Logo Search packages:      
Sourcecode: alsa-driver version File versions  Download package

pmac.c

/*
 * PMac DBDMA lowlevel functions
 *
 * Copyright (c) by Takashi Iwai <tiwai@suse.de>
 * code based on dmasound.c.
 *
 *   This program is free software; you can redistribute it and/or modify
 *   it under the terms of the GNU General Public License as published by
 *   the Free Software Foundation; either version 2 of the License, or
 *   (at your option) any later version.
 *
 *   This program is distributed in the hope that it will be useful,
 *   but WITHOUT ANY WARRANTY; without even the implied warranty of
 *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *   GNU General Public License for more details.
 *
 *   You should have received a copy of the GNU General Public License
 *   along with this program; if not, write to the Free Software
 *   Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
 */


#include <sound/driver.h>
#include <asm/io.h>
#include <asm/irq.h>
#include <linux/init.h>
#include <linux/delay.h>
#include <linux/slab.h>
#include <linux/interrupt.h>
#include <linux/pci.h>
#include <linux/dma-mapping.h>
#include <sound/core.h>
#include "pmac.h"
#include <sound/pcm_params.h>
#include <asm/pmac_feature.h>
#include <asm/pci-bridge.h>


#ifdef CONFIG_PM
static int snd_pmac_register_sleep_notifier(pmac_t *chip);
static int snd_pmac_unregister_sleep_notifier(pmac_t *chip);
static int snd_pmac_suspend(snd_card_t *card, pm_message_t state);
static int snd_pmac_resume(snd_card_t *card);
#endif


/* fixed frequency table for awacs, screamer, burgundy, DACA (44100 max) */
static int awacs_freqs[8] = {
      44100, 29400, 22050, 17640, 14700, 11025, 8820, 7350
};
/* fixed frequency table for tumbler */
static int tumbler_freqs[1] = {
      44100
};

/*
 * allocate DBDMA command arrays
 */
static int snd_pmac_dbdma_alloc(pmac_t *chip, pmac_dbdma_t *rec, int size)
{
      unsigned int rsize = sizeof(struct dbdma_cmd) * (size + 1);

      rec->space = dma_alloc_coherent(&chip->pdev->dev, rsize,
                              &rec->dma_base, GFP_KERNEL);
      if (rec->space == NULL)
            return -ENOMEM;
      rec->size = size;
      memset(rec->space, 0, rsize);
      rec->cmds = (void __iomem *)DBDMA_ALIGN(rec->space);
      rec->addr = rec->dma_base + (unsigned long)((char *)rec->cmds - (char *)rec->space);

      return 0;
}

static void snd_pmac_dbdma_free(pmac_t *chip, pmac_dbdma_t *rec)
{
      if (rec) {
            unsigned int rsize = sizeof(struct dbdma_cmd) * (rec->size + 1);

            dma_free_coherent(&chip->pdev->dev, rsize, rec->space, rec->dma_base);
      }
}


/*
 * pcm stuff
 */

/*
 * look up frequency table
 */

unsigned int snd_pmac_rate_index(pmac_t *chip, pmac_stream_t *rec, unsigned int rate)
{
      int i, ok, found;

      ok = rec->cur_freqs;
      if (rate > chip->freq_table[0])
            return 0;
      found = 0;
      for (i = 0; i < chip->num_freqs; i++, ok >>= 1) {
            if (! (ok & 1)) continue;
            found = i;
            if (rate >= chip->freq_table[i])
                  break;
      }
      return found;
}

/*
 * check whether another stream is active
 */
static inline int another_stream(int stream)
{
      return (stream == SNDRV_PCM_STREAM_PLAYBACK) ?
            SNDRV_PCM_STREAM_CAPTURE : SNDRV_PCM_STREAM_PLAYBACK;
}

/*
 * allocate buffers
 */
static int snd_pmac_pcm_hw_params(snd_pcm_substream_t *subs,
                          snd_pcm_hw_params_t *hw_params)
{
      return snd_pcm_lib_malloc_pages(subs, params_buffer_bytes(hw_params));
}

/*
 * release buffers
 */
static int snd_pmac_pcm_hw_free(snd_pcm_substream_t *subs)
{
      snd_pcm_lib_free_pages(subs);
      return 0;
}

/*
 * get a stream of the opposite direction
 */
static pmac_stream_t *snd_pmac_get_stream(pmac_t *chip, int stream)
{
      switch (stream) {
      case SNDRV_PCM_STREAM_PLAYBACK:
            return &chip->playback;
      case SNDRV_PCM_STREAM_CAPTURE:
            return &chip->capture;
      default:
            snd_BUG();
            return NULL;
      }
}

/*
 * wait while run status is on
 */
static inline void
snd_pmac_wait_ack(pmac_stream_t *rec)
{
      int timeout = 50000;
      while ((in_le32(&rec->dma->status) & RUN) && timeout-- > 0)
            udelay(1);
}

/*
 * set the format and rate to the chip.
 * call the lowlevel function if defined (e.g. for AWACS).
 */
static void snd_pmac_pcm_set_format(pmac_t *chip)
{
      /* set up frequency and format */
      out_le32(&chip->awacs->control, chip->control_mask | (chip->rate_index << 8));
      out_le32(&chip->awacs->byteswap, chip->format == SNDRV_PCM_FORMAT_S16_LE ? 1 : 0);
      if (chip->set_format)
            chip->set_format(chip);
}

/*
 * stop the DMA transfer
 */
static inline void snd_pmac_dma_stop(pmac_stream_t *rec)
{
      out_le32(&rec->dma->control, (RUN|WAKE|FLUSH|PAUSE) << 16);
      snd_pmac_wait_ack(rec);
}

/*
 * set the command pointer address
 */
static inline void snd_pmac_dma_set_command(pmac_stream_t *rec, pmac_dbdma_t *cmd)
{
      out_le32(&rec->dma->cmdptr, cmd->addr);
}

/*
 * start the DMA
 */
static inline void snd_pmac_dma_run(pmac_stream_t *rec, int status)
{
      out_le32(&rec->dma->control, status | (status << 16));
}


