_CTRL));
      /* use GPIO lines and set write enable bit */
      reg |= FM801_GPIO_GS(TEA_256PCS_DATA) |
             FM801_GPIO_GS(TEA_256PCS_WRITE_ENABLE) |
             FM801_GPIO_GS(TEA_256PCS_BUS_CLOCK);
      /* all of lines are in the write direction */
      /* clear data and clock lines */
      reg &= ~(FM801_GPIO_GD(TEA_256PCS_DATA) |
               FM801_GPIO_GD(TEA_256PCS_WRITE_ENABLE) |
               FM801_GPIO_GD(TEA_256PCS_BUS_CLOCK) |
               FM801_GPIO_GP(TEA_256PCS_DATA) |
               FM801_GPIO_GP(TEA_256PCS_BUS_CLOCK) |
             FM801_GPIO_GP(TEA_256PCS_WRITE_ENABLE));
      outw(reg, FM801_REG(chip, GPIO_CTRL));
      udelay(1);

      while (i--) {
            if (val & (1 << i))
                  reg |= FM801_GPIO_GP(TEA_256PCS_DATA);
            else
                  reg &= ~FM801_GPIO_GP(TEA_256PCS_DATA);
            outw(reg, FM801_REG(chip, GPIO_CTRL));
            udelay(1);
            reg |= FM801_GPIO_GP(TEA_256PCS_BUS_CLOCK);
            outw(reg, FM801_REG(chip, GPIO_CTRL));
            reg &= ~FM801_GPIO_GP(TEA_256PCS_BUS_CLOCK);
            outw(reg, FM801_REG(chip, GPIO_CTRL));
            udelay(1);
      }

      /* and reset the write enable bit */
      reg |= FM801_GPIO_GP(TEA_256PCS_WRITE_ENABLE) |
             FM801_GPIO_GP(TEA_256PCS_DATA);
      outw(reg, FM801_REG(chip, GPIO_CTRL));
      spin_unlock_irq(&chip->reg_lock);
}

static unsigned int snd_fm801_tea575x_256pcs_read(struct snd_tea575x *tea)
{
      struct fm801 *chip = tea->private_data;
      unsigned short reg;
      unsigned int val = 0;
      int i;
      
      spin_lock_irq(&chip->reg_lock);
      reg = inw(FM801_REG(chip, GPIO_CTRL));
      /* use GPIO lines, set data direction to input */
      reg |= FM801_GPIO_GS(TEA_256PCS_DATA) |
             FM801_GPIO_GS(TEA_256PCS_WRITE_ENABLE) |
             FM801_GPIO_GS(TEA_256PCS_BUS_CLOCK) |
             FM801_GPIO_GD(TEA_256PCS_DATA) |
             FM801_GPIO_GP(TEA_256PCS_DATA) |
             FM801_GPIO_GP(TEA_256PCS_WRITE_ENABLE);
      /* all of lines are in the write direction, except data */
      /* clear data, write enable and clock lines */
      reg &= ~(FM801_GPIO_GD(TEA_256PCS_WRITE_ENABLE) |
               FM801_GPIO_GD(TEA_256PCS_BUS_CLOCK) |
               FM801_GPIO_GP(TEA_256PCS_BUS_CLOCK));

      for (i = 0; i < 24; i++) {
            reg &= ~FM801_GPIO_GP(TEA_256PCS_BUS_CLOCK);
            outw(reg, FM801_REG(chip, GPIO_CTRL));
            udelay(1);
            reg |= FM801_GPIO_GP(TEA_256PCS_BUS_CLOCK);
            outw(reg, FM801_REG(chip, GPIO_CTRL));
            udelay(1);
            val <<= 1;
            if (inw(FM801_REG(chip, GPIO_CTRL)) & FM801_GPIO_GP(TEA_256PCS_DATA))
                  val |= 1;
      }

      spin_unlock_irq(&chip->reg_lock);

      return val;
}

/* 256PCPR GPIO numbers */
#define TEA_256PCPR_BUS_CLOCK       0
#define TEA_256PCPR_DATA            1
#define TEA_256PCPR_WRITE_ENABLE    2     /* inverted */

static void snd_fm801_tea575x_256pcpr_write(struct snd_tea575x *tea, unsigned int val)
{
      struct fm801 *chip = tea->private_data;
      unsigned short reg;
      int i = 25;

