Logo Search packages:      
Sourcecode: alsa-driver version File versions  Download package


// ****************************************************************************
//   Copyright Echo Digital Audio Corporation (c) 1998 - 2004
//   All rights reserved
//   www.echoaudio.com
//   This file is part of Echo Digital Audio's generic driver library.
//   Echo Digital Audio's generic driver library is free software;
//   you can redistribute it and/or modify it under the terms of
//   the GNU General Public License as published by the Free Software Foundation.
//   This program is distributed in the hope that it will be useful,
//   but WITHOUT ANY WARRANTY; without even the implied warranty of
//   GNU General Public License for more details.
//   You should have received a copy of the GNU General Public License
//   along with this program; if not, write to the Free Software
//   Foundation, Inc., 59 Temple Place - Suite 330, Boston,
//   MA  02111-1307, USA.
// ****************************************************************************
// Translation from C++ and adaptation for use in ALSA-Driver
// were made by Giuliano Pochini <pochini@shiny.it>
// ****************************************************************************


   Here's a block diagram of how most of the cards work:

           record |           |<-------------------- Inputs
          <-------|           |        |
     PCI          | Transport |        |
     bus          |  engine   |       \|/
          ------->|           |    +-------+
            play  |           |--->|monitor|-------> Outputs
                  +-----------+    | mixer |

   The lines going to and from the PCI bus represent "pipes".  A pipe performs
   audio transport - moving audio data to and from buffers on the host via
   bus mastering.

   The inputs and outputs on the right represent input and output "busses."
   A bus is a physical, real connection to the outside world.  An example
   of a bus would be the 1/4" analog connectors on the back of Layla or
   an RCA S/PDIF connector.

   For most cards, there is a one-to-one correspondence between outputs
   and busses; that is, each individual pipe is hard-wired to a single bus.

   Cards that work this way are Darla20, Gina20, Layla20, Darla24, Gina24,
   Layla24, Mona, and Indigo.

   Mia has a feature called "virtual outputs."

           record |           |<----------------------------- Inputs
          <-------|           |                  |
     PCI          | Transport |                  |
     bus          |  engine   |                 \|/
          ------->|           |   +------+   +-------+
            play  |           |-->|vmixer|-->|monitor|-------> Outputs
                  +-----------+   +------+   | mixer |

   Obviously, the difference here is the box labeled "vmixer."  Vmixer is
   short for "virtual output mixer."  For Mia, pipes are *not* hard-wired
   to a single bus; the vmixer lets you mix any pipe to any bus in any

   Note, however, that the left-hand side of the diagram is unchanged.
   Transport works exactly the same way - the difference is in the mixer stage.

   Pipes and busses are numbered starting at zero.

   Pipe index

   A number of calls in CEchoGals refer to a "pipe index".  A pipe index is
   a unique number for a pipe that unambiguously refers to a playback or record
   pipe.  Pipe indices are numbered starting with analog outputs, followed by
   digital outputs, then analog inputs, then digital inputs.

   Take Gina24 as an example:

   Pipe index

   0-7            Analog outputs (0 .. FirstDigitalBusOut-1)
   8-15           Digital outputs (FirstDigitalBusOut .. NumBussesOut-1)
   16-17          Analog inputs
   18-25          Digital inputs

   You get the pipe index by calling CEchoGals::OpenAudio; the other transport
   functions take the pipe index as a parameter.  If you need a pipe index for
   some other reason, use the handy Makepipe_index method.

   Some calls take a CChannelMask parameter; CChannelMask is a handy way to group
   pipe indices.

   Digital mode switch

   Some cards (right now, Gina24, Layla24, and Mona) have a Digital Mode Switch
   or DMS.  Cards with a DMS can be set to one of three mutually exclusive
   digital modes: S/PDIF RCA, S/PDIF optical, or ADAT optical.

   This may create some confusion since ADAT optical is 8 channels wide and
   S/PDIF is only two channels wide.  Gina24, Layla24, and Mona handle this
   by acting as if they always have 8 digital outs and ins.  If you are in
   either S/PDIF mode, the last 6 channels don't do anything - data sent
   out these channels is thrown away and you will always record zeros.

   Note that with Gina24, Layla24, and Mona, sample rates above 50 kHz are
   only available if you have the card configured for S/PDIF optical or S/PDIF RCA.

   Double speed mode

   Some of the cards support 88.2 kHz and 96 kHz sampling (Darla24, Gina24, Layla24,
   Mona, Mia, and Indigo).  For these cards, the driver sometimes has to worry about
   "double speed mode"; double speed mode applies whenever the sampling rate is above
   50 kHz.