/*
 * prepare playback/capture stream
 */
static int snd_pmac_pcm_prepare(pmac_t *chip, pmac_stream_t *rec, snd_pcm_substream_t *subs)
{
      int i;
      volatile struct dbdma_cmd __iomem *cp;
      snd_pcm_runtime_t *runtime = subs->runtime;
      int rate_index;
      long offset;
      pmac_stream_t *astr;
      
      rec->dma_size = snd_pcm_lib_buffer_bytes(subs);
      rec->period_size = snd_pcm_lib_period_bytes(subs);
      rec->nperiods = rec->dma_size / rec->period_size;
      rec->cur_period = 0;
      rate_index = snd_pmac_rate_index(chip, rec, runtime->rate);

      /* set up constraints */
      astr = snd_pmac_get_stream(chip, another_stream(rec->stream));
      if (! astr)
            return -EINVAL;
      astr->cur_freqs = 1 << rate_index;
      astr->cur_formats = 1 << runtime->format;
      chip->rate_index = rate_index;
      chip->format = runtime->format;

      /* We really want to execute a DMA stop command, after the AWACS
       * is initialized.
       * For reasons I don't understand, it stops the hissing noise
       * common to many PowerBook G3 systems and random noise otherwise
       * captured on iBook2's about every third time. -ReneR
       */
      spin_lock_irq(&chip->reg_lock);
      snd_pmac_dma_stop(rec);
      st_le16(&chip->extra_dma.cmds->command, DBDMA_STOP);
      snd_pmac_dma_set_command(rec, &chip->extra_dma);
      snd_pmac_dma_run(rec, RUN);
      spin_unlock_irq(&chip->reg_lock);
      mdelay(5);
      spin_lock_irq(&chip->reg_lock);
      /* continuous DMA memory type doesn't provide the physical address,
       * so we need to resolve the address here...
       */
      offset = runtime->dma_addr;
      for (i = 0, cp = rec->cmd.cmds; i < rec->nperiods; i++, cp++) {
            st_le32(&cp->phy_addr, offset);
            st_le16(&cp->req_count, rec->period_size);
            /*st_le16(&cp->res_count, 0);*/
            st_le16(&cp->xfer_status, 0);
            offset += rec->period_size;
      }
      /* make loop */
      st_le16(&cp->command, DBDMA_NOP + BR_ALWAYS);
      st_le32(&cp->cmd_dep, rec->cmd.addr);

      snd_pmac_dma_stop(rec);
      snd_pmac_dma_set_command(rec, &rec->cmd);
      spin_unlock_irq(&chip->reg_lock);

      return 0;
}


/*
 * PCM trigger/stop
 */
static int snd_pmac_pcm_trigger(pmac_t *chip, pmac_stream_t *rec,
                        snd_pcm_substream_t *subs, int cmd)
{
      volatile struct dbdma_cmd __iomem *cp;
      int i, command;

      switch (cmd) {
      case SNDRV_PCM_TRIGGER_START:
      case SNDRV_PCM_TRIGGER_RESUME:
            if (rec->running)
                  return -EBUSY;
            command = (subs->stream == SNDRV_PCM_STREAM_PLAYBACK ?
                     OUTPUT_MORE : INPUT_MORE) + INTR_ALWAYS;
            spin_lock(&chip->reg_lock);
            snd_pmac_beep_stop(chip);
            snd_pmac_pcm_set_format(chip);
            for (i = 0, cp = rec->cmd.cmds; i < rec->nperiods; i++, cp++)
                  out_le16(&cp->command, command);
            snd_pmac_dma_set_command(rec, &rec->cmd);
            (void)in_le32(&rec->dma->status);
            snd_pmac_dma_run(rec, RUN|WAKE);
            rec->running = 1;
            spin_unlock(&chip->reg_lock);
            break;

      case SNDRV_PCM_TRIGGER_STOP:
      case SNDRV_PCM_TRIGGER_SUSPEND:
            spin_lock(&chip->reg_lock);
            rec->running = 0;
            /*printk("stopped!!\n");*/
            snd_pmac_dma_stop(rec);
            for (i = 0, cp = rec->cmd.cmds; i < rec->nperiods; i++, cp++)
                  out_le16(&cp->command, DBDMA_STOP);
            spin_unlock(&chip->reg_lock);
            break;

      default:
            return -EINVAL;
      }

      return 0;
}

/*
 * return the current pointer
 */
inline
static snd_pcm_uframes_t snd_pmac_pcm_pointer(pmac_t *chip, pmac_stream_t *rec,
                                    snd_pcm_substream_t *subs)
{
      int count = 0;

#if 1 /* hmm.. how can we get the current dma pointer?? */
      int stat;
      volatile struct dbdma_cmd __iomem *cp = &rec->cmd.cmds[rec->cur_period];
      stat = ld_le16(&cp->xfer_status);
      if (stat & (ACTIVE|DEAD)) {
            count = in_le16(&cp->res_count);
            if (count)
                  count = rec->period_size - count;
      }
#endif
      count += rec->cur_period * rec->period_size;
      /*printk("pointer=%d\n", count);*/
      return bytes_to_frames(subs->runtime, count);
}

/*
 * playback
 */

static int snd_pmac_playback_prepare(snd_pcm_substream_t *subs)
{
      pmac_t *chip = snd_pcm_substream_chip(subs);
      return snd_pmac_pcm_prepare(chip, &chip->playback, subs);
}

static int snd_pmac_playback_trigger(snd_pcm_substream_t *subs,
                             int cmd)
{
      pmac_t *chip = snd_pcm_substream_chip(subs);
      return snd_pmac_pcm_trigger(chip, &chip->playback, subs, cmd);
}

static snd_pcm_uframes_t snd_pmac_playback_pointer(snd_pcm_substream_t *subs)
{
      pmac_t *chip = snd_pcm_substream_chip(subs);
      return snd_pmac_pcm_pointer(chip, &chip->playback, subs);
}