      spin_lock_irq(&chip->reg_lock);
      reg = inw(FM801_REG(chip, GPIO_CTRL));
      /* use GPIO lines and set write enable bit */
      reg |= FM801_GPIO_GS(TEA_256PCPR_DATA) |
             FM801_GPIO_GS(TEA_256PCPR_WRITE_ENABLE) |
             FM801_GPIO_GS(TEA_256PCPR_BUS_CLOCK);
      /* all of lines are in the write direction */
      /* clear data and clock lines */
      reg &= ~(FM801_GPIO_GD(TEA_256PCPR_DATA) |
               FM801_GPIO_GD(TEA_256PCPR_WRITE_ENABLE) |
               FM801_GPIO_GD(TEA_256PCPR_BUS_CLOCK) |
               FM801_GPIO_GP(TEA_256PCPR_DATA) |
               FM801_GPIO_GP(TEA_256PCPR_BUS_CLOCK) |
             FM801_GPIO_GP(TEA_256PCPR_WRITE_ENABLE));
      outw(reg, FM801_REG(chip, GPIO_CTRL));
      udelay(1);

      while (i--) {
            if (val & (1 << i))
                  reg |= FM801_GPIO_GP(TEA_256PCPR_DATA);
            else
                  reg &= ~FM801_GPIO_GP(TEA_256PCPR_DATA);
            outw(reg, FM801_REG(chip, GPIO_CTRL));
            udelay(1);
            reg |= FM801_GPIO_GP(TEA_256PCPR_BUS_CLOCK);
            outw(reg, FM801_REG(chip, GPIO_CTRL));
            reg &= ~FM801_GPIO_GP(TEA_256PCPR_BUS_CLOCK);
            outw(reg, FM801_REG(chip, GPIO_CTRL));
            udelay(1);
      }

      /* and reset the write enable bit */
      reg |= FM801_GPIO_GP(TEA_256PCPR_WRITE_ENABLE) |
             FM801_GPIO_GP(TEA_256PCPR_DATA);
      outw(reg, FM801_REG(chip, GPIO_CTRL));
      spin_unlock_irq(&chip->reg_lock);
}

static unsigned int snd_fm801_tea575x_256pcpr_read(struct snd_tea575x *tea)
{
      struct fm801 *chip = tea->private_data;
      unsigned short reg;
      unsigned int val = 0;
      int i;
      
      spin_lock_irq(&chip->reg_lock);
      reg = inw(FM801_REG(chip, GPIO_CTRL));
      /* use GPIO lines, set data direction to input */
      reg |= FM801_GPIO_GS(TEA_256PCPR_DATA) |
             FM801_GPIO_GS(TEA_256PCPR_WRITE_ENABLE) |
             FM801_GPIO_GS(TEA_256PCPR_BUS_CLOCK) |
             FM801_GPIO_GD(TEA_256PCPR_DATA) |
             FM801_GPIO_GP(TEA_256PCPR_DATA) |
             FM801_GPIO_GP(TEA_256PCPR_WRITE_ENABLE);
      /* all of lines are in the write direction, except data */
      /* clear data, write enable and clock lines */
      reg &= ~(FM801_GPIO_GD(TEA_256PCPR_WRITE_ENABLE) |
               FM801_GPIO_GD(TEA_256PCPR_BUS_CLOCK) |
               FM801_GPIO_GP(TEA_256PCPR_BUS_CLOCK));

      for (i = 0; i < 24; i++) {
            reg &= ~FM801_GPIO_GP(TEA_256PCPR_BUS_CLOCK);
            outw(reg, FM801_REG(chip, GPIO_CTRL));
            udelay(1);
            reg |= FM801_GPIO_GP(TEA_256PCPR_BUS_CLOCK);
            outw(reg, FM801_REG(chip, GPIO_CTRL));
            udelay(1);
            val <<= 1;
            if (inw(FM801_REG(chip, GPIO_CTRL)) & FM801_GPIO_GP(TEA_256PCPR_DATA))
                  val |= 1;
      }

      spin_unlock_irq(&chip->reg_lock);

      return val;
}

/* 64PCR GPIO numbers */
#define TEA_64PCR_BUS_CLOCK         0
#define TEA_64PCR_WRITE_ENABLE            1     /* inverted */
#define TEA_64PCR_DATA              2

static void snd_fm801_tea575x_64pcr_write(struct snd_tea575x *tea, unsigned int val)
{
      struct fm801 *chip = tea->private_data;
      unsigned short reg;
      int i = 25;