   For instance, Mona and Layla24 support word clock sync.  However, they actually
   support two different word clock modes - single speed (below 50 kHz) and double
   speed (above 50 kHz).  The hardware detects if a single or double speed word clock
   signal is present; the generic code uses that information to determine which mode
   to use.

   The generic code takes care of all this for you.

#ifndef _ECHOAUDIO_H_
#define _ECHOAUDIO_H_

#define TRUE 1
#define FALSE 0

#include "echoaudio_dsp.h"

//    PCI configuration space

// PCI vendor ID and device IDs for the hardware
#define VENDOR_ID       0x1057
#define DEVICE_ID_56301       0x1801
#define DEVICE_ID_56361       0x3410
#define SUBVENDOR_ID          0xECC0

// Valid Echo PCI subsystem card IDs
#define DARLA20               0x0010
#define GINA20                0x0020
#define LAYLA20               0x0030
#define DARLA24               0x0040
#define GINA24                0x0050
#define LAYLA24               0x0060
#define MONA                  0x0070
#define MIA             0x0080
#define INDIGO                0x0090
#define INDIGO_IO       0x00a0
#define INDIGO_DJ       0x00b0
#define ECHO3G                0x0100

//    Array sizes and so forth

// Sizes
#define ECHO_MAXAUDIOINPUTS   32    // Max audio input channels
#define ECHO_MAXAUDIOOUTPUTS  32    // Max audio output channels
#define ECHO_MAXAUDIOPIPES    32    // Max number of input and output pipes
#define ECHO_MAXMIDIJACKS     1     // Max MIDI ports
#define ECHO_MIDI_QUEUE_SZ    512   // Max MIDI input queue entries
#define ECHO_MTC_QUEUE_SZ     32    // Max MIDI time code input queue entries

// MIDI activity indicator timeout

// Clocks

// Clock numbers
#define ECHO_CLOCK_INTERNAL         0
#define ECHO_CLOCK_WORD             1
#define ECHO_CLOCK_SUPER            2
#define ECHO_CLOCK_SPDIF            3
#define ECHO_CLOCK_ADAT             4
#define ECHO_CLOCK_ESYNC            5
#define ECHO_CLOCK_ESYNC96          6
#define ECHO_CLOCK_MTC              7
#define ECHO_CLOCK_NUMBER           8
#define ECHO_CLOCKS                 0xffff

// Clock bit numbers - used to report capabilities and whatever clocks
// are being detected dynamically.
#define ECHO_CLOCK_BIT_WORD         (1 << ECHO_CLOCK_WORD)
#define ECHO_CLOCK_BIT_ADAT         (1 << ECHO_CLOCK_ADAT)
#define ECHO_CLOCK_BIT_ESYNC96            (1 << ECHO_CLOCK_ESYNC96)
#define ECHO_CLOCK_BIT_MTC          (1<<ECHO_CLOCK_MTC)

// Digital modes

// Digital modes for Mona, Layla24, and Gina24
#define DIGITAL_MODE_NONE                 0xFF
#define DIGITAL_MODE_SPDIF_RCA                  0
#define DIGITAL_MODE_ADAT                 2
#define DIGITAL_MODE_SPDIF_CDROM          3
#define DIGITAL_MODES                     4

// Digital mode capability masks

#define EXT_3GBOX_NC                0x01  /* 3G box not connected */
#define EXT_3GBOX_NOT_SET           0x02  /* 3G box not detected yet */

#define ECHOGAIN_MUTED        (-128)      // Minimum possible gain
#define ECHOGAIN_MINOUT       (-128)      // Min output gain (dB)
#define ECHOGAIN_MAXOUT       (6)   // Max output gain (dB)
#define ECHOGAIN_MININP       (-50) // Min input gain (0.5 dB)
#define ECHOGAIN_MAXINP       (50)  // Max input gain (0.5 dB)

#define PIPE_STATE_STOPPED    0     // Pipe has been reset
#define PIPE_STATE_PAUSED     1     // Pipe has been stopped
#define PIPE_STATE_STARTED    2     // Pipe has been started
#define PIPE_STATE_PENDING    3     // Pipe has pending start

/* Debug initialization */
#define DE_INIT(x) snd_printk x
#define DE_INIT(x)

/* Debug hw_params callbacks */
#define DE_HWP(x) snd_printk x
#define DE_HWP(x)