/*
 * capture
 */

static int snd_pmac_capture_prepare(snd_pcm_substream_t *subs)
{
      pmac_t *chip = snd_pcm_substream_chip(subs);
      return snd_pmac_pcm_prepare(chip, &chip->capture, subs);
}

static int snd_pmac_capture_trigger(snd_pcm_substream_t *subs,
                            int cmd)
{
      pmac_t *chip = snd_pcm_substream_chip(subs);
      return snd_pmac_pcm_trigger(chip, &chip->capture, subs, cmd);
}

static snd_pcm_uframes_t snd_pmac_capture_pointer(snd_pcm_substream_t *subs)
{
      pmac_t *chip = snd_pcm_substream_chip(subs);
      return snd_pmac_pcm_pointer(chip, &chip->capture, subs);
}


/*
 * update playback/capture pointer from interrupts
 */
static void snd_pmac_pcm_update(pmac_t *chip, pmac_stream_t *rec)
{
      volatile struct dbdma_cmd __iomem *cp;
      int c;
      int stat;

      spin_lock(&chip->reg_lock);
      if (rec->running) {
            cp = &rec->cmd.cmds[rec->cur_period];
            for (c = 0; c < rec->nperiods; c++) { /* at most all fragments */
                  stat = ld_le16(&cp->xfer_status);
                  if (! (stat & ACTIVE))
                        break;
                  /*printk("update frag %d\n", rec->cur_period);*/
                  st_le16(&cp->xfer_status, 0);
                  st_le16(&cp->req_count, rec->period_size);
                  /*st_le16(&cp->res_count, 0);*/
                  rec->cur_period++;
                  if (rec->cur_period >= rec->nperiods) {
                        rec->cur_period = 0;
                        cp = rec->cmd.cmds;
                  } else
                        cp++;
                  spin_unlock(&chip->reg_lock);
                  snd_pcm_period_elapsed(rec->substream);
                  spin_lock(&chip->reg_lock);
            }
      }
      spin_unlock(&chip->reg_lock);
}


/*
 * hw info
 */

static snd_pcm_hardware_t snd_pmac_playback =
{
      .info =                 (SNDRV_PCM_INFO_INTERLEAVED |
                         SNDRV_PCM_INFO_MMAP |
                         SNDRV_PCM_INFO_MMAP_VALID |
                         SNDRV_PCM_INFO_RESUME),
      .formats =        SNDRV_PCM_FMTBIT_S16_BE | SNDRV_PCM_FMTBIT_S16_LE,
      .rates =          SNDRV_PCM_RATE_8000_44100,
      .rate_min =       7350,
      .rate_max =       44100,
      .channels_min =         2,
      .channels_max =         2,
      .buffer_bytes_max =     131072,
      .period_bytes_min =     256,
      .period_bytes_max =     16384,
      .periods_min =          3,
      .periods_max =          PMAC_MAX_FRAGS,
};

static snd_pcm_hardware_t snd_pmac_capture =
{
      .info =                 (SNDRV_PCM_INFO_INTERLEAVED |
                         SNDRV_PCM_INFO_MMAP |
                         SNDRV_PCM_INFO_MMAP_VALID |
                         SNDRV_PCM_INFO_RESUME),
      .formats =        SNDRV_PCM_FMTBIT_S16_BE | SNDRV_PCM_FMTBIT_S16_LE,
      .rates =          SNDRV_PCM_RATE_8000_44100,
      .rate_min =       7350,
      .rate_max =       44100,
      .channels_min =         2,
      .channels_max =         2,
      .buffer_bytes_max =     131072,
      .period_bytes_min =     256,
      .period_bytes_max =     16384,
      .periods_min =          3,
      .periods_max =          PMAC_MAX_FRAGS,
};


#if 0 // NYI
static int snd_pmac_hw_rule_rate(snd_pcm_hw_params_t *params,
                         snd_pcm_hw_rule_t *rule)
{
      pmac_t *chip = rule->private;
      pmac_stream_t *rec = snd_pmac_get_stream(chip, rule->deps[0]);
      int i, freq_table[8], num_freqs;

      if (! rec)
            return -EINVAL;
      num_freqs = 0;
      for (i = chip->num_freqs - 1; i >= 0; i--) {
            if (rec->cur_freqs & (1 << i))
                  freq_table[num_freqs++] = chip->freq_table[i];
      }

      return snd_interval_list(hw_param_interval(params, rule->var),
                         num_freqs, freq_table, 0);
}

static int snd_pmac_hw_rule_format(snd_pcm_hw_params_t *params,
                           snd_pcm_hw_rule_t *rule)
{
      pmac_t *chip = rule->private;
      pmac_stream_t *rec = snd_pmac_get_stream(chip, rule->deps[0]);

      if (! rec)
            return -EINVAL;
      return snd_mask_refine_set(hw_param_mask(params, SNDRV_PCM_HW_PARAM_FORMAT),
                           rec->cur_formats);
}
#endif // NYI

static int snd_pmac_pcm_open(pmac_t *chip, pmac_stream_t *rec, snd_pcm_substream_t *subs)
{
      snd_pcm_runtime_t *runtime = subs->runtime;
      int i, j, fflags;
      static int typical_freqs[] = {
            44100,
            22050,
            11025,
            0,
      };
      static int typical_freq_flags[] = {
            SNDRV_PCM_RATE_44100,
            SNDRV_PCM_RATE_22050,
            SNDRV_PCM_RATE_11025,
            0,
      };

      /* look up frequency table and fill bit mask */
      runtime->hw.rates = 0;
      fflags = chip->freqs_ok;
      for (i = 0; typical_freqs[i]; i++) {
            for (j = 0; j < chip->num_freqs; j++) {
                  if ((chip->freqs_ok & (1 << j)) &&
                      chip->freq_table[j] == typical_freqs[i]) {
                        runtime->hw.rates |= typical_freq_flags[i];
                        fflags &= ~(1 << j);
                        break;
                  }
            }
      }
      if (fflags) /* rest */
            runtime->hw.rates |= SNDRV_PCM_RATE_KNOT;

      /* check for minimum and maximum rates */
      for (i = 0; i < chip->num_freqs; i++) {
            if (chip->freqs_ok & (1 << i)) {
                  runtime->hw.rate_max = chip->freq_table[i];
                  break;
            }
      }
      for (i = chip->num_freqs - 1; i >= 0; i--) {
            if (chip->freqs_ok & (1 << i)) {
                  runtime->hw.rate_min = chip->freq_table[i];
                  break;
            }
      }
      runtime->hw.formats = chip->formats_ok;
      if (chip->can_capture) {
            if (! chip->can_duplex)
                  runtime->hw.info |= SNDRV_PCM_INFO_HALF_DUPLEX;
            runtime->hw.info |= SNDRV_PCM_INFO_JOINT_DUPLEX;
      }
      runtime->private_data = rec;
      rec->substream = subs;