      spin_lock_irq(&chip->reg_lock);
      reg = inw(FM801_REG(chip, GPIO_CTRL));
      /* use GPIO lines and set write enable bit */
      reg |= FM801_GPIO_GS(TEA_64PCR_DATA) |
             FM801_GPIO_GS(TEA_64PCR_WRITE_ENABLE) |
             FM801_GPIO_GS(TEA_64PCR_BUS_CLOCK);
      /* all of lines are in the write direction */
      /* clear data and clock lines */
      reg &= ~(FM801_GPIO_GD(TEA_64PCR_DATA) |
               FM801_GPIO_GD(TEA_64PCR_WRITE_ENABLE) |
               FM801_GPIO_GD(TEA_64PCR_BUS_CLOCK) |
               FM801_GPIO_GP(TEA_64PCR_DATA) |
               FM801_GPIO_GP(TEA_64PCR_BUS_CLOCK) |
             FM801_GPIO_GP(TEA_64PCR_WRITE_ENABLE));
      outw(reg, FM801_REG(chip, GPIO_CTRL));
      udelay(1);

      while (i--) {
            if (val & (1 << i))
                  reg |= FM801_GPIO_GP(TEA_64PCR_DATA);
            else
                  reg &= ~FM801_GPIO_GP(TEA_64PCR_DATA);
            outw(reg, FM801_REG(chip, GPIO_CTRL));
            udelay(1);
            reg |= FM801_GPIO_GP(TEA_64PCR_BUS_CLOCK);
            outw(reg, FM801_REG(chip, GPIO_CTRL));
            reg &= ~FM801_GPIO_GP(TEA_64PCR_BUS_CLOCK);
            outw(reg, FM801_REG(chip, GPIO_CTRL));
            udelay(1);
      }

      /* and reset the write enable bit */
      reg |= FM801_GPIO_GP(TEA_64PCR_WRITE_ENABLE) |
             FM801_GPIO_GP(TEA_64PCR_DATA);
      outw(reg, FM801_REG(chip, GPIO_CTRL));
      spin_unlock_irq(&chip->reg_lock);
}

static unsigned int snd_fm801_tea575x_64pcr_read(struct snd_tea575x *tea)
{
      struct fm801 *chip = tea->private_data;
      unsigned short reg;
      unsigned int val = 0;
      int i;
      
      spin_lock_irq(&chip->reg_lock);
      reg = inw(FM801_REG(chip, GPIO_CTRL));
      /* use GPIO lines, set data direction to input */
      reg |= FM801_GPIO_GS(TEA_64PCR_DATA) |
             FM801_GPIO_GS(TEA_64PCR_WRITE_ENABLE) |
             FM801_GPIO_GS(TEA_64PCR_BUS_CLOCK) |
             FM801_GPIO_GD(TEA_64PCR_DATA) |
             FM801_GPIO_GP(TEA_64PCR_DATA) |
             FM801_GPIO_GP(TEA_64PCR_WRITE_ENABLE);
      /* all of lines are in the write direction, except data */
      /* clear data, write enable and clock lines */
      reg &= ~(FM801_GPIO_GD(TEA_64PCR_WRITE_ENABLE) |
               FM801_GPIO_GD(TEA_64PCR_BUS_CLOCK) |
               FM801_GPIO_GP(TEA_64PCR_BUS_CLOCK));

      for (i = 0; i < 24; i++) {
            reg &= ~FM801_GPIO_GP(TEA_64PCR_BUS_CLOCK);
            outw(reg, FM801_REG(chip, GPIO_CTRL));
            udelay(1);
            reg |= FM801_GPIO_GP(TEA_64PCR_BUS_CLOCK);
            outw(reg, FM801_REG(chip, GPIO_CTRL));
            udelay(1);
            val <<= 1;
            if (inw(FM801_REG(chip, GPIO_CTRL)) & FM801_GPIO_GP(TEA_64PCR_DATA))
                  val |= 1;
      }

      spin_unlock_irq(&chip->reg_lock);

      return val;
}

static struct snd_tea575x_ops snd_fm801_tea_ops[3] = {
      {
            /* 1 = MediaForte 256-PCS */
            .write = snd_fm801_tea575x_256pcs_write,
            .read = snd_fm801_tea575x_256pcs_read,
      },
      {
            /* 2 = MediaForte 256-PCPR */
            .write = snd_fm801_tea575x_256pcpr_write,
            .read = snd_fm801_tea575x_256pcpr_read,
      },
      {
            /* 3 = MediaForte 64-PCR */
            .write = snd_fm801_tea575x_64pcr_write,
            .read = snd_fm801_tea575x_64pcr_read,
      }
};
#endif