/* Debug normal activity (open, start, stop...) */
#define DE_ACT(x) snd_printk x
#define DE_ACT(x)

/* Debug midi activity */
#define DE_MID(x) snd_printk x
#define DE_MID(x)

typedef struct subsdata {
      volatile u32 *dma_counter;    /* Commpage register that contains the current dma position (lower 32 bits only) */
      u32 last_counter;       /* The last position, which is used to compute... */
      u32 position;                 /* ...the number of bytes tranferred by the DMA engine, modulo the buffer size */
      short pipe_index;       /* Index of the first channel or <0 if hw is not configured yet */
      short interleave;
      struct snd_dma_buffer sgpage; /* Room for the scatter-gather list */
      snd_pcm_hardware_t hw;
      snd_pcm_hw_constraint_list_t constr;
      short sglist_head;
      char state;             /* pipe state */
} audiopipe_t;

typedef struct {
      u8 interleave;                /* How the data is arranged in memory: mono = 1, stereo = 2, ... */
      u8 bits_per_sample;           /* 8, 16, 24, 32 (24 bits left aligned) */
      char mono_to_stereo;          /* Only used if interleave is 1 and if this is an output pipe. */
      char data_are_bigendian;      /* 1 = big endian, 0 = little endian */
} audioformat_t;

struct echoaudio_chip {
      spinlock_t lock;
      snd_pcm_substream_t *substream[DSP_MAXPIPES];
      int last_period[DSP_MAXPIPES];
      struct semaphore mode_mutex;
      u16 num_digital_modes, digital_mode_list[6];
      u16 num_clock_sources, clock_source_list[10];
      atomic_t opencount;
      snd_kcontrol_t *clock_src_ctl;
      snd_pcm_t *analog_pcm, *digital_pcm;
      snd_card_t *card;
      const char *card_name;
      struct pci_dev *pci;
      unsigned long dsp_registers_phys;
      struct resource *iores;
      struct snd_dma_buffer commpage_dma_buf;
      int irq;
      snd_rawmidi_t *rmidi;
      snd_rawmidi_substream_t *midi_in, *midi_out;
      struct timer_list timer;
      char tinuse;                        /* Timer in use */
      char midi_full;                     /* MIDI output buffer is full */
      char can_set_rate;
      char rate_set;

      /* This stuff is used mainly by the lowlevel code */
      comm_page_t *comm_page;             /* Virtual address of the memory seen by DSP */

      u32 pipe_alloc_mask;                /* Bitmask of allocated pipes */
      u32 pipe_cyclic_mask;               /* Bitmask of pipes with cyclic buffers */
      u32 sample_rate;              /* Card sample rate in Hz */
      u8 digital_mode;              /* Current digital mode (see DIGITAL_MODE_*) */
      u8 spdif_status;              /* Gina20, Darla20, Darla24 - only */
      u8 clock_state;                     /* Gina20, Darla20, Darla24 - only */
      u8 input_clock;                     /* Currently selected sample clock source */
      u8 output_clock;              /* Layla20 only */
      u8 e3g_box_type;              /* The loaded fw supports this box type */

      char meters_enabled;                /* VU-meters status */
      char asic_loaded;             /* Set TRUE when ASIC loaded */
      char bad_board;                     /* Set TRUE if DSP won't load */
      char professional_spdif;            /* 0 = consumer; 1 = professional */
      char non_audio_spdif;               /* 3G - only */
      char digital_in_automute;           /* Gina24, Layla24, Mona - only */
      char has_phantom_power;
      char phantom_power;                 /* Gina3G - only */
      char has_midi;
      char midi_input_enabled;

      /* External module -dependent pipe and bus indexes */
      char px_digital_out, px_analog_in, px_digital_in, px_num;
      char bx_digital_out, bx_analog_in, bx_digital_in, bx_num;

      char nominal_level[ECHO_MAXAUDIOPIPES];   /* True == -10dBV  False == +4dBu */
      s8 input_gain[ECHO_MAXAUDIOINPUTS]; /* Input level -50..+50 unit is 0.5dB */
      s8 output_gain[ECHO_MAXAUDIOOUTPUTS];     /* Output level -128..+6 dB (-128=muted) */
      s8 monitor_gain[ECHO_MAXAUDIOOUTPUTS][ECHO_MAXAUDIOINPUTS]; /* -128..+6 dB */
      s8 vmixer_gain[ECHO_MAXAUDIOOUTPUTS][ECHO_MAXAUDIOOUTPUTS]; /* -128..+6 dB */