#if 0 /* FIXME: still under development.. */
      snd_pcm_hw_rule_add(runtime, 0, SNDRV_PCM_HW_PARAM_RATE,
                      snd_pmac_hw_rule_rate, chip, rec->stream, -1);
      snd_pcm_hw_rule_add(runtime, 0, SNDRV_PCM_HW_PARAM_FORMAT,
                      snd_pmac_hw_rule_format, chip, rec->stream, -1);
#endif

      runtime->hw.periods_max = rec->cmd.size - 1;

      if (chip->can_duplex)
            snd_pcm_set_sync(subs);

      /* constraints to fix choppy sound */
      snd_pcm_hw_constraint_integer(runtime, SNDRV_PCM_HW_PARAM_PERIODS);
      return 0;
}

static int snd_pmac_pcm_close(pmac_t *chip, pmac_stream_t *rec, snd_pcm_substream_t *subs)
{
      pmac_stream_t *astr;

      snd_pmac_dma_stop(rec);

      astr = snd_pmac_get_stream(chip, another_stream(rec->stream));
      if (! astr)
            return -EINVAL;

      /* reset constraints */
      astr->cur_freqs = chip->freqs_ok;
      astr->cur_formats = chip->formats_ok;
      
      return 0;
}

static int snd_pmac_playback_open(snd_pcm_substream_t *subs)
{
      pmac_t *chip = snd_pcm_substream_chip(subs);

      subs->runtime->hw = snd_pmac_playback;
      return snd_pmac_pcm_open(chip, &chip->playback, subs);
}

static int snd_pmac_capture_open(snd_pcm_substream_t *subs)
{
      pmac_t *chip = snd_pcm_substream_chip(subs);

      subs->runtime->hw = snd_pmac_capture;
      return snd_pmac_pcm_open(chip, &chip->capture, subs);
}

static int snd_pmac_playback_close(snd_pcm_substream_t *subs)
{
      pmac_t *chip = snd_pcm_substream_chip(subs);

      return snd_pmac_pcm_close(chip, &chip->playback, subs);
}

static int snd_pmac_capture_close(snd_pcm_substream_t *subs)
{
      pmac_t *chip = snd_pcm_substream_chip(subs);

      return snd_pmac_pcm_close(chip, &chip->capture, subs);
}

/*
 */

static snd_pcm_ops_t snd_pmac_playback_ops = {
      .open =           snd_pmac_playback_open,
      .close =    snd_pmac_playback_close,
      .ioctl =    snd_pcm_lib_ioctl,
      .hw_params =      snd_pmac_pcm_hw_params,
      .hw_free =  snd_pmac_pcm_hw_free,
      .prepare =  snd_pmac_playback_prepare,
      .trigger =  snd_pmac_playback_trigger,
      .pointer =  snd_pmac_playback_pointer,
};

static snd_pcm_ops_t snd_pmac_capture_ops = {
      .open =           snd_pmac_capture_open,
      .close =    snd_pmac_capture_close,
      .ioctl =    snd_pcm_lib_ioctl,
      .hw_params =      snd_pmac_pcm_hw_params,
      .hw_free =  snd_pmac_pcm_hw_free,
      .prepare =  snd_pmac_capture_prepare,
      .trigger =  snd_pmac_capture_trigger,
      .pointer =  snd_pmac_capture_pointer,
};

static void pmac_pcm_free(snd_pcm_t *pcm)
{
      snd_pcm_lib_preallocate_free_for_all(pcm);
}

int __init snd_pmac_pcm_new(pmac_t *chip)
{
      snd_pcm_t *pcm;
      int err;
      int num_captures = 1;

      if (! chip->can_capture)
            num_captures = 0;
      err = snd_pcm_new(chip->card, chip->card->driver, 0, 1, num_captures, &pcm);
      if (err < 0)
            return err;

      snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_pmac_playback_ops);
      if (chip->can_capture)
            snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &snd_pmac_capture_ops);

      pcm->private_data = chip;
      pcm->private_free = pmac_pcm_free;
      pcm->info_flags = SNDRV_PCM_INFO_JOINT_DUPLEX;
      strcpy(pcm->name, chip->card->shortname);
      chip->pcm = pcm;

      chip->formats_ok = SNDRV_PCM_FMTBIT_S16_BE;
      if (chip->can_byte_swap)
            chip->formats_ok |= SNDRV_PCM_FMTBIT_S16_LE;

      chip->playback.cur_formats = chip->formats_ok;
      chip->capture.cur_formats = chip->formats_ok;
      chip->playback.cur_freqs = chip->freqs_ok;
      chip->capture.cur_freqs = chip->freqs_ok;

      /* preallocate 64k buffer */
      snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_DEV,
                                    &chip->pdev->dev,
                                    64 * 1024, 64 * 1024);

      return 0;
}


static void snd_pmac_dbdma_reset(pmac_t *chip)
{
      out_le32(&chip->playback.dma->control, (RUN|PAUSE|FLUSH|WAKE|DEAD) << 16);
      snd_pmac_wait_ack(&chip->playback);
      out_le32(&chip->capture.dma->control, (RUN|PAUSE|FLUSH|WAKE|DEAD) << 16);
      snd_pmac_wait_ack(&chip->capture);
}


/*
 * handling beep
 */
void snd_pmac_beep_dma_start(pmac_t *chip, int bytes, unsigned long addr, int speed)
{
      pmac_stream_t *rec = &chip->playback;

      snd_pmac_dma_stop(rec);
      st_le16(&chip->extra_dma.cmds->req_count, bytes);
      st_le16(&chip->extra_dma.cmds->xfer_status, 0);
      st_le32(&chip->extra_dma.cmds->cmd_dep, chip->extra_dma.addr);
      st_le32(&chip->extra_dma.cmds->phy_addr, addr);
      st_le16(&chip->extra_dma.cmds->command, OUTPUT_MORE + BR_ALWAYS);
      out_le32(&chip->awacs->control,
             (in_le32(&chip->awacs->control) & ~0x1f00)
             | (speed << 8));
      out_le32(&chip->awacs->byteswap, 0);
      snd_pmac_dma_set_command(rec, &chip->extra_dma);
      snd_pmac_dma_run(rec, RUN);
}

void snd_pmac_beep_dma_stop(pmac_t *chip)
{
      snd_pmac_dma_stop(&chip->playback);
      st_le16(&chip->extra_dma.cmds->command, DBDMA_STOP);
      snd_pmac_pcm_set_format(chip); /* reset format */
}