/*
 *  Mixer routines
 */

#define FM801_SINGLE(xname, reg, shift, mask, invert) \
{ .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, .info = snd_fm801_info_single, \
  .get = snd_fm801_get_single, .put = snd_fm801_put_single, \
  .private_value = reg | (shift << 8) | (mask << 16) | (invert << 24) }

static int snd_fm801_info_single(struct snd_kcontrol *kcontrol,
                         struct snd_ctl_elem_info *uinfo)
{
      int mask = (kcontrol->private_value >> 16) & 0xff;

      uinfo->type = mask == 1 ? SNDRV_CTL_ELEM_TYPE_BOOLEAN : SNDRV_CTL_ELEM_TYPE_INTEGER;
      uinfo->count = 1;
      uinfo->value.integer.min = 0;
      uinfo->value.integer.max = mask;
      return 0;
}

static int snd_fm801_get_single(struct snd_kcontrol *kcontrol,
                        struct snd_ctl_elem_value *ucontrol)
{
      struct fm801 *chip = snd_kcontrol_chip(kcontrol);
      int reg = kcontrol->private_value & 0xff;
      int shift = (kcontrol->private_value >> 8) & 0xff;
      int mask = (kcontrol->private_value >> 16) & 0xff;
      int invert = (kcontrol->private_value >> 24) & 0xff;

      ucontrol->value.integer.value[0] = (inw(chip->port + reg) >> shift) & mask;
      if (invert)
            ucontrol->value.integer.value[0] = mask - ucontrol->value.integer.value[0];
      return 0;
}

static int snd_fm801_put_single(struct snd_kcontrol *kcontrol,
                        struct snd_ctl_elem_value *ucontrol)
{
      struct fm801 *chip = snd_kcontrol_chip(kcontrol);
      int reg = kcontrol->private_value & 0xff;
      int shift = (kcontrol->private_value >> 8) & 0xff;
      int mask = (kcontrol->private_value >> 16) & 0xff;
      int invert = (kcontrol->private_value >> 24) & 0xff;
      unsigned short val;

      val = (ucontrol->value.integer.value[0] & mask);
      if (invert)
            val = mask - val;
      return snd_fm801_update_bits(chip, reg, mask << shift, val << shift);
}

#define FM801_DOUBLE(xname, reg, shift_left, shift_right, mask, invert) \
{ .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, .info = snd_fm801_info_double, \
  .get = snd_fm801_get_double, .put = snd_fm801_put_double, \
  .private_value = reg | (shift_left << 8) | (shift_right << 12) | (mask << 16) | (invert << 24) }
#define FM801_DOUBLE_TLV(xname, reg, shift_left, shift_right, mask, invert, xtlv) \
{ .iface = SNDRV_CTL_ELEM_IFACE_MIXER, \
  .access = SNDRV_CTL_ELEM_ACCESS_READWRITE | SNDRV_CTL_ELEM_ACCESS_TLV_READ, \
  .name = xname, .info = snd_fm801_info_double, \
  .get = snd_fm801_get_double, .put = snd_fm801_put_double, \
  .private_value = reg | (shift_left << 8) | (shift_right << 12) | (mask << 16) | (invert << 24), \
  .tlv = { .p = (xtlv) } }

static int snd_fm801_info_double(struct snd_kcontrol *kcontrol,
                         struct snd_ctl_elem_info *uinfo)
{
      int mask = (kcontrol->private_value >> 16) & 0xff;

      uinfo->type = mask == 1 ? SNDRV_CTL_ELEM_TYPE_BOOLEAN : SNDRV_CTL_ELEM_TYPE_INTEGER;
      uinfo->count = 2;
      uinfo->value.integer.min = 0;
      uinfo->value.integer.max = mask;
      return 0;
}

static int snd_fm801_get_double(struct snd_kcontrol *kcontrol,
                        struct snd_ctl_elem_value *ucontrol)
{
      struct fm801 *chip = snd_kcontrol_chip(kcontrol);
        int reg = kcontrol->private_value & 0xff;
      int shift_left = (kcontrol->private_value >> 8) & 0x0f;
      int shift_right = (kcontrol->private_value >> 12) & 0x0f;
      int mask = (kcontrol->private_value >> 16) & 0xff;
      int invert = (kcontrol->private_value >> 24) & 0xff;

      spin_lock_irq(&chip->reg_lock);
      ucontrol->value.integer.value[0] = (inw(chip->port + reg) >> shift_left) & mask;
      ucontrol->value.integer.value[1] = (inw(chip->port + reg) >> shift_right) & mask;
      spin_unlock_irq(&chip->reg_lock);
      if (invert) {
            ucontrol->value.integer.value[0] = mask - ucontrol->value.integer.value[0];
            ucontrol->value.integer.value[1] = mask - ucontrol->value.integer.value[1];
      }
      return 0;
}