      u16 digital_modes;                  /* Bitmask of supported modes (see ECHOCAPS_HAS_DIGITAL_MODE_*) */
      u16 input_clock_types;              /* Suppoted input clock types */
      u16 output_clock_types;             /* Suppoted output clock types - Layla20 only */
      u16 device_id, subdevice_id;
      u16 *dsp_code;                      /* Current DSP code loaded, NULL if nothing loaded */
      const struct firmware *dsp_code_to_load;/* DSP code to load */
      const struct firmware *asic_code;   /* Current ASIC code */
      u32 comm_page_phys;                 /* Physical address of the memory seen by DSP */
      volatile u32 __iomem *dsp_registers;      /* DSP's register base */
      u32 active_mask;              /* Chs. active mask or punks out */

      u16 mtc_state;                      /* State for MIDI input parsing state machine */
      u8 midi_buffer[MIDI_IN_BUFFER_SIZE];

typedef struct echoaudio_chip echoaudio_t;

static int init_dsp_comm_page(echoaudio_t *chip);
static int init_line_levels(echoaudio_t *chip);
static int free_pipes(echoaudio_t *chip, audiopipe_t *audiopipe);
static int load_firmware(echoaudio_t *chip);
static int wait_handshake(echoaudio_t *chip);
static int send_vector(echoaudio_t *chip, u32 command);
static int get_firmware(const struct firmware **fw_entry, const struct firmware *frm, echoaudio_t *chip);
static void free_firmware(const struct firmware *fw_entry);

static int enable_midi_input(echoaudio_t *chip, char enable);
static int midi_service_irq(echoaudio_t *chip);
static int __devinit snd_echo_midi_create(snd_card_t *card, echoaudio_t *chip);

static inline void clear_handshake(echoaudio_t *chip)
      chip->comm_page->handshake = 0;

static inline u32 get_dsp_register(echoaudio_t *chip, u32 index)
      return readl(&chip->dsp_registers[index]);

static inline void set_dsp_register(echoaudio_t *chip, u32 index, u32 value)
      writel(value, &chip->dsp_registers[index]);

/* Pipe and bus indexes. PX_* and BX_* are defined as chip->px_* and chip->bx_*
for 3G cards because they depend on the external box. They are integer
constants for all other cards.
Never use those defines directly, use the following functions instead. */

static inline int px_digital_out(const echoaudio_t *chip)
      return PX_DIGITAL_OUT;

static inline int px_analog_in(const echoaudio_t *chip)
      return PX_ANALOG_IN;

static inline int px_digital_in(const echoaudio_t *chip)
      return PX_DIGITAL_IN;

static inline int px_num(const echoaudio_t *chip)
      return PX_NUM;

static inline int bx_digital_out(const echoaudio_t *chip)
      return BX_DIGITAL_OUT;

static inline int bx_analog_in(const echoaudio_t *chip)
      return BX_ANALOG_IN;

static inline int bx_digital_in(const echoaudio_t *chip)
      return BX_DIGITAL_IN;

static inline int bx_num(const echoaudio_t *chip)
      return BX_NUM;

static inline int num_pipes_out(const echoaudio_t *chip)
      return px_analog_in(chip);

static inline int num_pipes_in(const echoaudio_t *chip)
      return px_num(chip) - px_analog_in(chip);

static inline int num_busses_out(const echoaudio_t *chip)
      return bx_analog_in(chip);

static inline int num_busses_in(const echoaudio_t *chip)
      return bx_num(chip) - bx_analog_in(chip);

static inline int num_analog_busses_out(const echoaudio_t *chip)
      return bx_digital_out(chip);

static inline int num_analog_busses_in(const echoaudio_t *chip)
      return bx_digital_in(chip) - bx_analog_in(chip);

static inline int num_digital_busses_out(const echoaudio_t *chip)
      return num_busses_out(chip) - num_analog_busses_out(chip);

static inline int num_digital_busses_in(const echoaudio_t *chip)
      return num_busses_in(chip) - num_analog_busses_in(chip);

// The monitor array is a one-dimensional array; compute the offset into the array
static inline int monitor_index(const echoaudio_t *chip, int out, int in)
        return out * num_busses_in(chip) + in;

#define pci_device(chip) pci_name(chip->pci)
#define pci_device(chip) (&chip->pci->dev)

#endif // _ECHOAUDIO_H_

Generated by  Doxygen 1.6.0   Back to index