/*
 * interrupt handlers
 */
static irqreturn_t
snd_pmac_tx_intr(int irq, void *devid, struct pt_regs *regs)
{
      pmac_t *chip = devid;
      snd_pmac_pcm_update(chip, &chip->playback);
      return IRQ_HANDLED;
}


static irqreturn_t
snd_pmac_rx_intr(int irq, void *devid, struct pt_regs *regs)
{
      pmac_t *chip = devid;
      snd_pmac_pcm_update(chip, &chip->capture);
      return IRQ_HANDLED;
}


static irqreturn_t
snd_pmac_ctrl_intr(int irq, void *devid, struct pt_regs *regs)
{
      pmac_t *chip = devid;
      int ctrl = in_le32(&chip->awacs->control);

      /*printk("pmac: control interrupt.. 0x%x\n", ctrl);*/
      if (ctrl & MASK_PORTCHG) {
            /* do something when headphone is plugged/unplugged? */
            if (chip->update_automute)
                  chip->update_automute(chip, 1);
      }
      if (ctrl & MASK_CNTLERR) {
            int err = (in_le32(&chip->awacs->codec_stat) & MASK_ERRCODE) >> 16;
            if (err && chip->model <= PMAC_SCREAMER)
                  snd_printk(KERN_DEBUG "error %x\n", err);
      }
      /* Writing 1s to the CNTLERR and PORTCHG bits clears them... */
      out_le32(&chip->awacs->control, ctrl);
      return IRQ_HANDLED;
}


/*
 * a wrapper to feature call for compatibility
 */
static void snd_pmac_sound_feature(pmac_t *chip, int enable)
{
      if (ppc_md.feature_call)
            ppc_md.feature_call(PMAC_FTR_SOUND_CHIP_ENABLE, chip->node, 0, enable);
}

/*
 * release resources
 */

static int snd_pmac_free(pmac_t *chip)
{
      /* stop sounds */
      if (chip->initialized) {
            snd_pmac_dbdma_reset(chip);
            /* disable interrupts from awacs interface */
            out_le32(&chip->awacs->control, in_le32(&chip->awacs->control) & 0xfff);
      }

      snd_pmac_sound_feature(chip, 0);
#ifdef CONFIG_PM
      snd_pmac_unregister_sleep_notifier(chip);
#endif

      /* clean up mixer if any */
      if (chip->mixer_free)
            chip->mixer_free(chip);

      snd_pmac_detach_beep(chip);

      /* release resources */
      if (chip->irq >= 0)
            free_irq(chip->irq, (void*)chip);
      if (chip->tx_irq >= 0)
            free_irq(chip->tx_irq, (void*)chip);
      if (chip->rx_irq >= 0)
            free_irq(chip->rx_irq, (void*)chip);
      snd_pmac_dbdma_free(chip, &chip->playback.cmd);
      snd_pmac_dbdma_free(chip, &chip->capture.cmd);
      snd_pmac_dbdma_free(chip, &chip->extra_dma);
      if (chip->macio_base)
            iounmap(chip->macio_base);
      if (chip->latch_base)
            iounmap(chip->latch_base);
      if (chip->awacs)
            iounmap(chip->awacs);
      if (chip->playback.dma)
            iounmap(chip->playback.dma);
      if (chip->capture.dma)
            iounmap(chip->capture.dma);
#ifndef CONFIG_PPC64
      if (chip->node) {
            int i;

            for (i = 0; i < 3; i++) {
                  if (chip->of_requested & (1 << i)) {
                        if (chip->is_k2)
                              release_OF_resource(chip->node->parent,
                                              i);
                        else
                              release_OF_resource(chip->node, i);
                  }
            }
      }
#endif /* CONFIG_PPC64 */
      if (chip->pdev)
            pci_dev_put(chip->pdev);
      kfree(chip);
      return 0;
}


/*
 * free the device
 */
static int snd_pmac_dev_free(snd_device_t *device)
{
      pmac_t *chip = device->device_data;
      return snd_pmac_free(chip);
}


/*
 * check the machine support byteswap (little-endian)
 */

static void __init detect_byte_swap(pmac_t *chip)
{
      struct device_node *mio;

      /* if seems that Keylargo can't byte-swap  */
      for (mio = chip->node->parent; mio; mio = mio->parent) {
            if (strcmp(mio->name, "mac-io") == 0) {
                  if (device_is_compatible(mio, "Keylargo"))
                        chip->can_byte_swap = 0;
                  break;
            }
      }

      /* it seems the Pismo & iBook can't byte-swap in hardware. */
      if (machine_is_compatible("PowerBook3,1") ||
          machine_is_compatible("PowerBook2,1"))
            chip->can_byte_swap = 0 ;

      if (machine_is_compatible("PowerBook2,1"))
            chip->can_duplex = 0;
}


/*
 * detect a sound chip
 */
static int __init snd_pmac_detect(pmac_t *chip)
{
      struct device_node *sound = NULL;
      unsigned int *prop, l;
      struct macio_chip* macio;

      u32 layout_id = 0;

      if (_machine != _MACH_Pmac)
            return -ENODEV;

      chip->subframe = 0;
      chip->revision = 0;
      chip->freqs_ok = 0xff; /* all ok */
      chip->model = PMAC_AWACS;
      chip->can_byte_swap = 1;
      chip->can_duplex = 1;
      chip->can_capture = 1;
      chip->num_freqs = ARRAY_SIZE(awacs_freqs);
      chip->freq_table = awacs_freqs;

      chip->control_mask = MASK_IEPC | MASK_IEE | 0x11; /* default */

      /* check machine type */
      if (machine_is_compatible("AAPL,3400/2400")
          || machine_is_compatible("AAPL,3500"))
            chip->is_pbook_3400 = 1;
      else if (machine_is_compatible("PowerBook1,1")
             || machine_is_compatible("AAPL,PowerBook1998"))
            chip->is_pbook_G3 = 1;
      chip->node = find_devices("awacs");
      if (chip->node)
            sound = chip->node;