static int snd_fm801_put_double(struct snd_kcontrol *kcontrol,
                        struct snd_ctl_elem_value *ucontrol)
{
      struct fm801 *chip = snd_kcontrol_chip(kcontrol);
      int reg = kcontrol->private_value & 0xff;
      int shift_left = (kcontrol->private_value >> 8) & 0x0f;
      int shift_right = (kcontrol->private_value >> 12) & 0x0f;
      int mask = (kcontrol->private_value >> 16) & 0xff;
      int invert = (kcontrol->private_value >> 24) & 0xff;
      unsigned short val1, val2;
 
      val1 = ucontrol->value.integer.value[0] & mask;
      val2 = ucontrol->value.integer.value[1] & mask;
      if (invert) {
            val1 = mask - val1;
            val2 = mask - val2;
      }
      return snd_fm801_update_bits(chip, reg,
                             (mask << shift_left) | (mask << shift_right),
                             (val1 << shift_left ) | (val2 << shift_right));
}

static int snd_fm801_info_mux(struct snd_kcontrol *kcontrol,
                        struct snd_ctl_elem_info *uinfo)
{
      static char *texts[5] = {
            "AC97 Primary", "FM", "I2S", "PCM", "AC97 Secondary"
      };
 
      uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
      uinfo->count = 1;
      uinfo->value.enumerated.items = 5;
      if (uinfo->value.enumerated.item > 4)
            uinfo->value.enumerated.item = 4;
      strcpy(uinfo->value.enumerated.name, texts[uinfo->value.enumerated.item]);
      return 0;
}

static int snd_fm801_get_mux(struct snd_kcontrol *kcontrol,
                       struct snd_ctl_elem_value *ucontrol)
{
      struct fm801 *chip = snd_kcontrol_chip(kcontrol);
        unsigned short val;
 
      val = inw(FM801_REG(chip, REC_SRC)) & 7;
      if (val > 4)
            val = 4;
        ucontrol->value.enumerated.item[0] = val;
        return 0;
}

static int snd_fm801_put_mux(struct snd_kcontrol *kcontrol,
                       struct snd_ctl_elem_value *ucontrol)
{
      struct fm801 *chip = snd_kcontrol_chip(kcontrol);
        unsigned short val;
 
        if ((val = ucontrol->value.enumerated.item[0]) > 4)
                return -EINVAL;
      return snd_fm801_update_bits(chip, FM801_REC_SRC, 7, val);
}

static DECLARE_TLV_DB_SCALE(db_scale_dsp, -3450, 150, 0);

#define FM801_CONTROLS ARRAY_SIZE(snd_fm801_controls)

static struct snd_kcontrol_new snd_fm801_controls[] __devinitdata = {
FM801_DOUBLE_TLV("Wave Playback Volume", FM801_PCM_VOL, 0, 8, 31, 1,
             db_scale_dsp),
FM801_SINGLE("Wave Playback Switch", FM801_PCM_VOL, 15, 1, 1),
FM801_DOUBLE_TLV("I2S Playback Volume", FM801_I2S_VOL, 0, 8, 31, 1,
             db_scale_dsp),
FM801_SINGLE("I2S Playback Switch", FM801_I2S_VOL, 15, 1, 1),
FM801_DOUBLE_TLV("FM Playback Volume", FM801_FM_VOL, 0, 8, 31, 1,
             db_scale_dsp),
FM801_SINGLE("FM Playback Switch", FM801_FM_VOL, 15, 1, 1),
{
      .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
      .name = "Digital Capture Source",
      .info = snd_fm801_info_mux,
      .get = snd_fm801_get_mux,
      .put = snd_fm801_put_mux,
}
};

#define FM801_CONTROLS_MULTI ARRAY_SIZE(snd_fm801_controls_multi)

static struct snd_kcontrol_new snd_fm801_controls_multi[] __devinitdata = {
FM801_SINGLE("AC97 2ch->4ch Copy Switch", FM801_CODEC_CTRL, 7, 1, 0),
FM801_SINGLE("AC97 18-bit Switch", FM801_CODEC_CTRL, 10, 1, 0),
FM801_SINGLE(SNDRV_CTL_NAME_IEC958("",CAPTURE,SWITCH), FM801_I2S_MODE, 8, 1, 0),
FM801_SINGLE(SNDRV_CTL_NAME_IEC958("Raw Data ",PLAYBACK,SWITCH), FM801_I2S_MODE, 9, 1, 0),
FM801_SINGLE(SNDRV_CTL_NAME_IEC958("Raw Data ",CAPTURE,SWITCH), FM801_I2S_MODE, 10, 1, 0),
FM801_SINGLE(SNDRV_CTL_NAME_IEC958("",PLAYBACK,SWITCH), FM801_GEN_CTRL, 2, 1, 0),
};