      /*
       * powermac G3 models have a node called "davbus"
       * with a child called "sound".
       */
      if (!chip->node)
            chip->node = find_devices("davbus");
      /*
       * if we didn't find a davbus device, try 'i2s-a' since
       * this seems to be what iBooks have
       */
      if (! chip->node) {
            chip->node = find_devices("i2s-a");
            if (chip->node && chip->node->parent &&
                chip->node->parent->parent) {
                  if (device_is_compatible(chip->node->parent->parent,
                                     "K2-Keylargo"))
                        chip->is_k2 = 1;
            }
      }
      if (! chip->node)
            return -ENODEV;

      if (!sound) {
            sound = find_devices("sound");
            while (sound && sound->parent != chip->node)
                  sound = sound->next;
      }
      if (! sound)
            return -ENODEV;
      prop = (unsigned int *) get_property(sound, "sub-frame", NULL);
      if (prop && *prop < 16)
            chip->subframe = *prop;
      prop = (unsigned int *) get_property(sound, "layout-id", NULL);
      if (prop)
            layout_id = *prop;
      /* This should be verified on older screamers */
      if (device_is_compatible(sound, "screamer")) {
            chip->model = PMAC_SCREAMER;
            // chip->can_byte_swap = 0; /* FIXME: check this */
      }
      if (device_is_compatible(sound, "burgundy")) {
            chip->model = PMAC_BURGUNDY;
            chip->control_mask = MASK_IEPC | 0x11; /* disable IEE */
      }
      if (device_is_compatible(sound, "daca")) {
            chip->model = PMAC_DACA;
            chip->can_capture = 0;  /* no capture */
            chip->can_duplex = 0;
            // chip->can_byte_swap = 0; /* FIXME: check this */
            chip->control_mask = MASK_IEPC | 0x11; /* disable IEE */
      }
      if (device_is_compatible(sound, "tumbler")) {
            chip->model = PMAC_TUMBLER;
            chip->can_capture = 0;  /* no capture */
            chip->can_duplex = 0;
            // chip->can_byte_swap = 0; /* FIXME: check this */
            chip->num_freqs = ARRAY_SIZE(tumbler_freqs);
            chip->freq_table = tumbler_freqs;
            chip->control_mask = MASK_IEPC | 0x11; /* disable IEE */
      }
      if (device_is_compatible(sound, "snapper")) {
            chip->model = PMAC_SNAPPER;
            // chip->can_byte_swap = 0; /* FIXME: check this */
            chip->num_freqs = ARRAY_SIZE(tumbler_freqs);
            chip->freq_table = tumbler_freqs;
            chip->control_mask = MASK_IEPC | 0x11; /* disable IEE */
      }
      if (device_is_compatible(sound, "AOAKeylargo") ||
          device_is_compatible(sound, "AOAbase") ||
          device_is_compatible(sound, "AOAK2")) {
            /* For now, only support very basic TAS3004 based machines with
             * single frequency until proper i2s control is implemented
             */
            switch(layout_id) {
            case 0x48:
            case 0x46:
            case 0x33:
            case 0x29:
            case 0x24:
            case 0x50:
            case 0x5c:
                  chip->num_freqs = ARRAY_SIZE(tumbler_freqs);
                  chip->model = PMAC_SNAPPER;
                  chip->can_byte_swap = 0; /* FIXME: check this */
                  chip->control_mask = MASK_IEPC | 0x11;/* disable IEE */
                  break;
            case 0x3a:
                  chip->num_freqs = ARRAY_SIZE(tumbler_freqs);
                  chip->model = PMAC_TOONIE;
                  chip->can_byte_swap = 0; /* FIXME: check this */
                  chip->control_mask = MASK_IEPC | 0x11;/* disable IEE */
                  break;
            }
      }
      prop = (unsigned int *)get_property(sound, "device-id", NULL);
      if (prop)
            chip->device_id = *prop;
      chip->has_iic = (find_devices("perch") != NULL);

      /* We need the PCI device for DMA allocations, let's use a crude method
       * for now ...
       */
      macio = macio_find(chip->node, macio_unknown);
      if (macio == NULL)
            printk(KERN_WARNING "snd-powermac: can't locate macio !\n");
      else {
            struct pci_dev *pdev = NULL;

            for_each_pci_dev(pdev) {
                  struct device_node *np = pci_device_to_OF_node(pdev);
                  if (np && np == macio->of_node) {
                        chip->pdev = pdev;
                        break;
                  }
            }
      }
      if (chip->pdev == NULL)
            printk(KERN_WARNING "snd-powermac: can't locate macio PCI"
                   " device !\n");

      detect_byte_swap(chip);

      /* look for a property saying what sample rates
         are available */
      prop = (unsigned int *) get_property(sound, "sample-rates", &l);
      if (! prop)
            prop = (unsigned int *) get_property(sound,
                                         "output-frame-rates", &l);
      if (prop) {
            int i;
            chip->freqs_ok = 0;
            for (l /= sizeof(int); l > 0; --l) {
                  unsigned int r = *prop++;
                  /* Apple 'Fixed' format */
                  if (r >= 0x10000)
                        r >>= 16;
                  for (i = 0; i < chip->num_freqs; ++i) {
                        if (r == chip->freq_table[i]) {
                              chip->freqs_ok |= (1 << i);
                              break;
                        }
                  }
            }
      } else {
            /* assume only 44.1khz */
            chip->freqs_ok = 1;
      }

      return 0;
}

/*
 * exported - boolean info callbacks for ease of programming
 */
int snd_pmac_boolean_stereo_info(snd_kcontrol_t *kcontrol,
                         snd_ctl_elem_info_t *uinfo)
{
      uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
      uinfo->count = 2;
      uinfo->value.integer.min = 0;
      uinfo->value.integer.max = 1;
      return 0;
}

int snd_pmac_boolean_mono_info(snd_kcontrol_t *kcontrol,
                         snd_ctl_elem_info_t *uinfo)
{
      uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
      uinfo->count = 1;
      uinfo->value.integer.min = 0;
      uinfo->value.integer.max = 1;
      return 0;
}