static void snd_fm801_mixer_free_ac97_bus(struct snd_ac97_bus *bus)
{
      struct fm801 *chip = bus->private_data;
      chip->ac97_bus = NULL;
}

static void snd_fm801_mixer_free_ac97(struct snd_ac97 *ac97)
{
      struct fm801 *chip = ac97->private_data;
      if (ac97->num == 0) {
            chip->ac97 = NULL;
      } else {
            chip->ac97_sec = NULL;
      }
}

static int __devinit snd_fm801_mixer(struct fm801 *chip)
{
      struct snd_ac97_template ac97;
      unsigned int i;
      int err;
      static struct snd_ac97_bus_ops ops = {
            .write = snd_fm801_codec_write,
            .read = snd_fm801_codec_read,
      };

      if ((err = snd_ac97_bus(chip->card, 0, &ops, chip, &chip->ac97_bus)) < 0)
            return err;
      chip->ac97_bus->private_free = snd_fm801_mixer_free_ac97_bus;

      memset(&ac97, 0, sizeof(ac97));
      ac97.private_data = chip;
      ac97.private_free = snd_fm801_mixer_free_ac97;
      if ((err = snd_ac97_mixer(chip->ac97_bus, &ac97, &chip->ac97)) < 0)
            return err;
      if (chip->secondary) {
            ac97.num = 1;
            ac97.addr = chip->secondary_addr;
            if ((err = snd_ac97_mixer(chip->ac97_bus, &ac97, &chip->ac97_sec)) < 0)
                  return err;
      }
      for (i = 0; i < FM801_CONTROLS; i++)
            snd_ctl_add(chip->card, snd_ctl_new1(&snd_fm801_controls[i], chip));
      if (chip->multichannel) {
            for (i = 0; i < FM801_CONTROLS_MULTI; i++)
                  snd_ctl_add(chip->card, snd_ctl_new1(&snd_fm801_controls_multi[i], chip));
      }
      return 0;
}

/*
 *  initialization routines
 */

static int wait_for_codec(struct fm801 *chip, unsigned int codec_id,
                    unsigned short reg, unsigned long waits)
{
      unsigned long timeout = jiffies + waits;

      outw(FM801_AC97_READ | (codec_id << FM801_AC97_ADDR_SHIFT) | reg,
           FM801_REG(chip, AC97_CMD));
      udelay(5);
      do {
            if ((inw(FM801_REG(chip, AC97_CMD)) & (FM801_AC97_VALID|FM801_AC97_BUSY))
                == FM801_AC97_VALID)
                  return 0;
            schedule_timeout_uninterruptible(1);
      } while (time_after(timeout, jiffies));
      return -EIO;
}

static int snd_fm801_chip_init(struct fm801 *chip, int resume)
{
      int id;
      unsigned short cmdw;

      if (chip->tea575x_tuner & 0x0010)
            goto __ac97_ok;

      /* codec cold reset + AC'97 warm reset */
      outw((1<<5) | (1<<6), FM801_REG(chip, CODEC_CTRL));
      inw(FM801_REG(chip, CODEC_CTRL)); /* flush posting data */
      udelay(100);
      outw(0, FM801_REG(chip, CODEC_CTRL));

      if (wait_for_codec(chip, 0, AC97_RESET, msecs_to_jiffies(750)) < 0) {
            snd_printk(KERN_ERR "Primary AC'97 codec not found\n");
            if (! resume)
                  return -EIO;
      }

      if (chip->multichannel) {
            if (chip->secondary_addr) {
                  wait_for_codec(chip, chip->secondary_addr,
                               AC97_VENDOR_ID1, msecs_to_jiffies(50));
            } else {
                  /* my card has the secondary codec */
                  /* at address #3, so the loop is inverted */
                  for (id = 3; id > 0; id--) {
                        if (! wait_for_codec(chip, id, AC97_VENDOR_ID1,
                                         msecs_to_jiffies(50))) {
                              cmdw = inw(FM801_REG(chip, AC97_DATA));
                              if (cmdw != 0xffff && cmdw != 0) {
                                    chip->secondary = 1;
                                    chip->secondary_addr = id;
                                    break;
                              }
                        }
                  }
            }

            /* the recovery phase, it seems that probing for non-existing codec might */
            /* cause timeout problems */
            wait_for_codec(chip, 0, AC97_VENDOR_ID1, msecs_to_jiffies(750));
      }

      __ac97_ok:

      /* init volume */
      outw(0x0808, FM801_REG(chip, PCM_VOL));
      outw(0x9f1f, FM801_REG(chip, FM_VOL));
      outw(0x8808, FM801_REG(chip, I2S_VOL));

      /* I2S control - I2S mode */
      outw(0x0003, FM801_REG(chip, I2S_MODE));