#ifdef PMAC_SUPPORT_AUTOMUTE
/*
 * auto-mute
 */
static int pmac_auto_mute_get(snd_kcontrol_t *kcontrol, snd_ctl_elem_value_t *ucontrol)
{
      pmac_t *chip = snd_kcontrol_chip(kcontrol);
      ucontrol->value.integer.value[0] = chip->auto_mute;
      return 0;
}

static int pmac_auto_mute_put(snd_kcontrol_t *kcontrol, snd_ctl_elem_value_t *ucontrol)
{
      pmac_t *chip = snd_kcontrol_chip(kcontrol);
      if (ucontrol->value.integer.value[0] != chip->auto_mute) {
            chip->auto_mute = ucontrol->value.integer.value[0];
            if (chip->update_automute)
                  chip->update_automute(chip, 1);
            return 1;
      }
      return 0;
}

static int pmac_hp_detect_get(snd_kcontrol_t *kcontrol, snd_ctl_elem_value_t *ucontrol)
{
      pmac_t *chip = snd_kcontrol_chip(kcontrol);
      if (chip->detect_headphone)
            ucontrol->value.integer.value[0] = chip->detect_headphone(chip);
      else
            ucontrol->value.integer.value[0] = 0;
      return 0;
}

static snd_kcontrol_new_t auto_mute_controls[] __initdata = {
      { .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
        .name = "Auto Mute Switch",
        .info = snd_pmac_boolean_mono_info,
        .get = pmac_auto_mute_get,
        .put = pmac_auto_mute_put,
      },
      { .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
        .name = "Headphone Detection",
        .access = SNDRV_CTL_ELEM_ACCESS_READ,
        .info = snd_pmac_boolean_mono_info,
        .get = pmac_hp_detect_get,
      },
};

int __init snd_pmac_add_automute(pmac_t *chip)
{
      int err;
      chip->auto_mute = 1;
      err = snd_ctl_add(chip->card, snd_ctl_new1(&auto_mute_controls[0], chip));
      if (err < 0) {
            printk(KERN_ERR "snd-powermac: Failed to add automute control\n");
            return err;
      }
      chip->hp_detect_ctl = snd_ctl_new1(&auto_mute_controls[1], chip);
      return snd_ctl_add(chip->card, chip->hp_detect_ctl);
}
#endif /* PMAC_SUPPORT_AUTOMUTE */

/*
 * create and detect a pmac chip record
 */
int __init snd_pmac_new(snd_card_t *card, pmac_t **chip_return)
{
      pmac_t *chip;
      struct device_node *np;
      int i, err;
      unsigned long ctrl_addr, txdma_addr, rxdma_addr;
      static snd_device_ops_t ops = {
            .dev_free = snd_pmac_dev_free,
      };

      *chip_return = NULL;

      chip = kzalloc(sizeof(*chip), GFP_KERNEL);
      if (chip == NULL)
            return -ENOMEM;
      chip->card = card;

      spin_lock_init(&chip->reg_lock);
      chip->irq = chip->tx_irq = chip->rx_irq = -1;

      chip->playback.stream = SNDRV_PCM_STREAM_PLAYBACK;
      chip->capture.stream = SNDRV_PCM_STREAM_CAPTURE;

      if ((err = snd_pmac_detect(chip)) < 0)
            goto __error;

      if (snd_pmac_dbdma_alloc(chip, &chip->playback.cmd, PMAC_MAX_FRAGS + 1) < 0 ||
          snd_pmac_dbdma_alloc(chip, &chip->capture.cmd, PMAC_MAX_FRAGS + 1) < 0 ||
          snd_pmac_dbdma_alloc(chip, &chip->extra_dma, 2) < 0) {
            err = -ENOMEM;
            goto __error;
      }

      np = chip->node;
      if (chip->is_k2) {
            if (np->parent->n_addrs < 2 || np->n_intrs < 3) {
                  err = -ENODEV;
                  goto __error;
            }
            for (i = 0; i < 2; i++) {
#ifndef CONFIG_PPC64
                  static char *name[2] = { "- Control", "- DMA" };
                  if (! request_OF_resource(np->parent, i, name[i])) {
                        snd_printk(KERN_ERR "pmac: can't request resource %d!\n", i);
                        err = -ENODEV;
                        goto __error;
                  }
                  chip->of_requested |= (1 << i);
#endif /* CONFIG_PPC64 */
                  ctrl_addr = np->parent->addrs[0].address;
                  txdma_addr = np->parent->addrs[1].address;
                  rxdma_addr = txdma_addr + 0x100;
            }

      } else {
            if (np->n_addrs < 3 || np->n_intrs < 3) {
                  err = -ENODEV;
                  goto __error;
            }

            for (i = 0; i < 3; i++) {
#ifndef CONFIG_PPC64
                  static char *name[3] = { "- Control", "- Tx DMA", "- Rx DMA" };
                  if (! request_OF_resource(np, i, name[i])) {
                        snd_printk(KERN_ERR "pmac: can't request resource %d!\n", i);
                        err = -ENODEV;
                        goto __error;
                  }
                  chip->of_requested |= (1 << i);
#endif /* CONFIG_PPC64 */
                  ctrl_addr = np->addrs[0].address;
                  txdma_addr = np->addrs[1].address;
                  rxdma_addr = np->addrs[2].address;
            }
      }

      chip->awacs = ioremap(ctrl_addr, 0x1000);
      chip->playback.dma = ioremap(txdma_addr, 0x100);
      chip->capture.dma = ioremap(rxdma_addr, 0x100);
      if (chip->model <= PMAC_BURGUNDY) {
            if (request_irq(np->intrs[0].line, snd_pmac_ctrl_intr, 0,
                        "PMac", (void*)chip)) {
                  snd_printk(KERN_ERR "pmac: unable to grab IRQ %d\n", np->intrs[0].line);
                  err = -EBUSY;
                  goto __error;
            }
            chip->irq = np->intrs[0].line;
      }
      if (request_irq(np->intrs[1].line, snd_pmac_tx_intr, 0,
                  "PMac Output", (void*)chip)) {
            snd_printk(KERN_ERR "pmac: unable to grab IRQ %d\n", np->intrs[1].line);
            err = -EBUSY;
            goto __error;
      }
      chip->tx_irq = np->intrs[1].line;
      if (request_irq(np->intrs[2].line, snd_pmac_rx_intr, 0,
                  "PMac Input", (void*)chip)) {
            snd_printk(KERN_ERR "pmac: unable to grab IRQ %d\n", np->intrs[2].line);
            err = -EBUSY;
            goto __error;
      }
      chip->rx_irq = np->intrs[2].line;

      snd_pmac_sound_feature(chip, 1);

      /* reset */
      if (chip->model == PMAC_AWACS)
            out_le32(&chip->awacs->control, 0x11);

      /* Powerbooks have odd ways of enabling inputs such as
         an expansion-bay CD or sound from an internal modem
         or a PC-card modem. */
      if (chip->is_pbook_3400) {
            /* Enable CD and PC-card sound inputs. */
            /* This is done by reading from address
             * f301a000, + 0x10 to enable the expansion-bay
             * CD sound input, + 0x80 to enable the PC-card
             * sound input.  The 0x100 enables the SCSI bus
             * terminator power.
             */
            chip->latch_base = ioremap (0xf301a000, 0x1000);
            in_8(chip->latch_base + 0x190);
      } else if (chip->is_pbook_G3) {
            struct device_node* mio;
            for (mio = chip->node->parent; mio; mio = mio->parent) {
                  if (strcmp(mio->name, "mac-io") == 0
                      && mio->n_addrs > 0) {
                        chip->macio_base = ioremap(mio->addrs[0].address, 0x40);
                        break;
                  }
            }
            /* Enable CD sound input. */
            /* The relevant bits for writing to this byte are 0x8f.
             * I haven't found out what the 0x80 bit does.
             * For the 0xf bits, writing 3 or 7 enables the CD
             * input, any other value disables it.  Values
             * 1, 3, 5, 7 enable the microphone.  Values 0, 2,
             * 4, 6, 8 - f enable the input from the modem.
             */
            if (chip->macio_base)
                  out_8(chip->macio_base + 0x37, 3);
      }

      /* Reset dbdma channels */
      snd_pmac_dbdma_reset(chip);

#ifdef CONFIG_PM
      /* add sleep notifier */
      if (! snd_pmac_register_sleep_notifier(chip))
            snd_card_set_pm_callback(chip->card, snd_pmac_suspend, snd_pmac_resume, chip);
#endif

      if ((err = snd_device_new(card, SNDRV_DEV_LOWLEVEL, chip, &ops)) < 0)
            goto __error;

      *chip_return = chip;
      return 0;

 __error:
      if (chip->pdev)
            pci_dev_put(chip->pdev);
      snd_pmac_free(chip);
      return err;
}


/*
 * sleep notify for powerbook
 */

#ifdef CONFIG_PM

/*
 * Save state when going to sleep, restore it afterwards.
 */

static int snd_pmac_suspend(snd_card_t *card, pm_message_t state)
{
      pmac_t *chip = card->pm_private_data;
      unsigned long flags;

      if (chip->suspend)
            chip->suspend(chip);
      snd_pcm_suspend_all(chip->pcm);
      spin_lock_irqsave(&chip->reg_lock, flags);
      snd_pmac_beep_stop(chip);
      spin_unlock_irqrestore(&chip->reg_lock, flags);
      if (chip->irq >= 0)
            disable_irq(chip->irq);
      if (chip->tx_irq >= 0)
            disable_irq(chip->tx_irq);
      if (chip->rx_irq >= 0)
            disable_irq(chip->rx_irq);
      snd_pmac_sound_feature(chip, 0);
      return 0;
}

static int snd_pmac_resume(snd_card_t *card)
{
      pmac_t *chip = card->pm_private_data;

      snd_pmac_sound_feature(chip, 1);
      if (chip->resume)
            chip->resume(chip);
      /* enable CD sound input */
      if (chip->macio_base && chip->is_pbook_G3) {
            out_8(chip->macio_base + 0x37, 3);
      } else if (chip->is_pbook_3400) {
            in_8(chip->latch_base + 0x190);
      }

      snd_pmac_pcm_set_format(chip);

      if (chip->irq >= 0)
            enable_irq(chip->irq);
      if (chip->tx_irq >= 0)
            enable_irq(chip->tx_irq);
      if (chip->rx_irq >= 0)
            enable_irq(chip->rx_irq);

      return 0;
}

/* the chip is stored statically by snd_pmac_register_sleep_notifier
 * because we can't have any private data for notify callback.
 */
static pmac_t *sleeping_pmac = NULL;

static int snd_pmac_sleep_notify(struct pmu_sleep_notifier *self, int when)
{
      pmac_t *chip;

      chip = sleeping_pmac;
      if (! chip)
            return 0;

      switch (when) {
      case PBOOK_SLEEP_NOW:
            snd_pmac_suspend(chip->card, PMSG_SUSPEND);
            break;
      case PBOOK_WAKE:
            snd_pmac_resume(chip->card);
            break;
      }
      return PBOOK_SLEEP_OK;
}

static struct pmu_sleep_notifier snd_pmac_sleep_notifier = {
      snd_pmac_sleep_notify, SLEEP_LEVEL_SOUND,
};

static int __init snd_pmac_register_sleep_notifier(pmac_t *chip)
{
      /* should be protected here.. */
      snd_assert(! sleeping_pmac, return -EBUSY);
      sleeping_pmac = chip;
      pmu_register_sleep_notifier(&snd_pmac_sleep_notifier);
      return 0;
}
                                        
static int snd_pmac_unregister_sleep_notifier(pmac_t *chip)
{
      /* should be protected here.. */
      snd_assert(sleeping_pmac == chip, return -ENODEV);
      pmu_unregister_sleep_notifier(&snd_pmac_sleep_notifier);
      sleeping_pmac = NULL;
      return 0;
}

#endif /* CONFIG_PM */


Generated by  Doxygen 1.6.0   Back to index