      /* interrupt setup */
      cmdw = inw(FM801_REG(chip, IRQ_MASK));
      if (chip->irq < 0)
            cmdw |= 0x00c3;         /* mask everything, no PCM nor MPU */
      else
            cmdw &= ~0x0083;  /* unmask MPU, PLAYBACK & CAPTURE */
      outw(cmdw, FM801_REG(chip, IRQ_MASK));

      /* interrupt clear */
      outw(FM801_IRQ_PLAYBACK|FM801_IRQ_CAPTURE|FM801_IRQ_MPU, FM801_REG(chip, IRQ_STATUS));

      return 0;
}


static int snd_fm801_free(struct fm801 *chip)
{
      unsigned short cmdw;

      if (chip->irq < 0)
            goto __end_hw;

      /* interrupt setup - mask everything */
      cmdw = inw(FM801_REG(chip, IRQ_MASK));
      cmdw |= 0x00c3;
      outw(cmdw, FM801_REG(chip, IRQ_MASK));

      __end_hw:
#ifdef TEA575X_RADIO
      snd_tea575x_exit(&chip->tea);
#endif
      if (chip->irq >= 0)
            free_irq(chip->irq, chip);
      pci_release_regions(chip->pci);
      pci_disable_device(chip->pci);

      kfree(chip);
      return 0;
}

static int snd_fm801_dev_free(struct snd_device *device)
{
      struct fm801 *chip = device->device_data;
      return snd_fm801_free(chip);
}

static int __devinit snd_fm801_create(struct snd_card *card,
                              struct pci_dev * pci,
                              int tea575x_tuner,
                              struct fm801 ** rchip)
{
      struct fm801 *chip;
      unsigned char rev;
      int err;
      static struct snd_device_ops ops = {
            .dev_free = snd_fm801_dev_free,
      };

      *rchip = NULL;
      if ((err = pci_enable_device(pci)) < 0)
            return err;
      chip = kzalloc(sizeof(*chip), GFP_KERNEL);
      if (chip == NULL) {
            pci_disable_device(pci);
            return -ENOMEM;
      }
      spin_lock_init(&chip->reg_lock);
      chip->card = card;
      chip->pci = pci;
      chip->irq = -1;
      chip->tea575x_tuner = tea575x_tuner;
      if ((err = pci_request_regions(pci, "FM801")) < 0) {
            kfree(chip);
            pci_disable_device(pci);
            return err;
      }
      chip->port = pci_resource_start(pci, 0);
      if ((tea575x_tuner & 0x0010) == 0) {
            if (request_irq(pci->irq, snd_fm801_interrupt, IRQF_DISABLED|IRQF_SHARED,
                        "FM801", chip)) {
                  snd_printk(KERN_ERR "unable to grab IRQ %d\n", chip->irq);
                  snd_fm801_free(chip);
                  return -EBUSY;
            }
            chip->irq = pci->irq;
            pci_set_master(pci);
      }

      pci_read_config_byte(pci, PCI_REVISION_ID, &rev);
      if (rev >= 0xb1)  /* FM801-AU */
            chip->multichannel = 1;

      snd_fm801_chip_init(chip, 0);

      if ((err = snd_device_new(card, SNDRV_DEV_LOWLEVEL, chip, &ops)) < 0) {
            snd_fm801_free(chip);
            return err;
      }

      snd_card_set_dev(card, &pci->dev);

#ifdef TEA575X_RADIO
      if (tea575x_tuner > 0 && (tea575x_tuner & 0x000f) < 4) {
            chip->tea.dev_nr = tea575x_tuner >> 16;
            chip->tea.card = card;
            chip->tea.freq_fixup = 10700;
            chip->tea.private_data = chip;
            chip->tea.ops = &snd_fm801_tea_ops[(tea575x_tuner & 0x000f) - 1];
            snd_tea575x_init(&chip->tea);
      }
#endif

      *rchip = chip;
      return 0;
}

static int __devinit snd_card_fm801_probe(struct pci_dev *pci,
                                const struct pci_device_id *pci_id)
{
      static int dev;
      struct snd_card *card;
      struct fm801 *chip;
      struct snd_opl3 *opl3;
      int err;

        if (dev >= SNDRV_CARDS)
                return -ENODEV;
      if (!enable[dev]) {
            dev++;
            return -ENOENT;
      }

      card = snd_card_new(index[dev], id[dev], THIS_MODULE, 0);
      if (card == NULL)
            return -ENOMEM;
      if ((err = snd_fm801_create(card, pci, tea575x_tuner[dev], &chip)) < 0) {
            snd_card_free(card);
            return err;
      }
      card->private_data = chip;

      strcpy(card->driver, "FM801");
      strcpy(card->shortname, "ForteMedia FM801-");
      strcat(card->shortname, chip->multichannel ? "AU" : "AS");
      sprintf(card->longname, "%s at 0x%lx, irq %i",
            card->shortname, chip->port, chip->irq);

      if (tea575x_tuner[dev] & 0x0010)
            goto __fm801_tuner_only;

      if ((err = snd_fm801_pcm(chip, 0, NULL)) < 0) {
            snd_card_free(card);
            return err;
      }
      if ((err = snd_fm801_mixer(chip)) < 0) {
            snd_card_free(card);
            return err;
      }
      if ((err = snd_mpu401_uart_new(card, 0, MPU401_HW_FM801,
                               FM801_REG(chip, MPU401_DATA),
                               MPU401_INFO_INTEGRATED,
                               chip->irq, 0, &chip->rmidi)) < 0) {
            snd_card_free(card);
            return err;
      }
      if ((err = snd_opl3_create(card, FM801_REG(chip, OPL3_BANK0),
                           FM801_REG(chip, OPL3_BANK1),
                           OPL3_HW_OPL3_FM801, 1, &opl3)) < 0) {
            snd_card_free(card);
            return err;
      }
      if ((err = snd_opl3_hwdep_new(opl3, 0, 1, NULL)) < 0) {
            snd_card_free(card);
            return err;
      }

      __fm801_tuner_only:
      if ((err = snd_card_register(card)) < 0) {
            snd_card_free(card);
            return err;
      }
      pci_set_drvdata(pci, card);
      dev++;
      return 0;
}

static void __devexit snd_card_fm801_remove(struct pci_dev *pci)
{
      snd_card_free(pci_get_drvdata(pci));
      pci_set_drvdata(pci, NULL);
}

#ifdef CONFIG_PM
static unsigned char saved_regs[] = {
      FM801_PCM_VOL, FM801_I2S_VOL, FM801_FM_VOL, FM801_REC_SRC,
      FM801_PLY_CTRL, FM801_PLY_COUNT, FM801_PLY_BUF1, FM801_PLY_BUF2,
      FM801_CAP_CTRL, FM801_CAP_COUNT, FM801_CAP_BUF1, FM801_CAP_BUF2,
      FM801_CODEC_CTRL, FM801_I2S_MODE, FM801_VOLUME, FM801_GEN_CTRL,
};

static int snd_fm801_suspend(struct pci_dev *pci, pm_message_t state)
{
      struct snd_card *card = pci_get_drvdata(pci);
      struct fm801 *chip = card->private_data;
      int i;

      snd_power_change_state(card, SNDRV_CTL_POWER_D3hot);
      snd_pcm_suspend_all(chip->pcm);
      snd_ac97_suspend(chip->ac97);
      snd_ac97_suspend(chip->ac97_sec);
      for (i = 0; i < ARRAY_SIZE(saved_regs); i++)
            chip->saved_regs[i] = inw(chip->port + saved_regs[i]);
      /* FIXME: tea575x suspend */

      pci_set_power_state(pci, PCI_D3hot);
      pci_disable_device(pci);
      pci_save_state(pci);
      return 0;
}

static int snd_fm801_resume(struct pci_dev *pci)
{
      struct snd_card *card = pci_get_drvdata(pci);
      struct fm801 *chip = card->private_data;
      int i;

      pci_restore_state(pci);
      pci_enable_device(pci);
      pci_set_power_state(pci, PCI_D0);
      pci_set_master(pci);

      snd_fm801_chip_init(chip, 1);
      snd_ac97_resume(chip->ac97);
      snd_ac97_resume(chip->ac97_sec);
      for (i = 0; i < ARRAY_SIZE(saved_regs); i++)
            outw(chip->saved_regs[i], chip->port + saved_regs[i]);

      snd_power_change_state(card, SNDRV_CTL_POWER_D0);
      return 0;
}
#endif

static struct pci_driver driver = {
      .name = "FM801",
      .id_table = snd_fm801_ids,
      .probe = snd_card_fm801_probe,
      .remove = __devexit_p(snd_card_fm801_remove),
#ifdef CONFIG_PM
      .suspend = snd_fm801_suspend,
      .resume = snd_fm801_resume,
#endif
};

static int __init alsa_card_fm801_init(void)
{
      return pci_register_driver(&driver);
}

static void __exit alsa_card_fm801_exit(void)
{
      pci_unregister_driver(&driver);
}

module_init(alsa_card_fm801_init)
module_exit(alsa_card_fm801_exit)

Generated by  Doxygen 1.6.0   Back to index